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Abstract

With modern Integrated Circuit (IC) fabrication taking place offshore and with third-
party companies, hardware reverse engineering has become an effective method to ensure
the security of chips. Recently, it has gained more and more attention to counteract the
threats of Intellectual Property (IP) theft, overproduction, and Hardware Trojan (HT)
insertion. However, to reverse engineer real-world ICs, methods must scale to millions of
logic gates. This is also true for the final step in hardware reverse engineering: netlist ab-
straction. Here, a divide and conquer approach has become necessary, where the gate-level
netlist is divided into smaller partitions, which are then identified separately. This work
introduces several graph-based methods for netlist partitioning, which are faster, more ac-
curate, more flexible, and require less information about the design than current solutions.
The algorithmic efficiency of these methods is compared using theoretic analysis and ex-
perimental assessment. These experiments also evaluate the correctness of the partitioning
methods for small and large netlists, using several evaluation metrics. Furthermore, this
work analyses these metrics’ behavior for different types of netlists and discusses why a
single metric is insufficient to evaluate partitioning methods correctly.

1 Introduction

In a world of globalized Integrated Circuit (IC) supply chains, hardware assurance is a crucial
step towards secure and trustworthy devices. Devices must be protected against malicious
intruders, who might exploit a lack of control to manipulate the devices for their own purposes.
Potential threats include insertion of Hardware Trojans (HTs), Intellectual Property (IP) piracy,
overbuilding, and counterfeiting [1], [2].

Both an intruder trying to understand a design to launch a targeted attack, and a defender
trying to find and understand possible attacks must use Reverse Engineering (RE) to gain
additional knowledge about a target design. RE can thus be seen both as a threat to defend
against, as well as a valuable tool for IC trust. In any case, it is important to understand if and
how RE can be applied to a given design, either to evaluate an attacker’s capabilities and the
success of defense strategies or enable successful inspection of a design for IP theft and HTs. In
this work, we focus on one important step in RE: analyzing the flat netlist, which is the result
of hardware synthesis into logic gates and connecting wires.

In netlist reverse engineering, divide and conquer based approaches are necessary to handle
the large number of logic gates on an IC. Many of the approaches to identify the functionality
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of a design require a golden model, which is often not available for an entire IC. Instead, golden
models are often available only for functional submodules of the design. Furthermore, many
approaches simply do not scale well for many million gates. Thus, methods to partition designs
are required to successfully reverse engineer ICs. These methods must be efficient, scalable,
and provide a result that is useful to subsequently identify the functionality of the design.

These methods can be grouped into two classes: data-path based [3]–[5] and graph-based
[6]–[9]. Methods in the first class partition netlists by identifying the flow of data through
the netlist, described by connected data-words. Partitions are then carved out between such
data-words, to form functional submodules of the netlist. However, it can be difficult to identify
which combination of data-words should be used as the inputs and outputs of a partition.

Methods in the second class perceive the netlist as a graph, and use graph-based methods
to identify clusters, which correspond to functional submodules. This is logical from a design
point of view. Clustering methods have been used for layouting and placement in Electronic
Design Automation (EDA) tools for many years, as gates belonging to functional submodules
should be placed near each other within the layout [6]. Consequentially, methods leveraging
similar information can assist in the RE process. Additionally, core-based designs remain
common, where functional submodules are highly connected, with only few connections to
other submodules [6]. These structures are ideal for identification with graph-based methods.

In this work, we extend previous work on graph-based netlist partitioning methods, as well
as continue and expand on the discussion on what constitutes a good partition, and how to
fairly measure this. We will first introduce our netlist definition in section 2. In section 3,
we will introduce a number of graph-based partitioning algorithms. Each of the previously
published works on netlist partitioning uses a different metric to evaluate their partitioning
results, which makes a fair and simple comparison between methods difficult. Thus, section
4 will discuss a number of metrics. Their behavior for different types of results, as well as a
general analysis of the results for a number of designs, is presented in section 5. We include
a run-time and complexity analysis, as well as an in-detail comparison against the published
partitioning methods. Finally, we will provide an outlook on the future of netlist partitioning
in section 6.

2 Netlist Definitions

In this work, a design netlist is perceived as hypergraph D = (M,N ), with the set of modules
(i.e. standard gates) µ ∈ M and the nets ν ∈ N connecting the modules. All modules
connected to the net ν are in the set Mν . A hierarchical design netlist can be described by a
tree H with nodes Hl

i on a hierarchy level l starting with l = 0 describing the complete design.
Each hierarchical node in the tree instantiates at least two subnodes from higher levels, i.e.
H l

i = {H l′

i |lmax ⩾ l′ > l ⩾ 0} and |H l
i | > 0. Leaf nodes H lmax

i are in the highest level lmax of

the tree and are identical to the modules µ, i.e. ∀i : H lmax
i ∈ M.

H̄ l
i =

⋃
Hl′

i ∈Hl
i
H̄ l′

i , with H̄ lmax
i = H lmax

i , is defined to be the flattened hierarchy, i.e. the

set of µ belonging to the hierarchy node itself or to one of the subnodes from higher levels.

For each H̄ l
i , we define a directed graph Ḡl

i = (V̄ l
i , Ē

l
i) such that each node v̄ is a module

µ ∈ H̄ l
i . An edge e ∈ Ē exists between two modules µ1, µ2 ∈ H̄ l

i if there is a net ν ∈ N in
the design netlist with µ1 ∈ Mν ∧ µ2 ∈ Mν . As net names and cell names are arbitrary and
should not influence the partitioning, only the identifier of µ is kept as an attribute of v. In
this work, we do not utilize placement information, thus the edges e have unit length. Another
graph Gl

i = (V l
i , E

l
i) is defined, such that each node v is a module µ ∈ {µ|µ ∈ H l

i}, i.e. this
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graph comprises only the nodes describing the immediate function of this hierarchy node. The
graph Ḡ0

0, in which no hierarchy is given, is the typical flat netlist input data for netlist reverse
engineering. In this work, we refer to the set of all Gl

i and Ḡl
i in one design as L.

Graph Partitioning Graph partitioning is performed to receive a ground truth to evaluate
graph clustering algorithms. We use the available hierarchical description and generate the Gl

i

and Ḡl
i for all nodes in the hierarchy tree, to receive the set L for each design under test.

Graph Clustering The ultimate goal of RE for netlist partitioning is the hierarchy tree
H representing the golden partitioning of the hardware design. By utilizing graph clustering
algorithms, we try to achieve hierarchy trees Ĥ that are as close to as possible to the true H.
The focus lies on unsupervised clustering algorithms, i.e. algorithms that do not depend on
many parameters and do not partition towards a predefined number of hierarchy nodes.

Each algorithm (with given parametrization) generates many graphs ˆ̄Gl
i of Ḡ

0
0, collected into

a set Palgo per design.

2.1 Discussion: Ground Truth Definition

In graph theory, there exists a plethora of algorithms to partition a graph. All seek to group
nodes within a graph into groups which most closely resemble the ground truth. This ground
truth, however, differs strongly depending on the application, and may not even be clearly
defined. For netlist RE, the goal is to create understanding of the design. This also applies for
the partitioning step. Thus, any partitioning which increases the understanding of the design
is a good partitioning.

Graph partitioning often considers two cases: exact partitions and overlapping partitions.
For exact partitions, each node in the graph is assigned to a single partition. For overlapping
partitions, each node can be assigned to one or more partitions. Netlists are very similar, in
that they can have multiple levels of hierarchy. An IC may contain a cryptographic hardware
accelerator and a Central Processing Unit (CPU), both of which in turn consists of smaller
modules. This issue has been previously discussed by [5], who propose to use data-path based
methods to describe the ground truth as closely as possible.

However, we believe that this view is too narrow-minded, especially as designs exist that
cannot easily be described only through their data-path. Instead, we believe that there exists
no clear rule regarding which level of hierarchy is best to create understanding of the design.
However, by considering the next step after netlist RE, the identification of the functionality of
the design, some insight into what is a good level of hierarchy can be gained. Large partitions
will not allow for a good comparison against a golden model, as a similar module will generally
not be contained in a golden model library. An example could be a partition consisting of an
entire CPU, for which only parts may be previously known. On the other hand, small partitions
provide less knowledge about the design when they are functionally identified, and may be more
difficult to join to create a big picture. When partitions become too small, they may no longer
represent a known functional submodule, and become only a number of connected logic gates.

In the best case, for verification of new partitioning methods, there exists a ground truth,
which is composed of the functional submodules of a design, as intended by an intelligent
designer. This assumes that the designer created a design in such a way that functional sub-
modules can be identified and separated. These modules are more likely to be known in the
golden model library, and gates belonging to these modules can generally be extracted from
the netlist after synthesis, if the Register Transfer Level (RTL) description is known. The
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extraction of this ground truth is however not always trivial. If each functional submodule is
described in its own module, then, during synthesis, gates which belong to this module can be
recovered. However, optimizations and the multi-hierarchical nature of netlists can make this
process difficult. Without a structured RTL representation this becomes even more difficult.
Thus, good RTL design can lead to easier evaluation of partitioning methods.

In the evaluation in this paper, we assume that the ground truth can be extracted as
described above. Furthermore, since we evaluate exact partitioning methods, we create our
ground truth to also only represent an exact partitioning.

3 Graph-based Algorithms for Netlist Partitioning

This section outlines the graph partitioning algorithms that were used in our experiments.

3.1 Louvain

The Louvain method was proposed by Blondel et al. [10] for community detection and focuses
on optimized performance and scalability in comparison to other graph clustering algorithms.
For initialization, each node in the graph is assigned to a cluster, consisting only of this one
node. After that, two phases are performed repeatedly: the clusters are merged with another
cluster in the vicinity, and the gain of these new clusters is evaluated, until a local maximum for
the current node arrangement is achieved. This is performed until there are no more changes to
the clustering’s structure that can improve the clustering. This local maximum is determined
utilizing the modularity:

Hmod =
1

2m

∑
c

(ec − γ
K2

C

2m
) (1)

in which γ > 0 is the resolution parameter, ec is the number of edges in a community c, m

is the number of edges in a network, and
K2

C

2m is the expected number of edges in the network
with Kc being the sum of the degrees of the nodes in a community c. Additional abstraction

can be gained by condensing all nodes in the resulting ˆ̄Gl
is to a single node in a new graph, and

performing the Louvain method again on this new graph, forming a higher-level partitioning.

Note that the result of this algorithm depends on the order the nodes are accessed in the
first step. This leads to different clusterings for several runs because of the randomness in this
phase.

3.2 Leiden-Mod

The Leiden-Mod algorithm was published in 2019 by Traag et al. [11] as a successor for the
Louvain method, which struggled with disconnected or poorly connected clusters. Like Louvain,
Leiden-Mod also uses modularity as the quality function. The initialization is done once and is
the same as for Louvain. Then, the nodes are moved locally to new clusters. This temporary
clustering is refined, before a new network is formed with the changes. These steps are repeated
until no more improvement of the modularity can be made. A comparison of the two algorithms
shows that for Leiden-Mod, the amount of poorly connected communities decreases over time
while they generally increase for Louvain.
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3.3 Leiden–CPM

To overcome the scalability limitations of modularity and resolution, the Constant Potts Model
(CPM) is introduced as a quality function for the Leiden-CPM method, replacing the modu-
larity.

HCPM =
∑
c

(ec − γ(
nc

2
)) (2)

in which ec is the number of edges in a community c, γ > 0 is the resolution parameter, and
nc is the number of nodes in a community c [11].

The resolution parameter γ influences the number of communities in the clustering. More
clusters are found for a higher resolution, and a lower resolution leads to fewer clusters. This
method is particularly useful for larger graphs, as is scales well over many millions of nodes.

3.4 MCL

The Markov Cluster (MCL) algorithm focuses on the mathematical theory of clustering algo-
rithms for graphs [12]. The algorithm is commonly used in bio-informatics, which requires the
analysis of extremely large graphs. It can be configured using the inflation parameter, which
affects the granularity of the final clustering. The algorithm is based on the simulations of flows
within the graph. It uses the discrete Markov process to apply expansion and inflation to the
graph to form communities.

4 Metrics for Partitioning for Hardware Reverse Engi-
neering

Previous work has often concentrated on using a single metric to evaluate the quality of netlist
partitions, particularly when evaluating new partitioning methods. Commonly used metrics
are the normalized mutual information score (NMI) score [5], accuracy [7], [8], precision, recall
or the F1 score [9], [13], while some methods do not use any metrics at all, and instead present
their results without further analysis [3], [4], [6].

We instead propose the use of more than a single metric, as single metrics scores can be
biased towards a certain type of netlists and show misleading results (see 5.4). The use of several
metrics allows us to analyze the score behavior, which provides insight on the correctness of
the cluster number and node distribution of the design.

There are two types scores that give information about a clustering. Internal scores of a
graph, also called fitness scores, give information about the characteristics of the clustering
itself, such as the average distance of nodes in a cluster. External scores are used to compare
different graph clusterings, as long as they cover the same nodes. In this work, we use such
external scores as metrics to calculate how similar the clustering is to the partitioning. We
evaluate the commonly used metrics: adjusted mutual information (AMI), normalized mutual
information score (NMI), adjusted Rand Index (ARI), F1, and normalized F1 score (nF1). Each
of these provide a score between [0 : 1], with 1 indicating an exact match between clustering and
partitioning, and 0 indicating no match between them. The definition of good score strongly
depends on the use-case, and will be discussed in section 5.3.

AMI and NMI are based on mutual information

MI(X,Y ) = H(X)−H(X|Y ), (3)
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in which H(X) is the entropy of clustering X and H(Y |X) is the conditional entropy of
clustering X given clustering Y .

From this, the adjusted mutual information is defined as

AMI(X,Y ) =
MI(X;Y )− E{MI(X,Y )}

max{H(X), H(Y )− E{MI(X,Y )}}
, (4)

in which E{MI(X,Y )} is the expected mutual information.
The normalization of the mutual information is calculated using the joint entropy H(X,Y )

of X and Y

NMI =
H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2
, (5)

The Rand Index can be calculated according to

RI =
a+ d

a+ b+ c+ d
(6)

in which a refers to the number of pairs that are in the same cluster in the partitioning,
and the clustering, b is the number of pairs in different clusters in the partitioning, but the
same cluster in the clustering, c describes the pairs in same clusters of the partitioning, but in
different clusters in the clustering, and d counts all pairs that are in different clusters for both
the partitioning and the clustering.

If the RI is adjusted by the amount of grouping of elements that happens by chance, the
ARI can be defined, with the expected value E{RI} and the value Max(RI) for scaling, as

ARI =
RI − E{RI}

Max(RI)− E{RI}
. (7)

The F1 clustering score [14] is built on the idea that each cluster can be matched to the
best fitting partition by identifying the ground truth partition for each node and performing
majority voting for each cluster. Thus, it is possible to count the number of nodes in each cluster
that belong to the matched partition and to, calculate precision and recall using the number of
true positive (tp), false positive (tp), true negatives (tn) and false negatives (fn)
nodes

precision =
tp

tp + fp
, recall =

tp

tp + fn
, (8)

The F1 score is defined as the harmonic mean of precision and recall is calculated for each
cluster

F1 = 2 · precision · recall
precision+ recall

(9)

and the F1 clustering score is received by averaging the F1 for each cluster. The nF1 is the
F1 clustering score normalized by the amount of partitions matched by at least one cluster and
the amount of redundantly matched partitions [15].

Accuracy, also commonly used to evaluate partitions, can also be defined using these values
as

accuracy =
tp+tn

tp +fp+fp+fn
. (10)
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Table 1: Design Characteristics and Run-time

Design Characteristics Runtimes [s]

#Gates #Partitions Louvain Leiden-Mod Leiden-CPM MCL

present 1,361 5 5 5 6 5
BLAKE 22,538 8 115 13 5 57
AES 32,638 43 53 10 10 239

i2c 868 3 3 4 3 4
altor 12,952 8 30 5 4 54
aquarius 22,726 14 54 7 6 100
ethmac 59,908 66 2,069 11 12 1,104
FPU 64,232 7 187 9 8 261
aquarius-mem 683,003 15 7,200 93 539 -
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Figure 1: Node Distribution for five largest clusters per Design

5 Results

5.1 Design Overview

To fairly evaluate our methods, we have chosen a number of real-life designs, with a focus on
cryptographic cores and components of System on Chips (SoCs). Implementations stem from
opencores [16] and secworks [17], and are synthesized using an open source tool chain and an
open source technology node. An overview of the design size and the number of partitions is
given in Table 1. The smallest design is the i2c design, while the largest is the aquarius-mem
CPU. This design has been included twice, the larger version includes a large memory block,
to demonstrate the scalability of our approach. Furthermore, as the node distribution has a
strong effect on metric behavior, we also include an overview for the five largest clusters of each
design in Figure 1, where the area of each circle represents the relative size of the cluster.

5.2 Clustering Parameter Choice

Both the Louvain and Leiden-Mod algorithms are unsupervised methods to create graph par-
titions, requiring no parameters, and no knowledge regarding the design to function. However,
Leiden-CPM and MCL both require a single parameter, which, while it does not control the
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Figure 2: Parameter Choices for Leiden-CPM and MCL

number of the resulting clusters directly, does control the granularity or resolution of the clus-
ters. Thus, there is correlation between the parameter and the number of clusters. To better
understand how to choose this value for both algorithms for different designs, we evaluated
the cluster quality for a number of parameters: I = [1.20 : 1.40] for MCL, with a total of 8
parameters choices, and γ = [1×10−7 : 2×10−4] for Leiden-CPM, with a total of 16 parameter
choices. As the Louvain algorithm can output slightly different results, depending on a random
seed, this method was also done ten separate times.

The correlation of the parameter choice for the best quality of results against the design size
is shown in Figure 2, including a linear regression for both methods. Note the logarithmic scale
for Leiden-CPM. While the correlation is stronger for Leiden-CPM, both methods do show a
clear correlation. This information can be leveraged to choose a meaningful parameter set for
an unknown design.

5.3 Metric Values for Successful Partitioning

To understand what constitutes a good, a sufficient or a bad partitioning result, the use-case
must be considered. As previously mentioned, netlist RE is generally carried out for different
purposes: HT insertion, IP piracy, but also for identification of patent violations, and for HT
detection. Each of these use-cases provides a different amount of knowledge about the design,
but also requires a different quality of partitioning result [18]. Netlist RE in attack scenarios
generally will supply no information about the design to be attacked, other than design size,
while netlist RE for protection allows for partition number, relative size and even functionality
to be used when evaluating a netlist.

Depending on how the next step in netlist RE is carried out, and how error tolerant this
method is, a partitioning can be sufficient even without a perfect match between the ground
truth and the resulting clusters [19]. However, the next step may instead require an exact
partition, as is the case when carrying out a Satisfiability (SAT)-based attack on logic locked
netlists. Without prior knowledge of the design, this can be very difficult to achieve [13]. In
general, a metric score of > 0.8 is considered good in most scenarios, while a score < 0.6 will
likely no longer provide sufficient information about the design to carry out useful netlist RE.

5.4 Analysis of Metric Behavior

The distribution of nodes and the amount of clusters that are formed during the clustering are
essential information to judge a clustering’s quality. The proposed score based metrics evaluate
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the similarity between clustering and partition, but due to mathematical conditions, the scores
vary with the amount of clusters and node distribution and can be misleading. However, when
considering all metrics, characteristic metric behavior can be observed that reveals information
about the clustering’s node distribution, and amount of clusters.

To demonstrate this effect, we consider the two most extreme cases regarding node distri-
bution and amount of clusters. These occur either when there is only one cluster containing
all nodes (one-cluster clustering), and when every cluster contains only one node (one-node
clustering). Since both types of clustering do not provide any information regarding the hier-
archical structure of the design, the expected result should be 0 for all metrics. We evaluate
these characteristics on a synthetic netlist example, which contains 1000 gates, split into five
partitions, each consisting of 200 nodes, as well as on two real designs: the aes design for
one-cluster clustering, and the present design for one-node clustering.

As can be seen in Figure 3, both extreme clustering cases have specific effects on the metric
behavior: F1 overestimates the quality of one-node clustering, while NMI overestimates one-
cluster clustering. Although the metric values are not high, they can suggest a better quality
of clustering than is actually achieved.

In general, when considering metric behavior, we identified the following correlations:

• Node Distribution: If either AMI, NMI, and ARI are high, but F1 and nF1 are signif-
icantly lower, or if AMI, NMI, and F1 are high and ARI and nF1 are significantly lower,
then the clustering contains a similar amount of clusters as the partition. In each case,
some scores are low, because the number of nodes in each cluster differs significantly be-
tween partition and clustering. This commonly occurs when one cluster in the clustering
is significantly larger than all other clusters. The clustering then has a similar number
of clusters, but the nodes are distributed too evenly over all clusters, with too few in
the largest, and too many in every other cluster. The clustering may seem like a good
convergence to the partition, but it does not reveal useful information about the design.
The more distinct the peaks and minima in the score behavior, the more extreme is the
mismatch in node distribution.

• Split Partitions: If more clusters are found than exist in the ground truth, the cluster
can be improved manually through merging smaller clusters together and bring them to
the size of the corresponding ground truth cluster. However, this is only possible if there
exists previous knowledge regarding the size and number of possible partitions. This can
also be seen in the score behavior: two scores, AMI and NMI are high, and NMI > ARI
> F1 > nF1. Such behavior indicates that there are clusterings suitable for a merge.
Otherwise, the node distribution, like in the previously discussed case, is unsuitable for a
merge because the basic node distribution does not match the partitioning.

9
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To ensure the clustering matches the partitioning in view of cluster number, node distribution,
and node assignment, an equally high value for all scores is crucial. Minor variations (∼< 0.15)
between nearby scores can be neglected. Larger differences must be analyzed, as this points to
a characteristic of the clustering that does not match the characteristic of the ground truth.
New algorithms and methods must be tested using all metrics on order to understand their
behavior and judge their performance.

5.5 Evaluation of Cluster Quality

Figure 4 shows the cluster quality and metric behavior for each of the four clustering methods.
The best result was selected for methods that require a parameter. We assume that no knowl-
edge regarding the design, other than the design size is known. Other approaches assume some
knowledge regarding the design, for example cluster number and relative size. This would also
significantly impact our results. In particular, results that show a behavior of Split Partitions
will greatly improve, as this knowledge allows for the merging of these clusters. However, for
the sake of a fair comparison between our methods, and to demonstrate the flexibility of our
methods, we evaluate only this knowledge-free use-case.

In general, our graph-based methods are unable to achieve useful results for small designs.
Both the i2c and the present designs show very low scores for all metrics. We hypothesize
that the small number of logic gates do not provide a significant enough sample to leverage the
strengths of structural analysis.

Considering the other two cryptographic algorithms, the BLAKE and the AES design, the
results differ significantly. The AES displays nearly perfect results for all clustering algorithms,
except for MCL. The behavior of the MCL results indicate that while the clustering is good, too
many clusters were created compared to the ground truth, i.e. a clear case of Split Partitions.
The BLAKE design, which is a hash-based cryptographic function, appears to be more difficult
to cluster. Only Leiden-CPM provides adequate results for all metrics. This may be due to
the strongly interconnected nature of hash functions.

The altor and aquarius CPUs both show good scores for Leiden-CPM, adequate scores
for Louvain and Leiden-Mod, and insufficient scores for MCL. Except for Leiden-CPM, the
other methods suffer from an incorrect Node Distribution, where the number of clusters and
partitions are similar, but the distribution of nodes between them is not ideal.

The ethmac is the clearest demonstration of the necessity for multiple metrics. Only Leiden-
CPM is able to provide a good score across several metrics. All other clustering methods show
a Node Distribution effect, as they are unable to handle the large size discrepancy between the
first cluster and subsequent clusters (see Figure 1). However, when considering only the NMI,
this effect would not be discovered.

The FPU provides one of the best results, except for the Leiden-Mod algorithm, which suffers
from Split Partitions. It is notable, that with increase design size, MCL seems to provide a
better result. A visualization of the resulting clusters and the ground truth is shown in Figure
5, for MCL. Visual inspection shows a nearly perfect recovery of the original partitions, with
minor errors within the most interconnected parts in the center of the design.

For the aquarius-mem, the Leiden-CPM again significantly outperforms all other methods.
However, when considering the node distribution, the uselessness of this result becomes clear.
This design contains a large memory block, which overshadows every other functional submod-
ule in the design. This is also reflected in the metric behavior for the Leiden-CPM algorithm,
as the F1 score shows that the clustering does not correctly map the gates to their partitions.

In general, the Leiden-CPM algorithm often provides the best result, independent of design
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Figure 4: Results per Design for each Metric
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size or type. The method is unaffected by uneven Node Distribution. Louvain and Leiden-Mod
perform very similarly, although Louvain seems to provide a better result for larger designs.
MCL is particularly strongly affected by uneven Node Distribution, and does not show its true
capabilities in smaller designs.

(a) Partition for FPU (b) Clustering for FPU

Figure 5: Visual comparison of the FPU design

5.6 Performance Analysis

As hardware design netlist grow in gate count and complexity, it is crucial that the RE algo-
rithms can scale at the same rate. Netlist partitioning is the very step that needs to handle
large design sizes, as only later steps can profit from the divide-and-conquer benefits.

In this section, the graph clustering approaches are analyzed for their performance with
increasing netlist size (i.e. the number of nodes

∣∣V̄ 0
0

∣∣ in the flat netlist Ḡ0
0, abbreviated as

|V |) and netlist complexity (i.e. the number of edges
∣∣Ē0

0

∣∣, abbreviated as |E|). To this end,
the computational complexity is presented based on the algorithm descriptions. Based on the
experiments described previously, it is also possible to evaluate the real-world-performance,
run-time results are summarized in Table 1.

Due to the randomized behavior of the Louvain algorithm, the computational complexity
cannot be given in a closed form. As the algorithm uses a low number of repeats to compute a
quality function for all edges incident to all nodes, the complexity can be estimated as O(k∗|E|),
in which k is the number of repeats of the calculation to achieve the local minimum of the
modularity. If k does not scale with |V | or |E| (as argued in [10]), the result is a linear
complexity over |E| or a linear complexity over |V | if the netlist graph is sparse. Run-time
analysis presents similar results, with a strong correlation between design size and run-time.
For designs with a large disparity between the size of the largest cluster and other clusters,
including the BLAKE, ethmac and aquarius-mem, Louvain not only provides subpar results, but
also requires long run-times. When considering the underlying algorithm, where two clusters
are always grouped together to achieve maximum modularity, it becomes clear that such designs
require numerous repetitions to find a local maximum.
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Similar to the Louvain algorithm, the computational complexity of the Leiden-Mod algo-
rithm cannot be presented in closed form. It also uses a low number of repeats to compute a
quality function for all edges incident to nodes in a working set. However, as the algorithm does
not consider each node for every repetition, the working set decreases asymptotically, which
leads to a lower computational complexity compared to Louvain [11]. Again, this is supported
by run-time analysis, where, while the correlation between gate number and run-time persists,
Leiden-Mod runs significantly faster than Louvain for all designs. Furthermore, the algorithm
is, from a run-time point of view, largely unaffected by uneven Node Distributions.

As the quality functions modularity and CPM do only differ in constant elements (see A4 and
A5 in [11], the use of the CPM quality functions does not increase or decrease the computational
complexity of Leiden-CPM compared to the modularity-based Leiden-Mod algorithm. In fact,
the run-times for both methods are very similar, with Leiden-CPM only showing an increase
in run-time for the aquarius-mem designs. Since Leiden-CPM is also able to cluster the single
large cluster correctly, this is an acceptable trade-off for a better quality result.

The computational complexity of the MCL algorithm is given in [12] as bounded by the
average of the node degree. As

∑
v∈V (deg(v))/|V | = 2 ∗ |E|/|V | = O(1) it follows that the

complexity of this algorithm is O(|E|). Thus, MCL scales linearly with the netlist complexity.
For typical netlists, which have a sparse netlist graph, this means that MCL scales roughly
linear with the number of nodes in the design. Table 1 supports this analysis, with a strong
correlation between run-time and number of gates. However, MCL seems more strongly affected
by design size than the other algorithms, such that the computation did not complete within
reasonable time (< 3h) for the largest design.

In conclusion, the algorithms used in this paper tend to have linear computational complex-
ity over netlist size and netlist complexity. Leiden-Mod and Leiden-CPM compute clusters in
a matter of seconds, or few minutes for large designs, while Louvain and MCL both require
significantly longer run-times for large designs.

5.7 Qualitative Comparison of Partitioning Methods

When comparing different partitioning methods, we not only compare the quality of the results,
using the metrics described in section 4. We also consider the scalability (inverse to the compu-
tational complexity), as this has a significant effect on the usability of the method in real-world
netlist RE. Furthermore, depending on the attack scenario, more or less knowledge regarding
the design will be available for the RE process. It must be noted that if more knowledge is
required for a method, this does not necessarily make it less applicable to certain scenarios,
as there are many cases where this information will be available. However, considering the
amount of knowledge needed again allows for a consideration of the applicability to real uses
cases. Finally, we also evaluate whether the method requires parameter choices. Many param-
eters signify that a method may not easily be transferable to different design types and sizes,
and is thus less flexible.

We consider a number of data-path and graph based partitioning methods (see Table 2). We
describe the type of method, the scalability, how ”knowledge-free” the method is, the flexibility
of the method due to the required parameters, and finally, the quality of the results. In general,
a high score in each of these categories is desirable.

One of the earliest works leveraging data-path information proposes a partitioning approach
based on finding data-words and their connection, and using these to partition the design.
These words are found by using similarity scores; in this case the feasible cut and shape of each
boolean gate. Gates with similar structure and functionality are then grouped into data-words.
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Connections between these words are established by propagating signals from one word to the
next. Finally, submodules between all possible combinations of data-words are carved out, and
compared against a golden model in order to gain functional equivalence [3], [4]. While this
approach provides good results for smaller designs, the overhead is very large, and without
assumptions made regarding the size of data-words, reverse engineering real sized designs is
impossible. Especially in larger designs, the number of candidate words becomes difficult to
handle, and needs to be significantly reduced by hand using information about the design that
is not known in a real life scenario. Furthermore, even from a few candidate words, many
candidate submodules may be identified, which then need to be checked against the golden
model library. Thus, the effort to remove bad submodules and to ensure good coverage is very
high. The largest analyzed design consisted of ≈ 300k gates, which required several hours of
analysis. For this analysis, assumptions regarding word size were made, so that the design
could be analyzed at all. However, only the depth and size of the similarity scores are used as
parameters, and thus the flexibility is not strongly affected. No metric is used to evaluate the
quality of the results, however, the coverage of the extracted design is reasonable.

A later work [5] concludes that the above discussed approach is the best for larger designs,
but proposes a control signal based partitioning method for small designs, and a Principal Com-
ponent Analysis (PCA)-based method for design where information regarding the number of
words is known or can be guessed. This third method is parameter dependent, while the control
signal based method requires the identification of control signals within the design. All three
methods again depend on identifying data-words within the design, and carving out candidate
submodules between these words. The paper does not discuss the difficulty of extracting the
correct combination of words, such that the candidate submodule actually consists of the de-
sired functional submodule. Instead, the resulting data words are compared to the data words
extracted from RTL code, and compared using a NMI score. Finally, the paper concludes that
more accurate methods are necessary, as all methods are unable to achieve a good results on a
data-word level. As results are not calculated on a gate-level, but only on a data-word level, a
fair comparison between data-path based methods and graph based methods is difficult.

The earliest work on graph-based partitioning for RE uses the ncut algorithm to partition a
large design into several smaller clusters [6]. No metric is used to evaluate the quality of these
clusters, choosing instead to present only the assignment of gates to each cluster and partition.
Furthermore, the single design evaluated is small, so it is unclear how well this method scales.
However, the method is significantly faster than most of the data-path based methods, and
provides similar results. Furthermore, as the ncut algorithm is unsupervised, no knowledge
regarding the design, and no parameters are required, making this method extremely flexible.

In 2018, [7] also used a graph-based approach - the Louvain algorithm - and incorporated
layout information as edge weights to improve the results. These are evaluated using the
accuracy of the assignment of gates to a cluster, and several designs, including some larger
designs, are evaluated. While no experimental run time analysis was done, the computational
complexity of the algorithm is discussed. As we also evaluate this method, if without layout
information, we will not compare against this work.

A graph-based approach requiring more input information was presented by [8] in 2019.
Here, it is assumed that a block diagram of the design, together with the relative size of each
block is known. The method then matches each node in the graph to one of these blocks, by
calculating a geometric embedding for each node, and clustering based on these embeddings.
This requires a number of parameters, and while not comparable to other graph-based methods
in terms of scalability, the quality of the results are similar.

Recently, the use of graph neural networks (GNNs) for RE have become more common. Since
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Table 2: Qualitative Comparison of Partitioning Methods

Method Type Scalability Knowledge-free Flexibility Result Quality

WordRev [3] data-path low medium medium medium
control signal [5] data-path high high high medium
PCA [5] data-path low medium medium medium
n-cut [6] graph high very high high low
Embedding [8] graph low medium medium medium
GNNs [9] graph very low medium low very high

Louvain graph high very high high medium
Leiden-Mod graph high very high high low
Leiden-CPM graph high very high medium high
MCL graph high very high medium medium

a netlist can be easily converted to graph form, and with recent works, which make GNNs more
scalable, and thus usable for larger graphs, GNNs seem a promising solution to many of the
REs problems. [9] proposes the use of GNNs for both netlist partitioning and identification.
The data-set is focused on algorithmic functions, and while run-times are very high compared
to other methods, the results surpass those previously presented. Main weaknesses include the
dependency on the correct training data, and the large number of hyper-parameters required
for the GNNs model design.

The methods presented in this paper are all highly scalable, with results for between a few
seconds and a few minutes even for very large designs. Especially Leiden-Mod and Leiden-
CPM are able to handle huge netlists easily, and thus also allow for iterative processing of such
designs. All four methods require minimal knowledge regarding the structure of the design, with
some information regarding the size of the design being required to pick good parameters for
Leiden-CPM and MCL. The flexibility of these two methods is a only medium, as parameters
are required. However, both Leiden-Mod Louvain require no parameters, resulting in a high
flexibility. The best results, based on the here proposed metrics, with the above analyzed
benchmarks, are produced by Leiden-CPM ; Louvain and Leiden-Mod also produce useable
results.

As can be seen in Table 2, many of the compared methods excel in one or more category,
however, graph-based methods not only provide the best quality of results, but also achieve
good scalability, require little knowledge about the design, and either require no parameters,
or allow for easy parameter choice, making them usable for many different types of designs.

6 Conclusion

In this work, we evaluated four graph-based partitioning methods for netlist reverse engineering,
including an analysis of the quality of results, computational complexity and run-time, for real-
life designs. We also introduced a number of metrics to fairly and efficiently measure the
quality of results, and conclude that the evaluation using only a single metric is insufficient to
truly judge the capabilities of new partitioning methods. We compare our methods to other
graph-based and data-path based partitioning methods, and surmise that graph-based methods
provide the best trade-off of scalability, flexibility and partition quality.
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