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ON A DIFFERENTIAL INTERMEDIATE VALUE PROPERTY

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. Liouville closed H-fields are ordered differential fields whose order-
ing and derivation interact in a natural way and where every linear differential

equation of order 1 has a nontrivial solution. (The introduction gives a precise

definition.) For a Liouville closed H-field K with small derivation we show:
K has the Intermediate Value Property for differential polynomials iff K is

elementarily equivalent to the ordered differential field of transseries. We also
indicate how this applies to Hardy fields.

Introduction

Throughout this introduction K is an ordered differential field, that is, an ordered
field equipped with a derivation ∂ : K → K. (We usually write f ′ instead of ∂f ,
for f ∈ K.) Its constant field

C := {f ∈ K : f ′ = 0}

yields the (convex) valuation ring

O :=
{
f ∈ K : |f | ⩽ c for some c ∈ C

}
of K, with maximal ideal

O :=
{
f ∈ K : |f | < c for all c > 0 in C

}
.

(It may help to think of the elements of K as germs of real valued functions and
of f ∈ Og and f ∈ Og as f = O(g) and f = o(g), respectively.) The above
definitions exhibit C, O, and O as definable in K in the sense of model theory.

Key example: the ordered differential field T of transseries, which contains R
as an ordered subfield, and where C = R. We refer to [3] for the rather elaborate
construction of T and for any fact about T that gets mentioned without proof.

Other important examples are Hardy fields. (Hardy [6] proved a striking theorem
on logarithmic-exponential functions. Bourbaki [5] put this into the general setting
of what they called Hardy fields.) Here we can give a definition from scratch that
doesn’t take much space. Notation: C is the ring of germs at +∞ of continuous
real-valued functions on halflines (a,+∞), a ∈ R. For r = 1, 2, . . . , let Cr be the
subring of C consisting of the germs at +∞ of r-times continuously differentiable
real-valued functions on such halflines. This yields the subring

C<∞ :=
⋂

r∈N⩾1

Cr
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of C, and C<∞ is naturally a differential ring. For a germ f ∈ C we let f also denote
any real valued function representing this germ, if this causes no ambiguity. A real
number is identified with the germ of the corresponding constant function: R ⊆ C.

A Hardy field is by definition a differential subfield of C<∞. Examples:

Q, R, R(x), R(x, ex), R(x, ex, log x), R(Γ,Γ′,Γ′′, . . . ),

where x denotes the germ at +∞ of the identity function on R. All these are actually
analytic Hardy fields, that is, its elements are germs of real analytic functions.

Let H be a Hardy field. Then H is an ordered differential field: for f ∈ H,
either f(x) > 0 eventually (in which case we set f > 0), or f(x) = 0, eventually,
or f(x) < 0, eventually; this is because f ̸= 0 in H implies f has a multiplicative
inverse in H, so f cannot have arbitrarily large zeros. Also, if f ′ < 0, then f is
eventually strictly decreasing; if f ′ = 0, then f is eventually constant; if f ′ > 0,
then f is eventually strictly increasing.

In order to state the main result of this paper we need a bit more terminology: an
H-field is a K (that is, an ordered differential field) such that:

• for all f ∈ K, if f > C, then f ′ > 0;
• O = C + O (so C maps isomorphically onto the residue field O/O).

We also say that K has small derivation if for all f ∈ O we have f ′ ∈ O. Hardy
fields have small derivation, and any Hardy field containing R is an H-field.

AnH-fieldK is said to be Liouville closed if it is real closed and for every f ∈ K
there are g, h ∈ K× such that f = g′ = h′/h. The ordered differential field T is
a Liouville closed H-field with small derivation. Any Hardy field H ⊇ R has a
smallest (with respect to inclusion) Liouville closed Hardy field extension Li(H).
(The notions of “H-field” and “Liouville closed H-field” are introduced in [1]. The
capital H is in honor of Hardy, Hausdorff, and Hahn, who pioneered various aspects
of our topic about a century ago, as did Du Bois-Reymond and Borel even earlier.)

Now a very strong property: we say K has DIVP (the Differential Intermediate
Value Property) if for every polynomial P ∈ K[Y0, . . . , Yr] and all f < g in K with

P (f, f ′, . . . , f (r)) < 0 < P (g, g′, . . . , g(r))

there exists y ∈ K such that f < y < g and P (y, y′, . . . , y(r)) = 0. (Existentially
closed ordered differential fields have DIVP by [9] and [10, Proposition 1.5]; this
has limited interest for us since the ordering and derivation in those structures do
not interact.) Actually, DIVP is a bit of an afterthought: in [3] we considered
instead two robust but rather technical properties, ω-freeness and newtonianity,
and proved that T is ω-free and newtonian. (One can think of newtonianity as a
variant of differential-henselianity.) Afterwards we saw that “ω-free + newtonian”
is equivalent to DIVP, for Liouville closed H-fields. Our aim is to establish this
equivalence: Theorem 2.7, the main result of this short paper.

We did not consider DIVP in [3], but it is surely an appealing property and easier
to grasp than the more fundamental notions of ω-freeness and newtonianity. (The
latter make sense in a wider setting of valued differential fields where the valuation
does not necessarily arise from an ordering, as is the case for H-fields.)

Besides [3] we shall rely on [7], which focuses on a particular ordered differential
subfield of T, namely Tg, consisting of the so-called grid-based transseries; see
also [3, Appendix A]. We summarize what we need from [7] as follows:
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Tg is a newtonian ω-free Liouville closed H-field with small derivation, and Tg

has DIVP. We alert the reader that the terms newtonian and ω-free do not occur
in [7], and that Tg there is denoted by T.
We call attention to the fact that K is a Liouville closed H-field iff K |= LiH for a
set LiH (independent ofK) of sentences in the language of ordered differential fields.
Also, for H-fields, “ω-free” is expressible by a single sentence in the language of
ordered differential fields, and “newtonian” as well as “DIVP” by a set of sentences
in this language. The reason that “ω-free + newtonian” is central in [3] are various
theorems proved there, which are also relevant here. To state these theorems, we
consider an H-field K below as an L-structure, where

L := { 0, 1, +, −, ×, ∂, <, ≼ }
is the language of ordered valued differential fields. The symbols 0, 1, +, −, ×, ∂, <
name the usual primitives of K, and ≼ encodes its valuation: for a, b ∈ K,

a ≼ b :⇐⇒ a ∈ Ob.
We can now summarize what we need from [3, Chapters 15, 16] as follows:

The theory of newtonian ω-free Liouville closed H-fields is model complete, and
is the model companion of the theory of H-fields. The theory of newtonian ω-free
Liouville closed H-fields whose derivation is small is complete and has T as a model.

For an H-field K its valuation ring O and so the binary relation ≼ on K can be
defined in terms of the other primitives by an existential formula independent of K.
However, by [3, Corollary 16.2.6] this cannot be done by a universal such formula
and so for the model completeness above we cannot drop ≼ from the language L.

Corollary 0.1. Every newtonian ω-free Liouville closed H-field has DIVP.

Proof. Let K be a newtonian ω-free Liouville closed H-field. If the derivation of K
is small, then DIVP follows from the results from [7] quoted earlier and the above
completeness result from [3]. Suppose the derivation of K is not small. Replacing
the derivation ∂ of K by a multiple ϕ−1

∂ with ϕ > 0 in K transforms K into its
so-called compositional conjugate Kϕ, which is still a newtonian ω-free Liouville
closed H-field, and K has DIVP iff Kϕ does. By 4.4.7 and 9.1.5 in [3] we can
choose ϕ > 0 in K such that the derivation ϕ−1

∂ of Kϕ is small. □

This gives one direction of Theorem 2.7. In the rest of this paper we prove a strong
version, Corollary 2.6, of the other direction, without using [7] but relying heavily
on various parts of [3] with detailed references. Theorem 2.7 and the results quoted
above from [3] yield the result stated in the abstract: a Liouville closed H-field
with small derivation is elementarily equivalent to T iff it has DIVP.

Connection to Hardy fields. Every Hardy field H extends to a Hardy field
H(R) ⊇ R, and H(R) is in particular an H-field. We refer to [4] for a discussion
of the conjecture that any Hardy field containing R extends to a newtonian ω-
free Hardy field. At the end of 2019 we finished the proof of this conjecture by
considerably refining material in [3] and [8]; this amounts to a rather complete
extension theory of Hardy fields. Note that every Hardy field extends to a maximal
Hardy field, by Zorn, and so having established this conjecture we now know that
all maximal Hardy fields are elementarily equivalent to T, as ordered differential
fields. Since C has the cardinality c = 2ℵ0 of the continuum, there are at most 2c



4 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

many maximal Hardy fields, and we also have a proof that there are exactly that
many. (We thank Ilijas Farah for a useful hint on this point.) These remarks on
Hardy fields serve as an announcement. A rather voluminous work containing the
proof of the conjecture is currently being prepared for publication. We also hope to
include there a proof of DIVP for newtonian ω-free H-fields that does not depend
as in the present paper on it being true for Tg, whose proof in [7] uses the particular
nature of Tg.

We have a second conjecture about Hardy fields in [4], whose proof is not yet
finished at this time (May 2021): for any maximal Hardy field H and countable
subsets A < B in H there exists y ∈ H such that A < y < B. This means that
the underlying ordered set of a maximal Hardy field is an η1-set in the sense of
Hausdorff. Together with the (now established) first conjecture and results from [3]
it implies: all maximal Hardy fields are back-and-forth equivalent as ordered differ-
ential fields, and thus isomorphic assuming CH, the Continuum Hypothesis.

1. Preliminaries

In order to make free use of the valuation-theoretic tools from [3] and to make
this paper self-contained modulo references to specific results from the literature
we provide more background in this section before returning to DIVP.

Notation and terminology. Throughout, m, n range over N = {0, 1, 2, . . . }.
Given an additively written abelian group A we let A ̸= := A \ {0}. Rings are
commutative with identity 1, and for a ring R we let R× be the multiplicative
group of units (consisting of the a ∈ R such that ab = 1 for some b ∈ R). A
differential ring will be a ring R containing (an isomorphic copy of) Q as a subring
and equipped with a derivation ∂ : R→ R; note that then CR :=

{
a ∈ R : ∂(a) = 0

}
is a subring of R, called the ring of constants of R, and that Q ⊆ CR. If R is a
field, then so is CR. An ordered differential field is in particular a differential ring.

Let R be a differential ring and a ∈ R. When its derivation ∂ is clear from the
context we denote ∂(a), ∂

2(a), . . . , ∂
n(a), . . . by a′, a′′, . . . , a(n), . . . , and if a ∈ R×,

then a† denotes a′/a, so (ab)† = a† + b† for a, b ∈ R×. In Section 2 we need
to consider the function ω = ωR : R → R given by ω(z) = −2z′ − z2, and the
function σ = σR : R× → R given by σ(y) = ω(z) + y2 for z := −y†.

We have the differential ring R{Y } = R[Y, Y ′, Y ′′, . . . ] of differential polynomials
in an indeterminate Y over R. We say that P = P (Y ) ∈ R{Y } has order at
most r ∈ N if P ∈ R[Y, Y ′, . . . , Y (r)].

For ϕ ∈ R× we let Rϕ be the compositional conjugate of R by ϕ: the differential
ring with the same underlying ring as R but with derivation ϕ−1

∂ instead of ∂. We
then have an R-algebra isomorphism

P 7→ Pϕ : R{Y } → Rϕ{Y }

with Pϕ(y) = P (y) for all y ∈ R; see [3, Section 5.7].
For a field K we have K× = K ̸=, and a (Krull) valuation on K is a surjective

map v : K× → Γ onto an ordered abelian group Γ (additively written) satisfying
the usual laws, and extended to v : K → Γ∞ := Γ ∪ {∞} by v(0) := ∞, where the
ordering on Γ is extended to a total ordering on Γ∞ by γ <∞ for all γ ∈ Γ.

Let K be a valued field : a field (also denoted by K) together with a valuation
ring O of that field. This yields a valuation v : K× → Γ on the underlying field



ON A DIFFERENTIAL INTERMEDIATE VALUE PROPERTY 5

such that O = {a ∈ K : va ⩾ 0} as explained in [3, Section 3.1]. We introduce
various binary relations on the set K by defining for a, b ∈ K:

a ≍ b :⇔ va = vb, a ≼ b :⇔ va ⩾ vb, a ≺ b :⇔ va > vb,

a ≽ b :⇔ b ≼ a, a ≻ b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.

It is easy to check that if a ∼ b, then a, b ̸= 0, and that ∼ is an equivalence relation
on K×. We also let O = {a ∈ K : va > 0} be the maximal ideal of O, so O/O is the
residue field of the valued field K. A convex subgroup ∆ of the value group Γ of v
gives rise to the ∆-coarsening of the valued field K; see [ADH, 3.4].

H-fields and pre-H-fields. As in [3], a valued differential field is a valued field K
with residue field of characteristic zero and equipped with a derivation ∂ : K → K.
An ordered valued differential field is a valued differential field K equipped with
an ordering on K making K an ordered field. We consider any H-field K as an
ordered valued differential field whose valuation ring is the convex hull in K of its
constant field C, in accordance with construing it as an L-structure as specified in
the introduction.

A pre-H-field is by definition an ordered valued differential subfield of an H-
field. By [3, Sections 10.1, 10.3, 10.5], an ordered valued differential field K is a
pre-H-field iff the valuation ring O of K is convex in K, f ′ > 0 for all f > O in K,
and f ′ ≺ g† for all f, g ∈ K× with f ≼ 1 and g ≺ 1. Any Hardy field H is construed
as a pre-H-field by taking the convex hull of Q in H as its valuation ring, giving
rise to the so-called “natural valuation” on H as an ordered field. At the end of
Section 9.1 in [3] we give Q(

√
2 + x−1) as an example of a Hardy field that is not

an H-field. Any ordered differential field K with the trivial valuation ring O = K
is a pre-H-field (so the valuation ring of a pre-H-field K is not always the convex
hull in K of its constant field, in contrast to Hardy fields and H-fields). If K is
a pre-H-field whose valuation ring is nontrivial, then the valuation topology on K
equals its order topology, by [3, Lemma 2.4.1].

Let K be a pre-H-field. Then the derivation of K and its valuation v : K× → Γ
induce an operation ψ : Γ ̸= → Γ, given by ψ(vf) = v(f†) for f ̸≍ 1 in K×; the
pair (Γ, ψ) is called the H-asymptotic couple of K; see [3, Section 9.1]. Below
we assume some familiarity with (Γ, ψ), and properties of K based on it, such
as K having asymptotic integration and K having a gap [3, Sections 9.1, 9.2]. The
flattening of K is the Γ♭-coarsening of K where Γ♭ = {vf : f ∈ K×, f ′ ≺ f}, with
associated binary relations ≍♭, ≼♭ etc.; see [ADH, 9.4].

2. DIVP

In this section K is a pre-H-field. We let O be its valuation ring, with maximal
ideal O, and corresponding valuation v : K× → Γ = v(K×). Let (Γ, ψ) be its H-
asymptotic couple, and Ψ :=

{
ψ(γ) : γ ∈ Γ̸=

}
. Recall that “K has DIVP” means:

for all P (Y ) ∈ K{Y } and f < g in K with P (f) < 0 < P (g) there is a y ∈ K such
that f < y < g and P (y) = 0. Restricting this to P of order ⩽ r, where r ∈ N,
gives the notion of r-DIVP. Thus K having 0-DIVP is equivalent to K being real
closed as an ordered field. In particular, if K has 0-DIVP, then Γ = v(K×) is
divisible. From [3, Section 2.4] recall our convention that K> = {a ∈ K : a > 0},
and similarly with < replacing >.
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Lemma 2.1. Suppose Γ ̸= {0} and K has 1-DIVP. Then ∂K = K, (K>)† =
(K<)† is a convex subgroup of K, Ψ has no largest element, and Ψ is convex in Γ.

Proof. We have y′ = 0 for y = 0, and y′ takes arbitrarily large positive values in K
as y ranges over K>O = {a ∈ K : a > O}, since by [3, Lemma 9.2.6] the set (Γ<)′

is coinitial in Γ. Hence y′ takes all positive values on K>, and therefore also all
negative values on K<. Thus ∂K = K. Next, let a, b ∈ K>, and suppose s ∈ K lies
strictly between a† and b†. Then s = y† for some y ∈ K> strictly between a and b;
this follows by noting that for y = a and y = b the signs of sy − y′ are opposite.

Let β ∈ Ψ and take a ∈ K with v(a′) = β. Then a ≻ 1, since a ≼ 1 would
give v(a′) > Ψ. Hence for α = va < 0 we have α+ α† = β, so α† > β. Thus Ψ has
no largest element. Therefore the set Ψ is convex in Γ. □

Thus the ordered differential field Tlog of logarithmic transseries [3, Appendix A]
does not have 1-DIVP, although it is a newtonian ω-free H-field.

Does DIVP imply that K is an H-field? No: take an ℵ0-saturated elementary
extension of T and let ∆ be as in [3, Example 10.1.7]. Then the ∆-coarsening of K
is a pre-H-field with DIVP and nontrivial value group, and has a gap, but it is not
an H-field. On the other hand:

Lemma 2.2. Suppose K has 1-DIVP and has no gap. Then K is an H-field.

Proof. In [3, Section 11.8] we defined

I(K) := {y ∈ K : y ≼ f ′ for some f ∈ O},
a convex O-submodule of K. Since K has no gap, we have

∂O ⊆ I(K) = {y ∈ K : y ≼ f ′ for some f ∈ O}.
Also Γ ̸= {0}, and so (Γ, ψ) has asymptotic integration by Lemma 2.1. We show
that K is an H-field by proving I(K) = ∂O, so let g ∈ I(K), g < 0. Since (Γ>)′

has no least element we can take positive f ∈ O such that f ′ ≻ g. Since f ′ < 0,
this gives f ′ < g. Since (Γ>)′ is cofinal in Γ we can also take positive h ∈ O such
that h′ ≺ g, which in view of h′ < 0 gives g < h′. Thus f ′ < g < h′, and so 1-DIVP
yields a ∈ O with g = a′. □

We refer to Sections 11.6 and 14.2 of [3] for the definitions of λ-freeness and r-
newtonianity (r ∈ N). From the introduction we recall that ω(z) := −2z′ − z2.
Below, compositionally conjugating an H-field K means replacing it by some Kϕ

with ϕ ∈ K>; this preserves most relevant properties like being an H-field, being
λ-free, r-DIVP, and r-newtonianity, and it replaces Ψ by Ψ− vϕ.

Lemma 2.3. Suppose K is an H-field, Γ ̸= {0}, and K has 1-DIVP. Then K is
λ-free and 1-newtonian, and the subset ω(K) of K is downward closed.

Proof. Note that K has (asymptotic) integration, by Lemma 2.1. Assume towards
a contradiction that K is not λ-free. We arrange by compositional conjugation
that K has small derivation, so K has an element x ≻ 1 with x′ = 1, hence x > C.
A construction in the beginning of [3, Section 11.5] yields by [3, Lemma 11.5.2] a
pseudocauchy sequence (λρ) in K with certain properties including λρ ∼ x−1 for
all ρ. As K is not λ-free, (λρ) has a pseudolimit λ ∈ K by [3, Corollary 11.6.1].
Then s := −λ ∼ −x−1, and s creates a gap over K by [3, Lemma 11.5.14]. Now
note that for P := Y ′ + sY we have P (0) = 0 and P (x2) = 2x + sx2 ∼ x, so by
1-DIVP we have P (y) = 1 for some y ∈ K, contradicting [3, Lemma 11.5.12].
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Let P ∈ K{Y } of order at most 1 have Newton degree 1; we have to show that P
has a zero in O. We know that K is λ-free, so by [3, Proposition 13.3.6] we can pass
to an elementary extension, compositionally conjugate, and divide by an element
of K× to arrange that K has small derivation and P = D + R where D = cY + d
or D = cY ′ with c, d ∈ C, c ̸= 0, and where R ≺♭ 1. Then R(a) ≺♭ 1 for all a ∈ O.
If D = cY + d, then we can take a, b ∈ C with D(a) < 0 and D(b) > 0, which in
view of R(a) ≺ D(a) and R(b) ≺ D(b) gives P (a) < 0 and P (b) > 0, and so P has a
zero strictly between a and b, and thus a zero in O. Next, suppose D = cY ′. Then
we take t ∈ O ̸= with v(t†) = v(t), that is, t′ ≍ t2, so

P (t) = ct′ +R(t), P (−t) = −ct′ +R(−t), R(t), R(−t) ≺ t′.

Hence P (t) and P (−t) have opposite signs, so P has a zero strictly between t
and −t, and thus P has a zero in O.

From ω(z) = −z2 − 2z′ we see that ω(z) → −∞ as z → +∞ and as z → −∞
in K, so ω(K) is downward closed by 1-IVP. □

For results involving r-DIVP for r ⩾ 2 we need a variant of [3, Lemma 11.8.31]. To
state this variant we introduce as in [3, Section 11.8] the sets

Γ(K) := {a† : a ∈ K \ O} ⊆ K>, Λ(K) := −Γ(K)† ⊆ K.

The superscripts ↑, ↓ used in the statement of Lemma 2.4 below indicate upward,
respectively downward, closure in the ordered set K, as in [3, Section 2.1].

Lemma 2.4. Let K be an H-field with asymptotic integration. Then

K> = I(K)> ∪ Γ(K)↑, σ
(
K> \ Γ(K)↑

)
⊆ ω

(
Λ(K)

)↓.
Proof. If a ∈ K, a > I(K), then a ⩾ b† for some b ∈ K≻1, and thus a ∈ Γ(K)↑.
Next, let s ∈ K> \Γ(K)↑; we have to show σ(s) ∈ ω

(
Λ(K)

)↓. Note that s ∈ I(K)>

by what we just proved. From [3, 10.2.7 and 10.5.8] we obtain an immediate
H-field extension L of K and a ∈ L≻1 with s = (1/a)′. As in the proof of [3,
11.8.31] with L instead of K this gives σ(s) ∈ ω

(
Λ(L)

)↓, where ↓ indicates here
the downward closure in L. It remains to note that ω is increasing on Λ(L) by the
remark preceding [3, 11.8.21], and that Λ(K) is cofinal in Λ(L) by [3, 11.8.14]. □

The concept of ω-freeness is introduced in [3, Section 11.7]. If K has asymptotic
integration, then by [3, 11.8.30]: K is ω-free ⇔ K = ω

(
Λ(K)

)↓ ∪ σ(Γ(K)
)↑.

The next lemma also mentions the differential field extension K[i] of K where
i2 = −1, as well as linear differential operators over differential fields like K
and K[i]; for this we refer to [3, Sections 5.1, 5.2].

Lemma 2.5. Suppose K is an H-field, Γ ̸= {0}, r ⩾ 2, and K has r-DIVP. Then
the following hold, with (i), (ii), (iii) using only the case r = 2:

(i) K = ω(K) ∪ σ(K>) = ω
(
Λ(K)

)↓ ∪ σ(Γ(K)
)↑;

(ii) K is ω-free and ω(K) = ω
(
Λ(K)

)↓;
(iii) for all a ∈ K the operator ∂

2 − a splits over K[i];
(iv) K is r-newtonian.

Proof. For (i) we use the end of [3, Section 11.7] to replace K with a compositional
conjugate so that 0 ∈ Ψ. Then K has small derivation, and we have a ∈ K>

such that a ̸≍ 1 and a† ≍ 1. Replacing a by a−1 if necessary this gives a† = −ϕ
with ϕ ≍ 1, ϕ > 0, so a ≺ 1. Then ϕ−1a† = −1; replacing K by Kϕ and renaming
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the latter as K this means a† = −1. Let f ∈ K; to get f ∈ ω
(
Λ(K)

)↓ ∪ σ(Γ(K)
)↑,

note first that 1 = (1/a)† ∈ Γ(K), so 0 ∈ Λ(K). Also ω
(
Λ(K)

)↓ ⊆ ω(K) by
Lemma 2.3.

If f ⩽ 0, then ω(0) = 0 gives f ∈ ω
(
Λ(K)

)↓. So assume f > 0; we first show
that then f ∈ σ(K>). Now for y ∈ K>, f = σ(y) is equivalent (by multiplying
with y2) to P (y) = 0, where

P (Y ) := 2Y Y ′′ − 3(Y ′)2 + Y 4 − fY 2 ∈ K{Y }.
See also [3, Section 13.7]. We have P (0) = 0 and P (y) → +∞ as y → +∞ (because
of the term y4). In view of 2-DIVP it will suffice to show that for some y > 0 in K
we have P (y) < 0. Now with y ∈ K> and z := −y† we have

P (y) = y2
(
σ(y)− f

)
= y2

(
ω(z) + y2 − f

)
, hence

P (a) = a2
(
ω(1) + a2 − f

)
= a2(−1 + a2 − f) < 0,

so f ∈ σ(K>). By the second inclusion of Lemma 2.4 this yields f ∈ ω
(
Λ(K)

)↓
or f ∈ σ

(
Γ(K)↑

)
. But we have σ

(
Γ(K)↑

)
⊆ σ

(
Γ(K)

)↑, because σ is increasing

on Γ(K)↑ by the remark preceding [3, 11.8.30]. This concludes the proof of (i), and
then (ii) follows, using for its second part also the fact stated just before [3, 11.8.29]
that we have ω(K) < σ

(
Γ(K)

)
.

Now (iii) follows from K = ω(K)∪σ(K>) by [3, Section 5.2, (5.2.1)]. As to (iv),
let P ∈ K{Y } of order at most r have Newton degree 1; we have to show that P
has a zero in O. For this we repeat the argument in the proof of Lemma 2.3 so that
it applies to our P , using ω-freeness instead of λ-freeness, [3, Proposition 13.3.13]
instead of [3, Proposition 13.3.6], and r-DIVP instead of 1-DIVP. □

Corollary 2.6. If K is an H-field, Γ ̸= {0}, and K has DIVP, then K is ω-free
and newtonian.

There are non-Liouville closed H-fields with nontrivial derivation that have DIVP;
see [2, Section 14]. By Lemma 2.3 and Lemma 2.5(iii), Liouville closed H-fields
having 2-DIVP are Schwarz closed as defined in [3, Section 11.8].

Theorem 2.7. Let K be a Liouville closed H-field. Then

K has DIVP ⇐⇒ K is ω-free and newtonian.

Proof. The forward direction is part of Corollary 2.6. The backward direction is
Corollary 0.1. □
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