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I. INTRODUCTION

Humans converse via verbal and non-verbal cues. Non-

verbal cues include gaze, head movements, facial expression,

gestures, body position, etc. These cues complement speech

with multiple information, such as who or what element of the

physical scene is involved in the discourse (e.g. via deictic

gestures or gaze). These cues are particularly important for

multi-party conversations. Indeed, the higher the number of

participants in the conversation, the more complex is the inter-

action. Participants can play other roles than just speaker and

addressee, such as ”side participant”, ”overhearer”. . . These

roles shift during the conversation, called ”Footing” [1]. These

changes occur smoothly, as humans use implicit social codes,

which can be verbal or non-verbal. A social robot should be

able to detect and generate these codes. Mutlu and al [2]

showed that a robot could inform the participants about their

role by the sole use of gaze. Skantze and al [3] inuence turn-

taking and turn-holding and so impact who will be the next

speaker, just by controlling the robot’s attention. Gillet and

al [4] used robot’s gaze to balance participation in conversa-

tion. Moreover, gaze impacts engagement of participants in

conversation [5], recall of informations [6], etc.

Providing a social robot with attention management is

therefore a prequisite for monitoring role and information

processing. Our ambition is to endow robots with such a

skill using a data-driven approach: we rst collect ground-

truth behavioral data via an original immersive teleoperation

platform where human pilots articially endow the robot with

such a skill. Then the multimodal behavioral scores are mined

to extract behavioral models via machine learning techniques.

We rst present our multiparty interactive scenario and the

dataset we collected in the framework of the RoboTrio project.

We will then present a detailed analysis of the head and eye

mouvements of the pilot (driving the head and eyes of our

robot that are independently controlled). We show that head

and eye mouvements should be controlled independently and

fullll different functions, i.e. monitoring group vs. individual

addressee.

II. DATA COLLECTION

1) Dataset: The dataset comprises 22 sequences of human

diads playing a game with our teleoperated robot iCub named

Nina [7]. Nina reproduces the head, gaze and lips movements

of a remote human pilot whose movements are tracked and

streamed via real-time motion capture, in partiticular using a

HMD equipped with an embedded binocular eyetracker. Each

eye of the robot embedds a camera whose video stream is

displayed in the corresponding eld of the HMD. The pilot

can thus see the two subjects facing the robot and a tablet in

the hand of the robot where the game instructions are written.

For each sequence, the couple is different and is composed

of two men or two women. Each interaction lasts between

17 and 25 minutes. the movements of all effectors (lips, eyes,

head motion) and all sensors (stereo audio for ear microphones

and video) of the robot are recorded. This endogenous data is

complemented with audio from head microphones weared by

interlocutors and videos of two xed HD cameras.

The game is similar to Unanimo®: the two subjects have to

guess the most quoted words related to a seed word, according

to a survey (such as rose, sea, antennas . . . related to shrimp).

The robot animates the game: it has to introduce the theme,

encourage discussions, get consensus and give scores. Thanks

to the use of teleoperation, the subjects have the illusion

to interact with a skilled robot with a human-like behavior.

This data collection framework nears training from inference

conditions: interactions are already limited by sensorimotor

capabilities of the robot and HRI a priori and expectations

from human partners.

2) Data annotation: We already annotated completely 5 of

the 22 sequences, all corresponding to men couple interactions.

Several streams have been semi-automaticall labelled:

1) Robot’s gaze: We automatically associate the robot’s gaze

to three regions of interest (RoI) via Gaussian mixtures:

left vs. right subject, and the tablet. Occasional gaze

aversion is labelled ”elsewhere”. After checking if the

point is not corresponding to a saccade, xations are

allocated to these 4 RoI.

2) Robot’s head: The orientation of the pilot’s head is also

classied, depending on whether the head is facing left,

right, center (between the two subjects) or down (tablet

position).

3) Subjects gaze: Sujects gaze is classied with GMM too,

the different classes are ”Robot”, ”OtherSubject” and

”Elsewhere”. To do so, OpenFace [8] runs on HD videos

to detect head and eyes orientation and then compute gaze

focal points.

4) Robot’s speech: The speech contents and intentions are

annotated manually for the pilot. We have dened 24



different intentions for the pilot, for example: ”Theme

announce”, ”Ask Proposition”, ”Ask Validation”, ”Give

Positive Scoring”, ”Give Nul Scoring” . . .

5) Subjects speech: 9 intentions for subjects have been

dened : ”Proposition”, ”Positive Feedback”, ”Negative

Feedback” . . .

III. RESULTS

1) Analysis of gaze according to pilot’s intent: When the

pilot is speaking, he looks most of the time at the tablet.

But the gaze’s distribution depends on speech’s intent. For

example, when the utterance is labeled ”Theme announce” or

”Scoring”, the pilot looks almost all the time at the tablet,

because he needs the information writen on it. But when the

label corresponds to a question addressed to the two subjects,

he looks both with an equal repartition. To model the gaze

behavior of the robot, it is important to take into account what

the robot says.

2) Analysis of gaze according to the speaker’s intent: A

naive hypothesis would state that when one of the subjects is

speaking, the pilot look at her/him. But in our data, the pilot

looks at the other subject one third of the time. Moreover,

when the speaker is looking at the other subject, the pilot’s

gaze distribution is equally balanced between the two. In short,

to model the gaze behavior of the robot, it is important to take

into account who is the speaker and who is the addressee: the

robot, the other subject or both.

Fig. 1. Heat maps of pilot’s focal points according to speaker, for one
sequence. A/C The speaker is user left, B/D is user right. C/D The speaker
looks at the other user. The percentages correspond to the proportion of points
contained in the GMM ellipses representing the 3 targets.

3) Analysis of difference between head and gaze behavior:

Both head and eye gaze focal points have been computed.

Their distributions are different. Obviously, eye gaze focal

points cover a larger area than head’s ones. In several se-

quences, head points are mainly located between the two

regions of interest corresponding to the left and right subjects.

As put forward by Otuska and al [9], gaze cue the adressee

while head direction is placed at the center of the cone

of attention: the monitoring of the so-called ”conversational

regimes” require an independent control of head and eye

movements, where the former is not entirely slaved by the

later.

IV. ON GOING WORK & PERSPECTIVES

Before training models, we will test what modelling pa-

rameters third-party overhears will prefer. To do so, we will

present to raters small video clips where our robot replays its

multimodal behaviour but with different control systems for

the head and eye movements:

1) ground-truth: the robot replays the recorded behavior

2) eye-only: the robot only moves its eyes to gaze RoI

3) head-only: the robot only moves its head to gaze RoI

4) head-from-gaze: the head accompanies eye movements

according to a scrutinization model [10]

Adresses, speech intents will then be used to predict gaze

and head movements using predictive techniques such as

tCNN. These control models will then be confronted to

ground-truth and coupled with a real-time dialog system to

perform conversation management. A style component will

be added to cope with personnalities of human partners and

actively monitor their turns.
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