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REVISITING CLOSED ASYMPTOTIC COUPLES

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. Every discrete definable subset of a closed asymptotic couple with
ordered scalar field k is shown to be contained in a finite-dimensional k-

linear subspace of that couple. It follows that the differential-valued field T of

transseries induces more structure on its value group than what is definable in
its asymptotic couple equipped with its scalar multiplication by real numbers,

where this asymptotic couple is construed as a two-sorted structure with R as
the underlying set for the second sort.

Introduction

The field of Laurent series with real coefficients comes with a natural derivation but
is too small to be closed under integration and exponentiation. These defects are
cured by passing to a certain canonical extension, the ordered differential field T of
transseries. Transseries are formal series in an indeterminate x > R, such as
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where log2 x := (log x)2, etc. Transseries, that is, elements of T, are also the loga-
rithmic-exponential series (LE-series, for short) from [4]; we refer to that paper, or
to Appendix A of our book [1], for a detailed construction of T.

What we need for now is that T is a real closed field extension of the field R
of real numbers and that T comes equipped with a distinguished element x > R,
an exponential operation exp: T → T and a distinguished derivation ∂ : T → T.
The exponentiation here is an isomorphism of the ordered additive group of T onto
the ordered multiplicative group T> of positive elements of T; we set ef := exp(f)
for f ∈ T. The derivation ∂ comes from differentiating a transseries termwise with
respect to x, and we set f ′ := ∂(f), f ′′ := ∂

2(f), and so on, for f ∈ T; thus x′ = 1,
and ∂ is compatible with exponentiation: (ef )′ = f ′ ef for f ∈ T. Moreover, the
constant field of T is R, that is, {f ∈ T : f ′ = 0} = R; see again [1] for details.
Before stating our new results we introduce some conventions:
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Notations and conventions. Throughout, m, n range over N = {0, 1, 2, . . . }. Or-
dered sets, ordered abelian groups, and ordered fields are totally ordered, by con-
vention. Given an ambient ordered set S, a downward closed subset of S, also called
a cut in S, is a set D ⊆ S such that for all a, b ∈ S with a < b ∈ D we have a ∈ D.
For an (additively written) ordered abelian group Γ we set

Γ ̸= := Γ \ {0}, Γ< := {γ ∈ Γ : γ < 0}, Γ> := {γ ∈ Γ : γ > 0}.
For any field K we let K× = K \{0} be its multiplicative group. A differential field
is a field K of characteristic 0 with a derivation ∂ : K → K, and we set a′ := ∂(a)
for a ∈ K, and let b† := b′/b be the logarithmic derivative of b ∈ K× when the
ambient differential field K with its derivation ∂ is clear from the context; note that
then (ab)† = a† + b† for a, b ∈ K×.

Our book [1] culminated in an elimination theory for the differential field T of
transseries. As a consequence we found that the induced structure on its constant
field R is just its semialgebraic structure: if X ⊆ Rn is definable in T, then X is
semialgebraic (in the sense of R). (Here and throughout “definable in M” means
“definable in M with parameters from M”.)

The story is more complicated for the structure induced by T on its value group.
To explain this, we recall that the natural valuation ring

OT =
{
f ∈ T : |f | ⩽ r for some real r > 0

}
of the real closed field T is clearly 0-definable in T as a differential field, which is
how we construe T in the rest of this paper. Let v : T× → ΓT be the corresponding
valuation on the field T. We may consider ΓT as the quotient T×/≍ and v as the
natural map to this quotient where ≍ is a 0-definable equivalence relation on T×.

Thus ΓT is part of Teq. What is the structure induced by T on ΓT? It includes
the structure of ΓT as an ordered (by convention, additively written) abelian group.

Moreover, the derivation of T induces a function ψ : Γ̸=
T → ΓT by ψ(vf) = v(f†)

for f ∈ T× with vf ̸= 0. The structure (ΓT, ψ) consisting of the ordered abelian
group ΓT with the function ψ is the asymptotic couple of T, a notion introduced
for differential-valued fields—among which is T—by Rosenlicht [7]. There is also a
natural 0-definable scalar multiplication

(r, γ) 7→ rγ : R× ΓT → ΓT

that makes ΓT into a vector space over R; it is given by rv(f) = v(fr) for f ∈ T>,
and the reason it is 0-definable (in Teq) is that rα = β (for r ∈ R and α, β ∈ ΓT)
iff there are f, g ∈ T× such that α = vf , β = vg and rf† = g†. For this reason we
consider the 2-sorted structure ΓT =

(
(ΓT, ψ),R; sc

)
consisting of the asymptotic

couple (ΓT, ψ), the field R, and the above scalar multiplication

sc : R× ΓT → ΓT, sc(r, γ) = rγ.

The basic elementary properties of this 2-sorted structure were determined in [3].
This structure encodes important features of T, and in this paper we prove a new
result about it in Section 5:

Theorem 0.1. Let ΓT be equipped with its order topology, and let X ⊆ ΓT be
definable in ΓT. Then the following are equivalent:

(i) X is contained in a finite-dimensional R-linear subspace of ΓT;
(ii) X is discrete;
(iii) X has empty interior in ΓT.
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We also know from [1, Corollaries 14.3.10, 14.3.11] that for any nonzero differential
polynomial G(Y ) ∈ T{Y } the subset

{
vy : y ∈ T×, G(y) = 0

}
of ΓT is discrete.

The set of zeros of

G(Y ) := Y 2Y ′Y (3) − Y 2(Y (2))2 − Y (Y ′)2Y (2) + (Y ′)4

in T is {
a eb e

cx

: a, b, c ∈ R
}
∪
{
a ebx : a, b ∈ R

}
.

For this G the set
{
vy : y ∈ T×, G(y) = 0

}
is not contained in a finite-dimensional

R-linear subspace of ΓT and thus not definable in the 2-sorted structure ΓT by the
theorem above. We treat this example in more detail at the end of Section 1.

The authors of [3] had speculated that the subsets of ΓT definable in Teq might
be just those that are definable in the 2-sorted structure ΓT. The above is a counter
example, but leaves open the possibility that ΓT is stably embedded in Teq. In this
connection we note that for all intents and purposes we can replace the 2-sorted
structure ΓT by the 1-sorted structure (ΓT;ψ,R1, sc) consisting of the asymptotic
couple (ΓT;ψ) expanded by the set R1 ⊆ ΓT, where 1 = v(x−1) ∈ Γ>

T is the unique
fixed point of ψ, and by the function

sc : (R1)× ΓT → ΓT, sc(r1, γ) := rγ.

Why revisit closed asymptotic couples? The proof of Theorem 0.1 requires
the results of [3], suitably extended. This was our original motive for revisiting the
subject of closed asymptotic couples. The theorem itself is of interest, but is also
needed for its application to the induced structure on the value group of T.

The quantifier elimination (QE) for closed asymptotic couples in [3] was expected
to help in obtaining a QE for T. The latter is achieved in [1, Chapter 16], but there
we needed only a key lemma from [3], not its QE for closed asymptotic couples.
That key lemma is [3, Property B], and is given a self-contained proof of five dense
pages in [1, Section 9.9]. Since then we found a simpler way to obtain the QE in [3]
that does not use the key lemma alluded to, but depends on some easier-to-prove
new lemmas that have also other applications; see Section 2. This new proof of QE,
given in Section 3, is another reason for revisiting the subject of closed asymptotic
couples. (We derive the “key lemma” itself as a routine consequence of the QE for
closed asymptotic couples: Proposition 6.3 below.)

For his study of transexponential pre-H-fields in [5, Chapter 6] and [6], Nigel
Pynn-Coates introduced a modified version of “closed asymptotic couple” and
adapted accordingly some material from our (unpublished) 2017 version of this
paper. Getting the paper published is also more urgent now because in our recent
proof that maximal Hardy fields are η1 we use results from Section 4 below.

Finally, this paper gives us an opportunity to enhance and better organize parts
of [3], and acknowledge gaps in some proofs there; we intend to close these gaps in a
follow-up to the present paper. No familiarity with [3] is needed, but we do assume
as background some 20 pages (mainly on asymptotic couples) from [1], namely parts
of Section 2.4 on ordered abelian groups, Sections 6.5, 9.1 (subsection on asymptotic
couples), 9.2 (first four pages), and 9.8. For the reader’s convenience we also repeat
definitions of key notions concerning asymptotic couples and H-fields.

We thank Nigel Pynn-Coates for his careful reading of this paper, and corrections,
and the referee for helpful comments.



4 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

1. Preliminaries

We only consider asymptotic couples of H-type, calling them H-couples for brevity.
Thus an H-couple is a pair (Γ, ψ) consisting of an ordered abelian group Γ with a
map ψ : Γ ̸= → Γ, such that for all α, β ∈ Γ̸=,

(AC1) α+ β ̸= 0 =⇒ ψ(α+ β) ⩾ min
(
ψ(α), ψ(β)

)
;

(AC2) ψ(kα) = ψ(α) for all k ∈ Z̸=;
(AC3) α > 0 =⇒ α+ ψ(α) > ψ(β);
(HC) 0 < α ⩽ β =⇒ ψ(α) ⩾ ψ(β).

(As an aside, note that (AC2) and (HC) together imply (AC1); had we observed
this earlier, it would have shortened some arguments in [1, Section 9.8]; the reader
can use it to the same effect in Section 2 of the present paper.) Let (Γ, ψ) be an H-
couple. By (AC1) and (AC2) the function ψ is a valuation on the abelian group Γ;
as usual we extend ψ to ψ : Γ → Γ∞ := Γ ∪ {∞} by ψ(0) := ∞; we use α† as an
alternative notation for ψ(α) and set α′ := α+α† for α ∈ Γ. Also Ψ := ψ(Γ̸=). We
recall from [1, Corollary 9.2.16] a basic trichotomy for H-couples which says that
we are in exactly one of the following three cases:

• (Γ, ψ) has a (necessarily unique) gap, that is, an element γ ∈ Γ such
that Ψ < γ < (Γ>)′;

• (Γ, ψ) is grounded, that is, Ψ has a largest element;
• (Γ, ψ) has asymptotic integration, that is, Γ = (Γ ̸=)′.

We say that (Γ, ψ) is closed if Γ is divisible, Ψ ⊆ Γ is downward closed, and (Γ, ψ)
has asymptotic integration. We also use the qualifiers having a gap, grounded,
having asymptotic integration, and closed for H-couples with extra structure.

An H-cut in (Γ, ψ) is a downward closed set P ⊆ Γ such that Ψ ⊆ P < (Γ>)′.
The set Ψ↓ := {α ∈ Γ : α ⩽ β for some β ∈ Ψ} is an H-cut in (Γ, ψ), and if (Γ, ψ)
is grounded or has asymptotic integration, this is the only H-cut in (Γ, ψ). If (Γ, ψ)
has a gap β, then Ψ↓ ∪ {β} is the only other H-cut in (Γ, ψ).

In particular, if (Γ, ψ) is closed, then Ψ is the only H-cut in (Γ, ψ), but in
eliminating quantifiers for closed H-couples in Section 3 it is essential to have a
predicate for this H-cut in our language.

Where do closed H-couples come from? We recall from [1, Chapter 10] that
an H-field is an ordered differential field K with constant field C such that:

(H1) a′ > 0 for all a ∈ K with a > C;
(H2) O = C + O, where O is the convex hull of C in the ordered field K, and O

is the maximal ideal of the valuation ring O.

Let K be an H-field, and let O and O be as in (H2). Thus K is a valued field with
valuation ring O. Let v : K× → Γ be the associated valuation. The value group Γ =
v(K×) is made into an H-couple (Γ, ψ)—the H-couple of K—by ψ(vf) := v(f†)
for f ∈ K× with vf ̸= 0. We call K Liouville closed if it is real closed and for
all a ∈ K there exists b ∈ K with a = b′ and also a b ∈ K× such that a = b†.

If K is Liouville closed, its H-couple is closed as is easily verified. We recall
from [1] that T is a Liouville closed H-field.

Ordered vector spaces. Throughout we let k, k0, and k∗ be ordered fields.
Recall that an ordered vector space over k is an ordered abelian group Γ with a
scalar multiplication k × Γ → Γ that makes Γ into a vector space over k such
that cγ > 0 for all c ∈ k> and γ ∈ Γ>. Let Γ be an ordered vector space over k.
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Then any k-linear subspace of Γ is considered as an ordered vector space over k in
the obvious way. We shall need the following easy result about Γ:

Lemma 1.1. Let Γ0 be a k-linear subspace of Γ. Suppose Γ contains an element ε
with 0 < ε < Γ>

0 . Then Γ0 is closed in Γ with respect to the order topology on Γ.

Proof. Let γ ∈ Γ \ Γ0. With ε as in the hypothesis we observe that the inter-
val (γ − ε, γ + ε) can have at most one point in it from Γ0, and so by decreasing ε
we can arrange that (γ − ε, γ + ε) ∩ Γ0 = ∅. □

The k-archimedean class of α ∈ Γ is

[α]k :=
{
γ ∈ Γ : |γ| ⩽ c|α| and |α| ⩽ c|γ| for some c ∈ k>

}
.

Let [Γ]k be the set of k-archimedean classes. Then [Γ]k is a partition of Γ, and we
linearly order [Γ]k by

[α]k < [β]k :⇐⇒ c|α| < |β| for all c ∈ k>

⇐⇒ [α]k ̸= [β]k and |α| < |β|.

Thus [0]k = {0} is the smallest k-archimedean class. For α, β ∈ Γ, c ∈ k× we
have [cα]k = [α]k and [α+ β]k ⩽ max

(
[α]k, [β]k

)
, with equality if [α]k ̸= [β]k.

Lemma 1.2. Let Γ ̸= {0} be an ordered vector space over k such that [Γ̸=]k has
no least element. Then every finite-dimensional k-linear subspace of Γ is discrete
with respect to the order topology on Γ.

Proof. First note that if γ1, . . . , γn ∈ Γ ̸= and [γ1]k, . . . , [γn]k are distinct, then
γ1, . . . , γn are k-linearly independent. Thus for a finite-dimensional k-linear sub-
space ∆ ̸= {0} of Γ we can take δ ∈ ∆ ̸= such that [δ]k is minimal in [∆̸=]k. Then
for any α ∈ ∆ and β ∈ Γ̸= with [β]k < [δ]k we have α+ β /∈ ∆. □

Lemma 1.2 takes care of the easy direction (i) ⇒ (ii) in Theorem 0.1. The di-
rection (ii) ⇒ (iii) is trivial. The harder direction (iii) ⇒ (i) uses a generality on
expanded vector spaces, to which we now turn.

Let V be a vector space over a field C. We consider the two-sorted struc-
ture (V,C; sc) consisting of the abelian group V , the field C, and the scalar mul-
tiplication sc : C × V → V of the vector space V . Let X ⊆ V . Then we have
the expansion V =

(
(V,X), C; sc

)
of (V,C; sc). Let V ∗ =

(
(V ∗, X∗), C∗; sc

)
be

an elementary extension of V . Let C∗V be the C∗-linear subspace of V ∗ spanned
by V .

Lemma 1.3. Assume V ∗ is |V |+-saturated. Then X is contained in a finite-
dimensional C-linear subspace of V if and only if X∗ ⊆ C∗V .

Proof. If X ⊆ Cv1+· · ·+Cvn, v1, . . . , vn ∈ V , thenX∗ ⊆ C∗v1+· · ·+C∗vn ⊆ C∗V .
We prove the contrapositive of the other direction, so assume X ̸⊆ Cv1+ · · ·+Cvn
for all v1, . . . , vn ∈ V . Then X∗ ̸⊆ C∗v1 + · · ·+C∗vn for all v1, . . . , vn ∈ V , and so
by saturation we get an element of X∗ that does not lie in C∗V . □

For certain (V,C; sc) this will be applied to sets X ⊆ V that are definable in a
suitable expansion of (V,C; sc), with X∗ the corresponding set in an elementary
extension of that expansion.
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H-couples over ordered fields. Ordered vector spaces come into play as follows.
Let K be a Liouville closed H-field. It has the (ordered) constant field C, and the
H-couple (Γ, ψ). We have a map (c, γ) 7→ cγ : C × Γ → Γ such that cvf = vg
whenever f, g ∈ K× and cf† = g†. This map makes Γ into an ordered vector space
over C, and ψ(cγ) = ψ(γ) for all c ∈ C× and γ ∈ Γ ̸=.

Accordingly, we define an H-couple over k to be an H-couple (Γ, ψ) where the
ordered abelian group Γ is also equipped with a map k × Γ → Γ making Γ into an
ordered vector space over k such that ψ(cγ) = ψ(γ) for all c ∈ k× and γ ∈ Γ ̸=.
Thus the H-couple of a Liouville closed H-field is naturally an H-couple over its
constant field.

Let (Γ, ψ) be an H-couple over k. A basic fact is that for distinct α, β ∈ Γ̸= we
have

[
ψ(α) − ψ(β)

]
k
< [α − β]k, since for all c ∈ k> we have ψ(α) − ψ(β) =

ψ(cα)− ψ(cβ) = o
(
c(α− β)

)
, by [1, 6.5.4(ii)]. Note also that for all α, β ∈ Γ ̸=,

[α]k = [β]k =⇒ ψ(α) = ψ(β).

Hahn spaces. These are the ordered Hahn spaces from [1, Section 2.4]: a Hahn
space Γ over k is an ordered vector space over k such that for all α, β ∈ Γ ̸=

with [α]k = [β]k there exists c ∈ k× such that [α− cβ]k < [α]k.

Examples.

(1) Any 1-dimensional ordered vector space over k is a Hahn space over k.
(2) Any k-linear subspace of a Hahn space over k is a Hahn space over k.
(3) Any ordered vector space over the ordered field R is a Hahn space over R.
(4) The ordered Q-vector space Q+Q

√
2 ⊆ R is not a Hahn space over Q.

We say that an H-couple (Γ, ψ) over k is of Hahn type if for all α, β ∈ Γ̸=

with ψ(α) = ψ(β) there exists a scalar c ∈ k such that ψ(α − cβ) > ψ(α); equiva-
lently, Γ is a Hahn space over k and for all α, β ∈ Γ̸=,

ψ(α) = ψ(β) =⇒ [α]k = [β]k.

Let K be a Liouville closed H-field. We made its H-couple (Γ, ψ) into an H-couple
over its constant field C, and as such (Γ, ψ) is of Hahn type.

Details on the example in the introduction. We consider the Liouville closed
H-field T and its element x with x′ = 1. For z ∈ T with z′ /∈ R we have

zz′′ = (z′)2 ⇐⇒ z† = (z′)† ⇐⇒ (z′/z)† = 0 ⇐⇒ z′ = tz for some t ∈ R×

⇐⇒ z = s etx for some s, t ∈ R×.

Considering also the case where z′ ∈ R we conclude that{
z ∈ T : zz′′ = (z′)2

}
=

{
s etx : s, t ∈ R

}
.

Next, let y ∈ T× and suppose z := y† satisfies zz′′ = (z′)2. Then y = r eu for
some r ∈ R and u ∈ T with u′ = z. For z = s etx with s, t ∈ R and u ∈ T, u′ = z we
get u ∈ R etx +R if t ̸= 0, and u ∈ Rx+ R if t = 0. Hence y = a eb e

cx

or y = a ebx

for some a, b, c ∈ R. From zz′′ = (z′)2 we get

y2y′y(3) − y2(y(2))2 − y(y′)2y(2) + (y′)4 = 0.

In this way we get for

G(Y ) := Y 2Y ′Y (3) − Y 2(Y (2))2 − Y (Y ′)2Y (2) + (Y ′)4
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that its set of zeros in T is{
a eb e

cx

: a, b, c ∈ R
}
∪
{
a ebx : a, b ∈ R

}
.

It is easy to see that for 0 < c < d in R we have
[
v(ee

cx

)
]
R <

[
v(ee

dx

)
]
R, so the

set
{
vy : y ∈ T×, G(y) = 0

}
is not contained in a finite-dimensional R-linear

subspace of ΓT.

2. Extensions of H-couples

In this section (Γ, ψ) and (Γ1, ψ1) are H-couples over k. An embedding

h : (Γ, ψ) → (Γ1, ψ1)

is an embedding h : Γ → Γ1 of ordered vector spaces over k such that

h
(
ψ(γ)

)
= ψ1

(
h(γ)

)
for γ ∈ Γ ̸=.

If Γ ⊆ Γ1 and the inclusion Γ ↪→ Γ1 is an embedding (Γ, ψ) → (Γ1, ψ1), then we
call (Γ1, ψ1) an extension of (Γ, ψ). If (Γ1, ψ1) is of Hahn type and extends (Γ, ψ),
then (Γ, ψ) is of Hahn type.

Embedding lemmas. The lemmas in this subsection are the analogues for H-
couples over k of similar lemmas for H-couples in [1, Section 9.8]. The proofs are
essentially the same, so we omit them.

Lemma 2.1. Let β be a gap in (Γ, ψ). Then there is an H-couple (Γ + kα,ψα)
over k that extends (Γ, ψ) such that:

(i) α > 0 and α′ = β;
(ii) if i : (Γ, ψ) → (Γ1, ψ1) is an embedding and α1 ∈ Γ1, α1 > 0, α′

1 =
i(β), then i extends uniquely to an embedding j :

(
Γ + kα,ψα

)
→ (Γ1, ψ1)

with j(α) = α1.

The universal property (ii) determines (Γ+kα,ψα) up to isomorphism over (Γ, ψ),
and 0 < cα < Γ> for all c ∈ k>; moreover, for all γ ∈ Γ and c ∈ k with γ+ cα ̸= 0,

ψα(γ + cα) =

{
ψ(γ), if γ ̸= 0,

β − α, otherwise.
(1)

Note also that [Γ + kα]k = [Γ]k ∪
{
[α]k

}
, so for Ψα := ψα

(
(Γ + kα)̸=

)
we have:

Ψα = Ψ ∪ {β − α}, maxΨα = ψα(α) = β − α. (2)

Lemma 2.1 goes through with α < 0 and α1 < 0 in place of α > 0 and α1 > 0,
respectively. In the setting of this modified lemma we have Γ< < cα < 0 for
all c ∈ k>, (1) goes through for γ ∈ Γ and c ∈ k with γ+ cα ̸= 0, (2) goes through.
So we have two ways to remove a gap. Removal of a gap as above leads by (2) to
a grounded H-couple over k, and this is the situation we consider next.

Lemma 2.2. Assume that Ψ has a largest element β. Then there exists an H-
couple (Γ + kα,ψα) over k that extends (Γ, ψ) with α ̸= 0, α′ = β, such that for

any embedding i : (Γ, ψ) → (Γ1, ψ1) and any α1 ∈ Γ ̸=
1 with α′

1 = i(β) there is a
unique extension of i to an embedding j : (Γ + kα,ψα) → (Γ1, ψ1) with j(α) = α1.
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Let (Γ+kα,ψα) be as in Lemma 2.2. Then Γ< < cα < 0 for all c ∈ k>, [Γ+kα]k =
[Γ]k ∪

{
[α]k

}
, so (2) holds for Ψα := ψα

(
(Γ + kα) ̸=

)
. Thus our new Ψ-set Ψα still

has a maximum, but this maximum is larger than the maximum β of the original
Ψ-set Ψ. By iterating this construction indefinitely and taking a union, we obtain
an H-couple over k with asymptotic integration.

Once we have an H-couple over k with asymptotic integration, we can create an
extension with a gap as follows:

Lemma 2.3. Suppose that (Γ, ψ) has asymptotic integration. Then there is an
H-couple (Γ + kβ, ψβ) over k extending (Γ, ψ) such that:

(i) Ψ < β < (Γ>)′;
(ii) for any (Γ1, ψ1) extending (Γ, ψ) and β1 ∈ Γ1 with Ψ < β1 < (Γ>)′ there

is a unique embedding (Γ + kβ, ψβ) → (Γ1, ψ1) of H-couples over k that is
the identity on Γ and sends β to β1.

Let (Γ, ψ) and (Γ + kβ, ψβ) be as in Lemma 2.3. If (Γ + kα,ψα) is also an H-
couple over k extending (Γ, ψ) with Ψ < α < (Γ>)′, then by (ii) we have an
isomorphism (Γ + kβ, ψβ) → (Γ + kα,ψα) of H-couples over k that is the identity
on Γ and sends β to α. In this sense, (Γ + kβ, ψβ) is unique up to isomorphism
over (Γ, ψ). The construction of (Γ+kβ, ψβ) gives the following extra information,
with Ψβ the set of values of ψβ on (Γ + kβ) ̸=:

Corollary 2.4. The set Γ is dense in the ordered abelian group Γ+ kβ, so [Γ]k =
[Γ + kβ]k, Ψβ = Ψ and β is a gap in (Γ + kβ, ψβ).

Recall that a cut in an ordered set S is just a downward closed subset of S, and
that an element a of an ordered set extending S is said to realize a cut D in S
if D < a < S \D (so a /∈ S).

Lemma 2.5. Let D be a cut in [Γ̸=]k and let β ∈ Γ be such that β < (Γ>)′, γ† ⩽ β
for all γ ∈ Γ ̸= with [γ]k > D, and β ⩽ δ† for all δ ∈ Γ ̸= with [δ]k ∈ D. Then there
exists an H-couple (Γ⊕ kα,ψα) over k that extends (Γ, ψ), with α > 0, such that:

(i) [α]k realizes the cut D in [Γ̸=]k, and ψ
α(α) = β;

(ii) for any embedding i : (Γ, ψ) → (Γ1, ψ1) and α1 ∈ Γ>
1 such that [α1]k realizes

the cut
{[
i(δ)

]
k

: [δ]k ∈ D
}

in
[
i(Γ̸=)

]
k

and ψ1(α1) = i(β), i extends

uniquely to an embedding j : (Γ⊕ kα,ψα) → (Γ1, ψ1) with j(α) = α1.

Moreover, [Γ⊕kα]k = [Γ]k∪
{
[α]k

}
and Ψα := ψα

(
(Γ⊕kα)̸=

)
= Ψ∪{β}. If (Γ, ψ)

is grounded, then so is (Γ⊕ kα,ψα). If (Γ, ψ) has asymptotic integration, then so
does (Γ⊕ kα,ψα). If β ∈ Ψ↓, then a gap in (Γ, ψ) remains a gap in (Γ⊕ kα,ψα).

Proof. By a straightforward analogue of [1, Lemma 2.4.5] we extend Γ to an ordered
vector space Γα = Γ ⊕ kα over k with α > 0 such that [α]k realizes the cut D
in [Γ ̸=]k. Then [Γ⊕ kα]k = [Γ]k ∪

{
[α]k

}
. We extend ψ to ψα : (Γα)̸= → Γ by

ψα(γ + cα) := min
{
ψ(γ), β

}
for γ ∈ Γ, c ∈ k×.

Apart from some obvious changes we now follow the proof of [1, Lemma 9.8.7]. This
gives the desired results, except for the last Claim of the lemma. To prove that
claim, let β ∈ Ψ↓, let γ ∈ Γ be a gap in (Γ, ψ), and assume towards a contradiction
that γ is not a gap in (Γα, ψα). Then γ > Ψα, so γ = (δ + cα)′ with δ ∈ Γ, c ∈ k×

and 0 < δ + cα < Γ>. Then [δ + cα]k /∈ [Γ]k, so [δ + cα]k = [α]k. As Ψ has no
largest element, we get Ψ < (δ + cα)† = α† = β, a contradiction. □
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The case of Hahn type. In Lemma 2.1 (and in its variant with α < 0), in
Lemma 2.2, and in Lemma 2.5 for β /∈ Ψ, we have:

if (Γ, ψ) is of Hahn type, then so is (Γ + kα,ψα).

Suppose (Γ, ψ) and (Γ+kβ, ψβ) are as in Lemma 2.3, and (Γ, ψ) is of Hahn type. We
claim that then (Γ + kβ, ψβ) is also of Hahn type. To prove this claim, recall from
Corollary 2.4 that Γ is dense in Γ + kβ. It follows easily that for nonzero α1, α2 ∈
Γ+kβ with ψβ(α1) = ψβ(α2) we have [α1]k = [α2]k. It remains to show that Γ+kβ
is a Hahn space over k. So let α1, α2 ∈ Γ + kβ be nonzero with [α1]k = [α2]k. By
density again, and the fact that [Γ]k = [Γ + kβ]k has no least element > [0]k, we
have γ1, γ2 ∈ Γ such that [α1 − γ1]k < [α1]k and [α2 − γ2]k < [α2]k. Take c ∈ k×

such that [γ1 − cγ2]k < [γ1]k. It follows easily that then [α1 − cα2]k < [α1]k.

New extension lemmas. The three next lemmas will enable in the next section
a simpler proof of QE for closed H-couples than in [3]: in that paper we needed
“properties (A) and (B)” with long and tedious proofs, and here we avoid this.

Lemma 2.6. Suppose (Γ1, ψ1) extends (Γ, ψ). Let β ∈ Γ1 \ Γ and α0 ∈ Γ be such
that (β − α0)

† /∈ Γ. Then (β − α0)
† = max

{
(β − α)† : α ∈ Γ

}
. If in addition Γ<

is cofinal in Γ<
1 , then (β − α0)

† ⩽ some element of Ψ.

Proof. Suppose α ∈ Γ and (β−α)† > (β−α0)
†. Then α−α0 = (β−α0)− (β−α)

gives (β − α0)
† = (α − α0)

† ∈ Γ, a contradiction. Assume |β − α0| ⩾ |γ|, γ ∈ Γ ̸=.
Then (β − α0)

† ⩽ γ† ∈ Ψ. □

Lemma 2.7. Suppose (Γ, ψ) is closed and (Γ1, ψ1) and (Γ∗, ψ∗) are H-couples
over k extending (Γ, ψ). Let β ∈ Γ1 \ Γ and β∗ ∈ Γ∗ \ Γ realize the same cut in Γ,

and suppose that β† /∈ Γ and Γ< is cofinal in (Γ + kβ†)<. Then β†
∗ /∈ Γ, and β†

and β†
∗ realize the same cut in Γ.

Proof. Let α ∈ Γ ̸=. We claim:

β† < α† ⇒ β†
∗ < α†, β† > α† ⇒ β†

∗ > α†.

To prove the first implication, assume β† < α†. Then |β| > |α|, so |β∗| > |α|, and
thus β†

∗ ⩽ α†. Since (Γ, ψ) is closed and Γ< is cofinal in (Γ+kβ†)<, we can replace

in this argument α by some γ ∈ Γ ̸= with β† < γ† < α†, to get β†
∗ ⩽ γ† < α†, and

thus β†
∗ < α† as claimed. The second implication follows in the same way.

If β† < γ† for some γ ∈ Γ̸=, then (Γ, ψ) being closed gives the desired conclusion.

If β† > Ψ, then we use instead Ψ < β† < (Γ>)′ and Ψ < β†
∗ < (Γ>)′. □

Lemma 2.8. Suppose (Γ1, ψ1) extends (Γ, ψ). Let β ∈ Γ1 \ Γ and α0, α1 ∈ Γ be

such that β†
0 /∈ Γ for β0 := β − α0 and β†

1 /∈ Ψ for β1 := β†
0 − α1. Assume also

that |β0| ⩾ |α| for some α ∈ Γ̸=. Then β†
0 < β†

1.

Proof. From |β0| ⩾ |α| with α ∈ Γ̸= we get β†
0 ⩽ α†. Also, β†

0 − α† /∈ Γ

and [β†
0 − α1]k /∈ [Γ]k, hence [β†

0 − α†]k ⩾ [β†
0 − α1]k. In view of [1, 6.5.4(i)]

this gives

β†
0 = min(β†

0, α
†) < (β†

0 − α†)† ⩽ (β†
0 − α1)

† = β†
1. □
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3. Eliminating Quantifiers for Closed H-couples

Eliminating quantifiers for closed H-couples requires a predicate for their Ψ-set,
and in this connection we need to study the substructures of the thus expanded
H-couples. Accordingly we define an H-triple over k to be a triple (Γ, ψ, P )
where (Γ, ψ) is an H-couple over k and P ⊆ Γ is an H-cut in (Γ, ψ).

Lemma 3.1. Let (Γ, ψ, P ) be an H-triple over k, and let β ∈ P \Ψ. Then (Γ, ψ, P )
can be extended to an H-triple (Γ⊕ kα,ψα, Pα) over k such that:

(i) α > 0 and ψα(α) = β;
(ii) given any embedding i : (Γ, ψ, P ) → (Γ∗, ψ∗, P ∗) and any element α∗ > 0

in Γ∗ with ψ∗(α∗) = i(β), there is a unique extension of i to an embed-
ding j : (Γ⊕ kα,ψα, Pα) → (Γ∗, ψ∗, P ∗) with j(α) = α∗.

If (Γ, ψ) is of Hahn type, then so is (Γ⊕ kα,ψα).

Proof. Distinguishing various cases this follows from Lemma 2.5, especially the
claims beginning with “Moreover”. Use also “The case of Hahn type”. □

An H-closure of an H-triple (Γ, ψ, P ) over k is defined to be a closed H-triple
(Γc, ψc, P c) over k that extends (Γ, ψ, P ) such that any embedding

(Γ, ψ, P ) → (Γ∗, ψ∗, P ∗)

into a closed H-triple (Γ∗, ψ∗, P ∗) over k extends to an embedding

(Γc, ψc, P c) → (Γ∗, ψ∗, P ∗).

Corollary 3.2. Every H-triple over k has an H-closure. Every H-triple over k of
Hahn type has an H-closure that is of Hahn type.

Proof. This is a straightforward consequence of Lemmas 2.1, 2.2, and 3.1, using for
the second statement also the remarks in “The case of Hahn type”. □

We consider H-triples as Lk-structures where Lk is the natural language of ordered
vector spaces over k, augmented by a constant symbol ∞, a unary function sym-
bol ψ, and a unary relation symbol P . The underlying set of an H-triple (Γ, ψ, P ),
when construed as an Lk-structure, is Γ∞ rather than Γ, and the symbols of Lk

are interpreted in (Γ, ψ, P ) as usual, with ∞ serving as a default value:

ψ(0) = ψ(∞) = γ +∞ = ∞+ γ = ∞+∞ = −∞ = c∞ = ∞

for γ ∈ Γ and c ∈ k. Also 0† := ∞ for the zero element 0 ∈ Γ, so Γ† = Ψ ∪ {∞}.

Theorem 3.3. The Lk-theory of closed H-triples over k has QE.

The proof of QE. Towards Theorem 3.3 we consider an H-triple (Γ, ψ, P ) over k
and closed H-triples (Γ1, ψ1, P1) and (Γ∗, ψ∗, P∗) over k that extend (Γ, ψ, P ), and
such that (Γ∗, ψ∗, P∗) is |Γ|+-saturated. For γ ∈ Γ1 we let

(
Γ⟨γ⟩, ψγ

)
be the H-

couple over k generated by Γ ∪ {γ} in (Γ1, ψ1), and set Pγ := P1 ∩ Γ⟨γ⟩.
Let β ∈ Γ1 \ Γ. Theorem 3.3 follows if we can show that under these assump-

tions
(
Γ⟨β⟩, ψβ , Pβ

)
can be embedded over Γ into (Γ∗, ψ∗, P∗). We first do this in

a situation that may seem rather special:

Lemma 3.4. Suppose (Γ, ψ) has asymptotic integration and (Γ + kβ)† = Γ†.
Then

(
Γ⟨β⟩, ψβ , Pβ

)
can be embedded over Γ into (Γ∗, ψ∗, P∗).
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Proof. From (Γ + kβ)† = Γ† we get Γ⟨β⟩ = Γ + kβ. We have six cases:

Case 1: (Γ>)† < η < (Γ>)′ and η ∈ P1 for some η ∈ Γ + kβ. Fix such η. Then Γ
is dense in Γ + kη = Γ + kβ, by Corollary 2.4, so [Γ + kβ]k = [Γ]k. Moreover,
there is no η1 ̸= η in Γ + kβ with (Γ>)† < η1 < (Γ>)′. By saturation we can
take η∗ ∈ Γ∗ such that (Γ>)† < η∗ < (Γ>)′ and η∗ ∈ P∗. Then [1, 2.4.16] yields
an embedding i : Γ + kβ → Γ∗ of ordered vector spaces over k that is the identity
on Γ with i(η) = η∗. This i embeds

(
Γ⟨β⟩, ψβ , Pβ

)
into (Γ∗, ψ∗, P∗).

Case 2: (Γ>)† < η < (Γ>)′ and η /∈ P1 for some η ∈ Γ + kβ. Fixing such η, we
repeat the argument of Case 1, except that now η∗ /∈ P∗ instead of η∗ ∈ P∗.

Case 3: [Γ + kβ]k = [Γ]k, but there is no η ∈ Γ + kβ with (Γ>)† < η < (Γ>)′.
Then Pβ is the only H-cut of Γ⟨β⟩. Saturation yields β∗ ∈ Γ∗ realizing the same
cut in Γ as β. Then [1, 2.4.16] yields an embedding i : Γ + kβ → Γ∗ of ordered
vector spaces over k that is the identity on Γ with i(β) = β∗. For γ ∈ Γ + kβ
we have

[
i(γ)

]
k
= [γ]k ∈ [Γ]k, so i(γ)

† = γ† ∈ Γ†. Thus i embeds
(
Γ⟨β⟩, ψβ , Pβ

)
into (Γ∗, ψ∗, P∗).

Assume next that we are not in Case 1, or Case 2, or Case 3. Then [Γ+kβ]k ̸= [Γ]k.
Take γ ∈ Γ⟨β⟩ \ Γ such that γ > 0 and [γ]k /∈ [Γ]k, so

[
Γ⟨β⟩

]
k
= [Γ]k ∪

{
[γ]k

}
.

We are not in Case 1 or Case 2, so Pβ is the only H-cut of
(
Γ⟨β⟩, ψβ

)
. Let D

be the cut in Γ realized by γ and E := Γ \ D, so D < γ < E. Then D has no
largest element, and so D ∩ Γ> ̸= ∅: if d = maxD, then we have 0 < γ − d < Γ>,
and thus (Γ>)† < (γ − d)† < (Γ>)′, contradicting that we are not in Case 1.
Likewise, E has no least element. Here are the remaining cases:

Case 4: γ† ∈ (D>0)† ∩ E†. Saturation yields γ∗ ∈ Γ∗ realizing the same cut in Γ

as γ. Then γ†∗ = γ† ∈ (D>0)†, and [1, 2.4.16] yields an embedding i : Γ + kβ → Γ∗
of ordered vector spaces over k that is the identity on Γ with i(γ) = γ∗; this i
embeds

(
Γ⟨β⟩, ψβ , Pβ

)
into (Γ∗, ψ∗, P∗).

Case 5: γ† ∈ (D>0)† > E†. Then saturation yields a γ∗ ∈ Γ∗ realizing the same

cut in Γ as γ, with γ†∗ = γ†. By [1, 2.4.16] this yields an embedding i : Γ+kβ → Γ∗
of ordered vector spaces over k that is the identity on Γ with i(γ) = γ∗, and so as
before i embeds

(
Γ⟨β⟩, ψβ , Pβ

)
into (Γ∗, ψ∗, P∗).

Case 6: γ† ∈ E† < (D>0)†. This is handled just like Case 5. □

Note that Cases 4, 5, 6 in the proof above do not occur if (Γ1, ψ1) is of Hahn type.

In view of Corollary 3.2 and Lemma 3.4, Theorem 3.3 reduces to:

Lemma 3.5. Suppose (Γ, ψ) is closed and (Γ + kγ)† ̸= Γ† for all γ ∈ Γ1 \ Γ.
Then

(
Γ⟨β⟩, ψβ , Pβ

)
embeds into (Γ∗, ψ∗, P∗) over Γ.

Proof. If γ ∈ Γ1 \ Γ and Ψ < γ < (Γ>)′, then (Γ + kγ)† = Γ†, contradicting our
assumption. Hence there is no such γ. It follows that Γ< is cofinal in Γ<

1 .
Take α0 ∈ Γ such that (β − α0)

† /∈ Γ†. Since (Γ, ψ) is closed, this means
(β − α0)

† /∈ Γ. Next take α1 ∈ Γ with
(
(β−α0)

† −α1)
† /∈ Γ†. Continuing this way

we obtain sequences α0, α1, α2, . . . in Γ and β0, β1, β2, . . . in Γ⟨β⟩ \ Γ with

β0 = β − α0, βn+1 = β†
n − αn+1 for all n,
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such that β†
n /∈ Γ for all n. By Lemma 2.8 we have β†

0 < β†
1 < β†

2 < · · · . It follows
that [β0]k > [β1]k > [β2]k > · · · , with [βn]k /∈ [Γ]k for all n. In particular, the
family (βn) is k-linearly independent over Γ, and

Γ⟨β⟩ = Γ⊕ kβ0 ⊕ kβ1 ⊕ kβ2 ⊕ · · · .

By saturation we can take β∗ ∈ Γ∗ \ Γ realizing the same cut in Γ as β. This gives
an embedding e0 : Γ⊕ kβ → Γ∗ of ordered vector spaces over k that is the identity
on Γ and sends β to β∗. We define recursively β∗n ∈ (Γ∗)∞ by

β∗0 := β∗ − α0, β∗(n+1) := β†
∗n − αn+1.

Assume inductively that β∗0, . . . , β∗n ∈ Γ∗ and that we have an embedding

en : Γ + kβ0 + · · ·+ kβn → Γ∗

of ordered vector spaces over k that is the identity on Γ and sends βi to β∗i for i =

0, . . . , n. Then βn and β∗n realize the same cut in Γ, and so β†
∗n /∈ Γ, and β†

n

and β†
∗n realize the same cut in Γ by Lemma 2.7. Hence βn+1 and β∗(n+1) ∈ Γ∗ \Γ

realize the same cut in Γ. Moreover, β†
∗n < β†

∗(n+1) by Lemma 2.8. We have

[Γ+kβ0+ · · ·+kβn]k = [Γ]k∪
{
[β0]k, . . . , [βn]k

}
, [β0]k > · · · > [βn]k > [βn+1]k.

Let D be the cut realized by [βn+1]k in [Γ + kβ0 + · · · + kβn]k. Then the above
together with [β∗n]k > [β∗(n+1)]k shows that [β∗(n+1)]k realizes the en-image of the

cut D in
[
en(Γ + kβ0 + · · ·+ kβn)

]
k
. Hence en extends to an embedding

en+1 : Γ + kβ1 + · · ·+ kβn + kβn+1 → Γ∗

of ordered vector spaces over k that is the identity on Γ and sends βn+1 to β∗(n+1).
This leads to a map e : Γ⟨β⟩ → Γ∗ that extends each en, and is therefore an
embedding of H-couples over k. Since Pβ is the only H-cut in Γ⟨β⟩, e em-
beds

(
Γ⟨β⟩, ψβ , Pβ

)
into (Γ∗, ψ∗, P∗) over Γ. □

This concludes the proof of Theorem 3.3. □

Let Tk be the Lk-theory of closed H-triples over k. Let T>
k be the Lk-theory whose

models are the closedH-triples (Γ, ψ, P ) over k with 0 ∈ P , equivalently Ψ∩Γ> ̸= ∅.
Let T<

k be the Lk-theory whose models are the closed H-triples (Γ, ψ, P ) over k
with 0 /∈ P , equivalently Ψ ⊆ Γ<.

Corollary 3.6. The Lk-theory Tk has exactly two completions: T>
k and T<

k .

Proof. We have an H-triple
(
{0}, ψ0, {0}

)
over k that embeds into every model

of T>
k , and an H-triple

(
{0}, ψ0, ∅

)
over k that embeds into every model of T<

k .
Here ψ0 is the “empty” function ∅ → {0}. □

Suppose K is a Liouville closed H-field. Then its H-couple (Γ, ψ) is naturally
an H-couple over its constant field C. The case (Γ, ψ) |= T>

C corresponds to the
derivation ∂ of K being small (that is, ∂f ≺ 1 for all f ≺ 1 in K), while the
case (Γ, ψ) |= T<

C corresponds to this derivation not being small. For example, the

usual derivation d
dx of T is small. The derivation x2 d

dx on T is not small, but T
with this derivation is still Liouville closed.
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4. Simple Extensions

Let (Γ, ψ) be an H-couple over k with asymptotic integration, and let (Γ∗, ψ∗) be
an H-couple over k that extends (Γ, ψ). For γ ∈ Γ∗, let

(
Γ⟨γ⟩, ψγ

)
denote the

H-couple over k generated by Γ ∪ {γ} in (Γ∗, ψ∗). Let β ∈ Γ∗ \ Γ. The following
result yields a useful description of the “simple” extension

(
Γ⟨β⟩, ψβ

)
, where i, n

range over N = {0, 1, 2, . . . }:

Proposition 4.1. One of the following occurs:

(a) (Γ + kβ)† = Γ†;
(b) there are sequences (αi) in Γ and (βi) in Γ∗ such that (βi) is k-linearly

independent over Γ, β0 = β − α0 and βi+1 = β†
i − αi+1 for all i, and such

that Γ⟨β⟩ = Γ⊕
⊕∞

i=0 kβi.
(c)n there are α0, . . . , αn ∈ Γ, and nonzero β0, . . . , βn ∈ Γ∗ such that β0 =

β−α0, βi+1 = β†
i −αi+1 for i < n, the vectors β0, . . . , βn, β

†
n are k-linearly

independent over Γ, (Γ + kβ†
n)

† = Γ†, and Γ⟨β⟩ = Γ⊕
⊕n

i=0 kβi ⊕ kβ†
n.

(d)n there are α0, . . . , αn ∈ Γ, and nonzero β0, . . . , βn ∈ Γ∗ such that β0 =

β − α0, βi+1 = β†
i − αi+1 for i < n, the vectors β0, . . . , βn are k-linearly

independent over Γ, β†
n ∈ Γ \ Γ†, and Γ⟨β⟩ = Γ⊕

⊕n
i=0 kβi.

Note that in case (a) we have Γ⟨β⟩ = Γ ⊕ kβ, a case described in more detail in
Lemma 3.4. The proof below gives extra information about the other cases.

Proof. Suppose we are not in case (a). Then we have α0 ∈ Γ and β0 := β − α0

with β†
0 /∈ Γ†. This is the first step in inductively constructing elements αi ∈ Γ

and βi ∈ Γ⟨β⟩ \ Γ0, either for all i, or for all i ⩽ n for a certain n. Suppose we
already have α0, . . . , αn ∈ Γ and β0, . . . , βn ∈ Γ⟨β⟩ \ Γ with α0 and β0 as above,

βi+1 = β†
i − αi+1 and β†

i /∈ Γ for i < n, and β†
n /∈ Γ†. Thus [βi]k /∈ [Γ]k for i ⩽ n.

Claim 1: β†
0 < · · · < β†

n.

Claim 2: there is no η ∈ Γ + kβ0 + · · ·+ kβn with Ψ < η < (Γ>)′.

To prove Claim 1, assume towards a contradiction that β†
i ⩾ β†

i+1, i < n. Then by

Lemma 2.8 we have 0 < |βi| < Γ>, so Ψ < β†
i < (Γ>)′, and thus [βi+1]k ∈ [Γ]k by

Corollary 2.4, a contradiction. It follows from Claim 1 that [β0]k > · · · > [βn]k and
that β0, . . . , βn are k-linearly independent over Γ. As to Claim 2, suppose towards a
contradiction that Ψ < γ+δ < (Γ>)′ where γ ∈ Γ, δ ∈ kβ0+ · · ·+kβn. Then δ ̸= 0,
and so [δ]k /∈ [Γ]k. With D := Ψ− γ and E := (Γ>)′ − γ, we have D < δ < E. On
the other hand, for every ε ∈ Γ> there are d ∈ D and e ∈ E with e− d < ε, so Γ is
dense in Γ + kδ by [1, 2.4.17], contradicting [δ]k /∈ [Γ]k. This concludes the proof
of Claim 2.

If (β†
n − αn+1)

† /∈ Γ† for some αn+1 ∈ Γ (so β†
n /∈ Γ), then we take such an αn+1

and set βn+1 := β†
n − αn+1. If there is no such αn+1, then the construction breaks

off, with αn and βn as the last vectors.
Suppose the construction goes on indefinitely. Then it yields infinite sequen-

ces (αi) and (βi) as in case (b), in particular, Γ⟨β⟩ = Γ⊕
⊕∞

i=0 kβi,

Ψβ := ψ∗(Γ⟨β⟩ ̸=) = Ψ ∪
{
β†
i : i ∈ N

}
,

and
(
Γ⟨β⟩, ψβ

)
has asymptotic integration by Claim 2.
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Next, assume that the construction stops with αn and βn as the last vectors.
Thus (Γ + kβ†

n)
† = Γ†. We have two cases:

Case 1: β†
n /∈ Γ. Then α0, . . . , αn, β0, . . . , βn are as in case (c)n. Here is why.

Set ∆ := Γ + kβ†
n, so ∆† = Γ†. From β†

i /∈ ∆† for all i ⩽ n and Claim 1 we obtain
that β0, . . . , βn are k-linearly independent over ∆, with

(∆ + kβ0 + · · ·+ kβn)
† ⊆ ∆+ kβ0 + · · ·+ kβn,

and β ∈ ∆+ kβ0, which proves the assertion.

Case 2: β†
n ∈ Γ. Then α0, . . . , αn, β0, . . . , βn are as in case (d)n. Here is why.

From β†
i /∈ Γ† for all i ⩽ n and Claim 1 we obtain that β0, . . . , βn are k-linearly

independent over Γ, with

(Γ + kβ0 + · · ·+ kβn)
† ⊆ Γ + kβ0 + · · ·+ kβn,

and β ∈ Γ + kβ0, which proves the assertion. □

In case (d)n we have β†
n ∈ Γ \ Γ†, and this cannot happen if (Γ, ψ) is closed. The

proof of Proposition 4.1 yields some further results that are needed later:

Lemma 4.2. Let (αi) and (βi) be as in (b). Then:

(i) β†
i /∈ Γ for all i, and thus [βi]k /∈ [Γ]k for all i;

(ii) (β†
i ) is strictly increasing, and thus ([βi]k) is strictly decreasing;

(iii)
[
Γ⟨β⟩

]
k
= [Γ]k ∪

{
[βi]k : i ∈ N

}
, and thus Ψβ = Ψ ∪

{
β†
i : i ∈ N

}
;

(iv) there is no η ∈ Γ⟨β⟩ with Ψ < η < (Γ>)′;
(v)

(
Γ⟨β⟩, ψβ

)
has asymptotic integration;

(vi) Γ< is cofinal in Γ⟨β⟩<.
If (Γ, ψ) is closed and γ ∈ Γ∗ \ Γ realizes the same cut in Γ as β, then we have an
isomorphism

(
Γ⟨β⟩, ψβ

)
→

(
Γ⟨γ⟩, ψγ

)
of H-couples over k that is the identity on Γ

and sends β to γ. If (Γ, ψ) is of Hahn type, then so is
(
Γ⟨β⟩, ψβ

)
.

Proof. As to (i), this follows from the k-linear independence of (βi) over Γ and

from β†
i = βi+1+αi+1. Hence the sequences (αi), and (βi) conform to the construc-

tion in the proof of Proposition 4.1, and so other parts of that proof yield (ii)–(vi).
The next statement follows as in the proof of Lemma 3.5 using Lemma 2.7 and (iv).

Suppose that (Γ, ψ) is of Hahn type. We show that then Γ⟨β⟩ is a Hahn space;
the additional argument required for showing that

(
Γ⟨β⟩, ψβ

)
is of Hahn type is

similar and left to the reader. So let δ1, δ2 ∈ Γ⟨β⟩̸= satisfy [δ1]k = [δ2]k; we have
to find c ∈ k such that [δ1 − cδ2]k < [δ1]k. Now

δ1 = γ1 +
∑
i

ci1βi, δ2 = γ2 +
∑
i

ci2βi, γ1, γ2 ∈ Γ,

with all ci1, ci2 ∈ k, and ci1 = ci2 = 0 for all but finitely many i. Consider first the
case [δ1]k ∈ [Γ]k. Then [γ1]k > [βi]k for all i with ci1 ̸= 0, by (i), (ii), (iii), and
so δ1 = γ1 + α1 with [α1]k < [γ1]k = [δ1]k, and likewise δ2 = γ2 + α2 with [α2]k <
[γ2]k = [δ2]k. Take c ∈ k such that [γ1 − cγ2]k < [γ1]k. Then δ1 − cδ2 = γ1 − cγ2 +
α1−cα2, so [δ1−cδ2]k < [γ1]k = [δ1]k. Next, suppose [δ1]k /∈ [Γ]k. Then ci1 ̸= 0 for
some i; let j be the least such i. Then [γ1]k < [βj ]k and [δ1]k = [βj ]k by (ii). Now j
is also the least i with ci2 ̸= 0, in view of [δ1]k = [δ2]k. Then [δ1 − cδ2]k < [δ1]k
for c ∈ k with cj1 = ccj2. □
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Lemma 4.3. Let α0, . . . , αn, β1, . . . , βn be as in (c)n, and set ∆ := Γ + kβ†
n,

so ∆† = Γ† and Γ⟨β⟩ = ∆⊕ kβ0 ⊕ · · · ⊕ kβn. Then:

(i) Γ< is cofinal in ∆<;

(ii) β†
0, . . . , β

†
n /∈ Γ, and thus [β0]k, . . . , [βn]k /∈ [∆]k;

(iii) β†
0 < · · · < β†

n, and thus [β0]k > · · · > [βn]k;

(iv) Ψβ = Ψ ∪ {β†
0, . . . , β

†
n} and

[
Γ⟨β⟩

]
k
= [∆]k ∪

{
[β0]k, . . . , [βn]k

}
;

(v) there is no γ ∈ ∆+ kβ0 + · · ·+ kβn−1 with 0 < γ < Γ>;
(vi) if |βn| ⩾ α for some α ∈ Γ>, then Γ< is cofinal in Γ⟨β⟩< and so a gap

in (∆, ψ∆), if any, remains a gap in
(
Γ⟨β⟩, ψβ

)
;

(vii) if |βn| < Γ>, then
(
Γ⟨β⟩, ψβ

)
is grounded with maxΨβ = β†

n;
(viii) if (∆, ψ∆) has no gap, then there is no η ∈ Γ⟨β⟩ with Ψ < η < (Γ>)′, and

so Γ< is cofinal in Γ⟨β⟩< and
(
Γ⟨β⟩, ψβ

)
has asymptotic integration.

Proof. As to (i), if δ ∈ ∆ and Γ< < δ < 0, then Ψ < δ†, contradicting ∆† =
Γ†. Item (ii) follows from the k-linear independence of β0, . . . , βn, β

†
n over Γ and

from β†
i = βi+1 + αi+1 for i < n. Next we obtain (iii) from Claim 1 in the proof of

Proposition 4.1, and then (iv) follows easily. As to (v), by (ii) and (iii) we have

[∆ + kβ0 + · · ·+ kβn−1]k = [∆]k ∪
{
[β0]k, . . . , [βn−1]k

}
.

Thus assuming towards a contradiction that (v) is false gives γ ∈ ∆∪{β0, . . . , βn−1}
with 0 < |γ| < Γ>. Then Ψ < γ† < (Γ>)′, and so γ /∈ ∆. Hence γ = βi with i < n,
and so γ† ∈ Γ+kβ0+· · ·+kβn, contradicting Claim 2 in the proof of Proposition 4.1
with γ† in the role of η. By similar arguments, if 0 < γ < Γ> for some γ ∈ Γ⟨β⟩,
then 0 < |βn| < Γ>. This gives (vi). For (vii), assume |βn| < Γ>. Then (i), (iv), (v)
give [βn]k = min

[
Γ⟨β⟩ ̸=

]
k
, and thus maxΨβ = β†

n.

As to (viii), note first that Ψ = Ψ∆. Assume (∆, ψ∆) has no gap. Then (∆, ψ∆)
has asymptotic integration. Hence by Claim 2 in the proof of Proposition 4.1,
applied to ∆ instead of Γ, there is no η ∈ Γ⟨β⟩ with Ψ < η < (Γ>)′. □

Lemma 4.4. Let α0, . . . , αn, β0, . . . , βn be as in (d)n. Then:

(i) β†
0, . . . , β

†
n−1 /∈ Γ, β†

n /∈ Ψ, and thus [β0]k, . . . , [βn]k /∈ [Γ]k;

(ii) β†
0 < · · · < β†

n, and thus [β0]k > · · · > [βn]k;

(iii) Ψβ = Ψ ∪ {β†
0, . . . , β

†
n} and

[
Γ⟨β⟩

]
k
= [Γ]k ∪

{
[β0]k, . . . , [βn]k

}
;

(iv) there is no η ∈ Γ⟨β⟩ with Ψ < η < (Γ>)′;
(v) Γ< is cofinal in Γ⟨β⟩<, and

(
Γ⟨β⟩, ψβ

)
has asymptotic integration.

Proof. The first part of (i) follows from the recursion satisfied by β0, . . . , βn, the
k-linear independence of β0, . . . , βn over Γ, and β†

n /∈ Ψ. Claim 1 in the proof of
Proposition 4.1 gives (ii), which together with (i) yields (iii). Claim 2 in that proof
gives (iv), which has (v) as an easy consequence. □

The next result is crucial in the proof of Theorem 0.1 in Section5. Here (Γ∗, ψ∗) is
equipped with an H-cut P ∗, and we set P := P ∗ ∩ Γ = Ψ↓, and Pγ := P ∗ ∩ Γ⟨γ⟩
for γ ∈ Γ∗, so we have the H-triples (Γ, ψ, P ),

(
Γ⟨γ⟩, ψγ , Pγ

)
⊆ (Γ∗, ψ∗, P ∗) over k.

Lemma 4.5. Assume (Γ∗, ψ∗) is closed, of Hahn type, and Γ< is not cofinal
in (Γ∗)<. Then for some δ ∈ (Γ∗)>, all γ ∈ Γ∗ with |β − γ| < δ yield an iso-
morphism

(
Γ⟨β⟩, ψβ , Pβ

)
→

(
Γ⟨γ⟩, ψγ , Pγ

)
over Γ sending β to γ.

Proof. Suppose we are in Case (a) of Proposition 4.1. There are three subcases:
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Subcase 1: (Γ>)† < η < (Γ>)′ and η ∈ P ∗ for some η ∈ Γ + kβ. Fix such η and
recall from Case 1 in the proof of Lemma 3.4 that Γ is dense in Γ + kη = Γ + kβ.
Thus if ε ∈ Γ∗ and 0 < ε < Γ>, then (Γ>)† < η − ε < η. Moreover, P ∗ has no
largest element, so we can take ε ∈ (Γ∗)> so small that for all ζ ∈ Γ∗ with |η−ζ| < ε
we have (Γ>)† < ζ < (Γ>)′ and ζ ∈ P ∗; in particular, such ζ realizes the same
cut in Γ as η. Take α ∈ Γ and c ∈ k× with β = α + cη. Then for ζ as above
and γ := α + cζ the condition |η − ζ| < ε amounts to |β − γ| < δ := |c|ε, with an
isomorphism

(
Γ⟨β⟩, ψβ , Pβ

)
→

(
Γ⟨γ⟩, ψγ , Pγ

)
over Γ sending β to γ.

Subcase 2: (Γ>)† < η < (Γ>)′ and η /∈ P ∗ for some η ∈ Γ+kβ. This can be treated
in the same way as Subcase 1.

Subcase 3: there is no η ∈ Γ + kβ with (Γ>)† < η < (Γ>)′. Take δ ∈ Γ∗ such
that 0 < δ < Γ>. Then all γ ∈ Γ∗ with |γ − β| < δ realize the same cut in Γ as β:
otherwise we would have α ∈ Γ with 0 < |α−β| < Γ>, so (Γ>)† < (α−β)† < (Γ>)′,
a contradiction. Now (Γ∗, ψ∗) is of Hahn type, so [Γ+kβ]k = [Γ]k. As in Case 3 in
the proof of Lemma 3.4 this yields for any such γ an isomorphism

(
Γ⟨β⟩, ψβ , Pβ

)
→(

Γ⟨γ⟩, ψγ , Pγ

)
over Γ sending β to γ.

Assume we are in Case (b) of Proposition 4.1, and let (αi) and (βi) be as in
that case. Let ε ∈ Γ∗ be such that [ε]k < [β0]k. Then β0 + ε = (β + ε) − α0,

[β0+ε]k = [β0]k, and thus (β0+ε)
† = β†

0. It follows that with β+ε instead of β we
are also in case (b), with associated sequences (αi) and (βi,ε), with β0,ε := β0 + ε
and βi,ε := βi for i ⩾ 1. As noted in the proof of Lemma 4.2, the sequences (αi), (βi)
conform to the construction in the proof of Proposition 4.1, and so the latter proof
yields an isomorphism

(
Γ⟨β⟩, ψβ , Pβ

)
→

(
Γ⟨β+ε⟩, ψβ+ε, Pβ+ε

)
over Γ that sends βi

to βi,ε for each i, and thus β to β + ε.

Next, assume we are in Case (c)n of Proposition 4.1, and let α0, . . . , αn, β0, . . . , βn
be as in that case. As before, let ε ∈ Γ∗ be such that [ε]k < [β0]k. Then β0 + ε =

(β + ε) − α0, [β0 + ε]k = [β0]k, so (β0 + ε)† = β†
0. Hence with β + ε instead of β

we are again in case (c)n, with associated sequences α0, . . . , αn and β0,ε, . . . , βn,ε,
with β0,ε := β0 + ε and βi,ε := βi for 1 ⩽ i ⩽ n. Note also that β and β + ε give
rise to the same ∆ = Γ + kβ†

n = Γ + kβ†
n,ε. It now follows from Lemma 4.3 that

we have an isomorphism
(
Γ⟨β⟩, ψβ

)
→

(
Γ⟨β+ ε⟩, ψβ+ε

)
of H-couples over k that is

the identity on ∆ and sends βi to βi,ε for each i ⩽ n, and thus β to β + ε. Since β
and β + ε yield the same ∆, it follows easily from (vi), (vii), (viii) of Lemma 4.3
that this isomorphism maps Pβ onto Pβ+ε.

Finally, assume we are in Case (d)n of Proposition 4.1, and let α0, . . . , αn, β0, . . . , βn
be as in that case. Let ε ∈ Γ∗ be such that [ε]k < [β0]k. Then β0 + ε =

(β + ε)− α0, [β0 + ε]k = [β0]k, so (β0 + ε)† = β†
0. Hence with β + ε instead of β

we are again in case (d)n, with associated sequences α0, . . . , αn and β0,ε, . . . , βn,ε,
with β0,ε := β0 + ε and βi,ε := βi for 1 ⩽ i ⩽ n. Then Lemma 4.4 yields an
isomorphism

(
Γ⟨β⟩, ψβ , Pβ

)
→

(
Γ⟨β + ε⟩, ψβ+ε, Pβ+ε

)
of H-triples over k that is

the identity on Γ and sends βi to βi,ε for each i ⩽ n, and thus β to β + ε. □

5. Closed H-couples of Hahn Type

So far we have treated H-couples over k as one-sorted structures, by keeping k fixed
and having for each scalar c a separate unary function symbol that is interpreted
as scalar multiplication by c. We now go to the setting where an H-couple over k is
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viewed as a 2-sorted structure with k as a second sort, and thus with “Hahn type”
as a first-order condition. Extending an H-couple may now involve extending k, so
we begin with a subsection on the process of scalar extension for Hahn spaces. We
remind the reader that the ordered scalar field k is not necessarily real closed.

Scalar extension. Let Γ be a Hahn space over k, and let k∗ be an ordered field
extension of k. Then we have the vector space Γk∗ := k∗ ⊗k Γ over k∗. We have
the k-linear embedding γ 7→ 1 ⊗ γ : Γ → Γk∗ via which we identify Γ with a k-
linear subspace of Γk∗ . We make Γk∗ into a Hahn space over k∗ as follows: for

any γ ∈ Γ ̸=
k∗ we have γ = c1γ1 + · · · + cmγm with m ⩾ 1, c1, . . . , cm ∈ (k∗)×,

γ1 . . . , γm ∈ Γ>, [γ1]k > · · · > [γm]k; then γ > 0 iff c1 > 0. This makes Γ
into an ordered k-linear subspace of Γk∗ , and we have an order-preserving bijec-
tion [γ]k → [γ]k∗ : [Γ]k → [Γk∗ ]k∗ .

Lemma 5.1. Assume [Γ̸=]k has no least element. Then for every γ∗ ∈ Γk∗ \ Γ
there is an element ε ∈ Γ> such that |γ∗ − γ| > ε for all γ ∈ Γ.

Proof. Let γ∗ ∈ Γk∗ \Γ, so γ∗ = c1γ1+ · · ·+ cmγm with m ⩾ 1, c1, . . . , cm ∈ (k∗)×,
γ1 . . . , γm ∈ Γ>, [γ1]k > · · · > [γm]k. To show that γ∗ has the claimed property
we can assume c1 /∈ k. Take any ε ∈ Γ> with [ε]k < [γ1]k, and assume towards
a contradiction that γ ∈ Γ and |γ∗ − γ| ⩽ ε. Then [γ]k∗ = [γ∗]k∗ = [γ1]k∗ ,
so [γ]k = [γ1]k, and hence [γ − cγ1]k < [γ1]k with c ∈ k. In view of

γ∗ − γ = (c1 − c)γ1 + c2γ2 + · · ·+ cmγm − (γ − cγ1)

and c1 ̸= c, this yields a contradiction. □

We also have the following universal property:

Corollary 5.2. Any embedding Γ → Γ∗ of ordered vector spaces over k into an
ordered vector space Γ∗ over k∗ such that the induced map [Γ]k → [Γ∗]k∗ is injective
extends uniquely to an embedding Γk∗ → Γ∗ of ordered vector spaces over k∗.

Let (Γ, ψ) be an H-couple over k of Hahn type and k∗ an ordered field extension
of k. The H-couple (Γ, ψ)k∗ := (Γk∗ , ψk∗) over k∗ is determined by requiring
that ψk∗ extends ψ. Note that then (Γ, ψ)k∗ is also of Hahn type and has the same
Ψ-set as (Γ, ψ). The following is close to [3, Lemma 3.7], whose proof uses a form
of Hahn’s Embedding Theorem. Here we use instead Lemma 5.1.

Lemma 5.3. If γ ∈ Γ is a gap in (Γ, ψ), then γ remains a gap in (Γ, ψ)k∗ . If γ∗ is
a gap in (Γ, ψ)k∗ , then γ∗ ∈ Γ. Thus (Γ, ψ) has asymptotic integration if and only
if (Γ, ψ)k∗ has asymptotic integration.

Proof. Suppose towards a contradiction that γ ∈ Γ is a gap in (Γ, ψ), but not
in (Γ, ψ)k∗ . Then γ = α′ with α ∈ Γ>

k∗ \ Γ. From γ < (Γ>)′ we get 0 < α < Γ>,
but this contradicts that by Lemma 5.1 we have |α| > ε for some ε ∈ Γ>.

Next, assume γ∗ is a gap in (Γ, ψ)k∗ . Then Ψ < γ∗ < (Γ>)′, and for all ε ∈ Γ>

there are α ∈ Ψ and β ∈ (Γ>)′ (namely α := ε† and β := ε′) with β − α ⩽ ε. In
view of Lemma 5.1 this yields γ∗ ∈ Γ. □

Normalized H-couples. Let (Γ, ψ) be an H-couple over k. By [1, Section 9.2],
if Ψ ∩ Γ> ̸= ∅, then ψ(γ) = γ for a unique γ ∈ Γ>; this unique fixed point of ψ
on Γ> is then denoted by 1. Referring to (Γ, ψ) as a normalized H-couple means
that Ψ ∩ Γ> ̸= ∅, and that we consider Γ as equipped with this fixed point 1 as a dis-
tinguished element. (The term “normalized” is justified, because for any H-couple



18 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

over k with underlying ordered vector space Γ ̸= {0} we can arrange Ψ ∩ Γ> ̸= ∅
by replacing its function ψ with a suitable “shift” α+ ψ where α ∈ Γ.) For minor
technical reasons it is convenient to restrict our attention in the remainder of this
paper to normalized H-couples; this is hardly a loss of generality, as we saw. Note
also that the H-couple of T is normalized by taking 1 = v(x−1).

Below we construe a normalized H-couple over k as a 2-sorted structure

Γ =
(
(Γ, ψ),k; sc

)
where (Γ, ψ) is an H-couple as defined in the beginning of Section 1, k is an ordered
field, and sc : k × Γ → Γ is a scalar multiplication that makes Γ into an ordered
vector space over k (but we shall write cγ instead of sc(c, γ) for c ∈ k and γ ∈ Γ),
such that ψ(cγ) = ψ(γ) for c ∈ k×, γ ∈ Γ; in addition we assume Γ to be equipped
with an element 1 > 0 such that ψ(1) = 1. Such Γ is said to be of Hahn type if the
H-couple (Γ, ψ) over k is of Hahn type as defined in Section 1. In the same way
we may consider a normalized H-triple over k as a 2-sorted structure

Γ =
(
(Γ, ψ, P ),k; sc

)
.

The language and theory of normalized H-triples of Hahn type. We con-
strue a normalized H-triple Γ =

(
(Γ, ψ, P ),k; sc

)
of Hahn type as an LH -structure,

where LH is the two-sorted language with the following non-logical symbols:

(i) P , <, 0, 1, ∞, −, +, ψ, interpreted as usual in Γ∞ := Γ ∪ {∞}, the
linear ordering on Γ being extended to a linear order on Γ∞ by γ < ∞
for γ ∈ Γ, and with ∞ serving as a default value by setting −∞ = ∞,
γ +∞ = ∞+ γ = ∞+∞ = ψ(0) = ψ(∞) = ∞ for γ ∈ Γ;

(ii) <, 0, 1, ∞, −, +, · , interpreted as usual in k∞ := k ∪ {∞}, the linear
ordering on k being extended to a linear order on k∞ by c <∞ for c ∈ k,
and with ∞ serving as a default value by setting −∞ = ∞, c+∞ = ∞+c =
∞+∞ = c∞ = ∞c = ∞∞ = ∞ for c ∈ k;

(iii) a symbol sc for the map k∞ × Γ∞ → Γ∞ that is the scalar multiplication
on k × Γ, and taking the value ∞ at all other points of k∞ × Γ∞;

(iv) a symbol : for the function Γ2
∞ → k∞ that assigns to every (α, β) ∈ Γ2

with [α]k ⩽ [β]k and β ̸= 0 the unique scalar α : β = c ∈ k such
that [α− cβ]k < [β]k, and assigns to all other pairs in Γ2

∞ the value ∞.

The symbols in (i) should be distinguished from those in (ii) even though we use the
same written signs for convenience. The two default values ∞ are included to make
all primitives totally defined. Note that in (iv) we have α : β = 0 if [α]k < [β]k.

Using a1 : b1 = a/b for a, b ∈ k with b ̸= 0, we see that a substructure of a
normalized H-triple of Hahn type is also a normalized H-triple of Hahn type, with
possibly smaller scalar field. Thus the LH -theory of normalized H-triples of Hahn
type has a universal axiomatization (which would be easy to specify). Let there be
given normalized H-triples of Hahn type,

Γ0 =
(
(Γ0, ψ0, P0),k0; sc0

)
and Γ =

(
(Γ, ψ, P ),k; sc

)
.

An embedding Γ0 → Γ is a pair i = (iv, is) whose vector part iv : Γ0 → Γ is
an embedding of ordered abelian group and whose scalar part is : k0 → k is an
embedding of ordered fields such that iv(cγ) = is(c)iv(γ) and γ ∈ P0 ⇔ iv(γ) ∈ P
for all c ∈ k0 and γ ∈ Γ0, and iv

(
ψ0(γ)

)
= ψ

(
iv(γ)

)
for all nonzero γ ∈ Γ0 (and

so iv(1) = 1 and ic(α : β) = iv(α) : iv(β) for all α, β ∈ Γ). If k0 = k, then an
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embedding e : (Γ0, ψ0, P0) → (Γ, ψ, P ) of H-triples over k in the usual sense yields
an embedding (e, idk) : Γ0 → Γ as above.

Quantifier elimination. Let TH be the LH -theory of normalized closed H-triples
of Hahn type, and recall that the H-couple of T is naturally a model of TH . In
this subsection we let Γ =

(
(Γ, ψ, P ),k; sc

)
and Γ∗ =

(
(Γ∗, ψ∗, P ∗),k∗; sc∗

)
denote

normalized closed H-triples of Hahn type, construed as models of TH . The key
embedding result is as follows:

Proposition 5.4. Assume Γ∗ is κ-saturated for κ = |Γ|+. Let Γ0 be a substructure
of Γ with scalar field k0. Let an embedding i0 : Γ0 → Γ∗ be given, and an embed-
ding e : k → k∗ of ordered fields such that e|k0

= (i0)s. Then i0 can be extended to
an embedding i : Γ → Γ∗ such that is = e.

Proof. By Corollary 5.2 on extending scalars, the remarks following it, and (to
handle the P -predicate) Lemma 5.3 we can reduce to the case k0 = k. It remains
to appeal to the embedding result established in the proof of Theorem 3.3. □

In what follows, formula means LH-formula. Let x = (x1, . . . , xm) denote a tuple
of distinct scalar variables and y = (y1, . . . , yn) a tuple of distinct vector variables.

Corollary 5.5. Suppose that Γ is a substructure of Γ∗. Then

Γ ≼ Γ∗ (as LH-structures) ⇐⇒ k ≼ k∗ (as ordered fields).

Proof. The direction ⇒ being trivial, we assume k ≼ k∗ and shall derive Γ ≼ Γ∗.
By induction on formulas ϕ(x, y) (with x and y as above) we show that for all Γ
and Γ∗ as in the hypothesis of the lemma and all c ∈ km and γ ∈ Γn,

Γ |= ϕ(c, γ) ⇐⇒ Γ∗ |= ϕ(c, γ). (∗)
For the inductive step, let ϕ = ∃zθ, where θ = θ(x, y, z) is a formula and z is a
single variable of the scalar or vector sort. The direction ⇒ in (∗) holds by the
(implicit) inductive asumption. Assume Γ∗ |= ϕ(c, γ) where c ∈ km and γ ∈ Γn.
Take a κ-saturated elementary extension Γ1 of Γ, where κ = |Γ∗|+. Let k1 be the
scalar field of Γ1. Then we have an elementary embedding e : k∗ → k1 that is the
identity on k. Proposition 5.4 (with Γ, Γ∗, Γ1 in the roles of Γ0, Γ, Γ

∗) gives an
embedding i : Γ∗ → Γ1 where is = e and iv is the identity on Γ. By the (tacit)
inductive hypothesis on θ we obtain Γ1 |= ϕ(c, γ), and thus Γ |= ϕ(c, γ). □

With x, y as above, call a formula η(x, y) a scalar formula if it has the form
ζ
(
s1(x, y), . . . , sN (x, y)

)
where ζ(z1, . . . , zN ) is a formula in the language of ordered

rings (as specified in (ii) of the description of LH), where z1, . . . , zN are distinct
scalar variables and s1(x, y), . . . , sN (x, y) are scalar-valued terms of LH .

Theorem 5.6. Every formula ϕ(x, y) is TH-equivalent to a boolean combination of
scalar formulas η(x, y) and atomic formulas α(x, y).

As a consequence, extending TH by axioms that the scalar field is real closed gives
outright QE, without requiring scalar formulas.

Proof. Suppose (c, γ) ∈ km×Γn and (c∗, γ∗) ∈ (k∗)m×(Γ∗)n satisfy the same scalar
formulas η(x, y) and atomic formulas α(x, y) in Γ and Γ∗, respectively. It suffices
to derive from this assumption that (c, γ) and (c∗, γ∗) satisfy the same formulas
in Γ and Γ∗. We may assume that Γ∗ is κ-saturated where κ = |Γ|+. Let Γ0 with
scalar field k0 be the substructure of Γ generated by (c, γ). Since (c, γ) and (c∗, γ∗)
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realize the same atomic formulas α(x, y), we have an embedding i0 : Γ0 → Γ∗ such
that i0(c) = c∗ and i0(γ) = γ∗. They also realize the same scalar formulas η(x, y),
so we have an elementary embedding e : k → k∗ agreeing with (i0)s on k0. Propo-
sition 5.4 then yields an embedding i : Γ → Γ∗ extending i0 with is = e. Then i is
an elementary embedding by Corollary 5.5, so (c, γ) and (c∗, γ∗) do indeed satisfy
the same formulas in Γ and Γ∗. □

Discrete definable sets. We are finally ready to prove the theorem announced
in the introduction. We state it here in its natural general setting:

Theorem 5.7. Let Γ =
(
(Γ, ψ, P ),k; sc

)
be a normalized closed H-triple of Hahn

type and let X ⊆ Γ be definable in Γ. Then the following are equivalent:

(i) X is contained in a finite-dimensional k-linear subspace of Γ;
(ii) X is discrete;
(iii) X has empty interior in Γ.

Proof. The direction (i) ⇒ (ii) holds by Lemma 1.2. The direction (ii) ⇒ (iii) is
obvious. (These two implications don’t need X to be definable.)

As to (iii) ⇒ (i), assume X has empty interior. Take a formula ϕ(y) over Γ in a
single vector variable y that defines the set X in Γ. We use Theorem 5.6 to arrange
that ϕ(y) is a boolean combination of scalar formulas over Γ and atomic formulas
over Γ. Take a |Γ|+-saturated elementary extension Γ∗ =

(
(Γ∗, ψ∗, P ∗),k∗; sc∗

)
of Γ, and let X∗ ⊆ Γ∗ be defined by ϕ(y) in Γ∗. We identify Γk∗ with k∗Γ ⊆ Γ∗

in the usual way. We Claim that X∗ ⊆ Γk∗ . (This gives (i) by Lemma 1.3.)
Consider the substructure Γk∗ =

(
(Γk∗ , ψk∗ , Pk∗),k∗; sc∗

)
of Γ∗; it has asymptotic

integration by Lemma 5.3. Let Xk∗ ⊆ Γk∗ be defined in Γk∗ by ϕ(y). Then Xk∗ =
X∗ ∩ Γk∗ , so our claim amounts to X∗ = Xk∗ . Suppose towards a contradiction
that γ∗ ∈ X∗ \Xk∗ . In particular, γ∗ ∈ Γ∗ \ Γk∗ . Saturation yields an ε ∈ Γ∗ such
that 0 < ε < c∗γ for all positive c∗ in k∗ and all positive γ ∈ Γ, so 0 < ε < Γ>

k∗ ,
and thus Γ>

k∗ is not coinitial in (Γ∗)>. Lemma 4.5 then yields a δ > 0 in Γ∗ such
that all γ ∈ Γ∗ with |γ − γ∗| < δ yield an isomorphism(

Γk∗⟨γ∗⟩, ψγ∗ , Pγ∗
) ∼=

(
Γk∗⟨γ⟩, ψγ , Pγ

)
⊆

(
Γ∗, ψ∗, P ∗)

of H-triples over k∗ sending γ∗ to γ. Hence s(γ∗) = s(γ) for such γ and any
scalar-valued LH -term s(y) over Γ, and so Γ∗ |= ϕ(γ) for those γ. Thus the
interval (γ∗ − δ, γ∗ + δ) in Γ∗ lies entirely in X∗, contradicting that X∗ is discrete
in Γ∗. □

6. Further Results about Closed H-couples

We briefly return to the one-sorted setting of H-couples (or H-triples) and give two
easy applications of Theorem 3.3.

Definable closure. Let Γ∗ = (Γ∗, ψ∗, P ∗) be a closed H-triple over k. Then we
have the notion of the definable closure of a set Γ ⊆ Γ∗ in Γ∗, and thus of such a
set Γ being definably closed in Γ∗. If Γ ⊆ Γ∗ is definably closed in Γ∗, then Γ is
(the underlying set of) a subgroup of Γ∗ with ψ∗(Γ̸=) ⊆ Γ, and thus we have an
H-triple (Γ, ψ, P ) over k with (Γ, ψ, P ) ⊆ Γ∗.

Proposition 6.1. Let (Γ, ψ, P ) be an H-triple over k with (Γ, ψ, P ) ⊆ Γ. Then:

Γ is definably closed in (Γ∗, ψ∗, P ∗) ⇐⇒ (Γ, ψ) has asymptotic integration.
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Proof. For ⇒, note that for every γ ∈ Γ there is a unique α ∈ (Γ∗)̸= with γ = α′.
For the converse, assume that (Γ, ψ) has asymptotic integration (so P = Ψ↓).

Iterating the construction of Lemma 3.1 we obtain an increasing continuous chain(
(Γλ, ψλ, Pλ)

)
λ<ν

(with ν an ordinal)

ofH-triples contained in (Γ∗, ψ∗, P ∗) as substructures, with (Γ0, ψ0, P0) = (Γ, ψ, P ),
such that every (Γλ, ψλ, Pλ) has asymptotic integration with Pλ being the down-
ward closure of Ψ0 in Γλ, and such that the union

(Γc, ψc, P c) :=
⋃
λ<ν

(Γλ, ψλ, Pλ)

is closed. The reference to Lemma 3.1 means that for λ < λ+1 < ν we have Γλ+1 =

Γλ ⊕ kαλ with αλ > 0 and α†
λ ∈ Pλ \ ψλ(Γ

̸=
λ ). That the chain is continu-

ous means that (Γµ, ψλ, Pµ) =
⋃

λ<µ(Γλ, ψλ, Pλ) for limit ordinals µ < ν. Any

such (Γc, ψc, P c) is clearly an H-closure of (Γ, ψ, P ), which explains the super-
script c. Since (Γc, ψc, P c) ≼ (Γ∗, ψ∗, P ∗), any element of Γ∗ that is definable in Γ∗

over Γ must lie in Γc. So let γc ∈ Γc \ Γ; to show that then γc is not definable
in Γ∗ over Γ it suffices by Theorem 3.3 that γc realizes in Γ∗ the same quantifier-
free type over Γ as some γ ∈ Γc with γ ̸= γc. Take λ with λ < λ + 1 < ν such
that γc ∈ Γλ+1 \ Γλ. Then

γc = γλ + dαλ (γλ ∈ Γλ, d ∈ k×).

Take any α ̸= αλ in Γ>
λ+1 such that [α]k = [αλ]k. Then γc ̸= γ := γλ + dα.

Lemma 3.1 gives an automorphism σ of (Γλ+1, ψλ+1, Pλ+1) over Γλ with σ(α) = αλ,
so σ(γc) = γ. Thus γc and γ realize in Γ∗ the same quantifier-free type over Γ. □

A closure property of closed H-couples. We show here how [3, Properties A
and B] and its variant [1, Section 9.9] follow from our QE.

Let (Γ, ψ) be anH-couple over k. We extend ψ : Γ ̸= → Γ to a function ψ : Γ∞ → Γ∞
by ψ(0) = ψ(∞) := ∞. For α1, . . . , αn ∈ Γ, n ⩾ 1, we define ψα1,...,αn

: Γ∞ → Γ∞
by recursion on n:

ψα1(γ) := ψ(γ − α1), ψα1,...,αn(γ) := ψ
(
ψα1,...,αn−1(γ)− αn

)
for n ⩾ 2.

Let D be a subset of an ordered abelian group ∆. Call D bounded if D ⊆ [p, q]
for some p ⩽ q in ∆, and otherwise, call D unbounded. (These notions and the
next one are with respect to the ambient ∆.) A (convex) component of D is by
definition a nonempty convex subset S of ∆ such that S ⊆ D and S is maximal
with these properties. The components of D partition the set D: for d ∈ D the
unique component of D containing d is{

γ ∈ D⩽d : [γ, d] ⊆ D
}
∪
{
γ ∈ D⩾d : [d, γ] ⊆ D

}
.

Let n ⩾ 1, and let α be a sequence α1, . . . , αn from Γ. We set

Dα :=
{
γ ∈ Γ : ψα(γ) ̸= ∞

}
.

Thus

Dα = Γ \ {α1} for n = 1, and

Dα =
{
γ ∈ Dα′ : ψα′(γ) ̸= αn

}
for n > 1 and α′ = α1, . . . , αn−1.

One checks easily by induction on n that for distinct γ, γ′ ∈ Dα,

ψα(γ)− ψα(γ
′) = o(γ − γ′).
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Let n ⩾ 1, let α1, . . . , αn ∈ Γ, set α := (α1, . . . , αn), and let c1, . . . , cn ∈ k.

The next lemma is [1, Lemma 9.9.3], generalized from k = Q to arbitrary k, with
the same (easy) proof.

Lemma 6.2. The function

γ 7→ γ + c1ψα1
(γ) + · · ·+ cnψα1,...,αn

(γ) : Dα → Γ

is strictly increasing. Moreover, this function has the intermediate value property
on every component of Dα.

Proposition 6.3. Suppose (Γ, ψ) is closed, (Γ∗, ψ∗) is an H-couple over k extend-
ing (Γ, ψ), and γ ∈ Γ∗ is such that

ψ∗
α1,...,αn

(γ) ̸= ∞ (so ψ∗
α1,...,αi

(γ) ̸= ∞ for i = 1, . . . , n), and

γ + c1ψ
∗
α1
(γ) + · · ·+ cnψ

∗
α1,...,αn

(γ) ∈ Γ.

Then γ ∈ Γ.

Proof. By extending (Γ∗, ψ∗) we arrange it to be closed. Then by Theorem 3.3,
(Γ, ψ,Ψ) ≼ (Γ∗, ψ∗,Ψ∗), and so we have β ∈ Γ such that ψα1,...,αn

(β) ̸= ∞ and

β + c1ψα1
(β) + · · ·+ cnψα1,...,αn

(β) = γ + c1ψ
∗
α1
(γ) + · · ·+ cnψ

∗
α1,...,αn

(γ).

It remains to note that then β = γ by Lemma 6.2. □

7. Final Remarks

In [3] we adopted the 2-sorted setting and “Hahn type” at the outset, and only
observed in its last section that much went through in a one-sorted setting without
Hahn type assumption and just rational scalars. Here we have reversed this order,
since our proof of Theorem 0.1 required various facts, such as Lemmas 2.7 and 4.5,
about “one-sorted” closed H-couples over an arbitrary ordered scalar field that are
not readily available in [3].

There remain several parts in [3] that we have not tried to cover or extend here.
These concern the definable closure of an H-couple in an ambient closed H-couple,
the uniqueness of H-closures, the well-orderedness of Ψ for finitely generated H-
couples, the weak o-minimality of closed H-couples, and the local o-minimality and
o-minimality at infinity of models of TH . We alert the reader that our terminology
(and notations) concerning asymptotic couples have evolved since [3], and are now
in line with [1], and so comparisons with the material here and in [3] require careful
attention to the exact meaning of words.

We do intend to treat some of these topics in a follow-up, since our revisit also
uncovered errors in the alleged proofs of weak o-minimality and local o-minimality
in [3]. These can be corrected using the present paper, but this is not entirely a
routine matter.
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