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Assess of the dynamic behavior of a square bistable deployable scissor structure (BDS) module in the deployed state through modal analysis incorporating the influence of internal stresses (specially relevant when member length imperfections are considered)

• Identification of the main design and topological parameters that have a critical influence on the natural frequencies and vibration modes and quantify their effects

• Influence of the applied material pair for inner and outer scissor like elements, finite joint stiffness and member length imperfections (in a stochastic approach) and topological parameters of the module that a designer would potentially adjust for a modular structure to tame its dynamic behavior.

Introduction

Employing transformable structures can be of great interest for temporary structures in civil engineering because of their ease of deployment and rapidity of entering service. A specific class of transformable structures are bistable deployable scissor structures (BDS) that are practically an assembly of beam and hub elements through revolute joints. They exhibit a click-open (snap-through) behavior due to intended geometric incompatibilities between beam members connected as scissors. These incompatibilities induce internal stresses during transformation that are released in the stable folded and deployed configurations. This bistable nature ideally allows for bearing the self-weight of BDS in the deployed state, requiring only limited further bracing and ensuring rapid serviceability [? ].

The transformation behavior of BDS has been recently studied rather extensively [? ], leading to recommendations on their design procedure [? ] and the proposal of a methodology for their shape and topological optimization [? ? ].

Among other findings of interest, BDS were observed to be rather sensitive to manufacturing imperfections, including the hinge axis misalignment and beam lengths variations through nonlinear finite element modeling [? ]. The spurious effect of these imperfections was found to be attenuated using structural joints with a finite stiffness. This joint compliance is a result of the incorporation of deformable bushings in the hinge, as shown in [? ] where a finite stiffness joint finite element, dedicated to BDS was developed.

A significant part of the efforts gathered in the dedicated literature investigate the transformation behavior and design of BDS based on a quasi-static numerical approach, however studies addressing their dynamic behavior in civil engineering applications are very scarce, to the best knowledge of the authors.

Vibrations of deployable structures that are not bistable have been addressed 2 ACCEPTED MANUSCRIPT / CLEAN COPY in the literature for aerospace [? ? ? ? ? ? ] and for civil engineering applications [? ], none of these have the SLE (scissor like elements) based topology that generates bistability. Addressing structural failure is of prime importance for BDS and extension of the computational study to this aspect is planned as future work. However, the present contribution focuses rather on the vibrational behavior of bistable deployable structures. The dangers of the unwanted transformation in service state have been partially addressed in [? ? ].

The specific goals and the main novel contributions here are: (i) to assess the dynamic behavior of a square BDS module in the deployed state through modal analysis incorporating the influence of internal stresses (specially relevant when member length imperfections are considered), (ii) to identify the main design and topological parameters that have a critical influence on the natural frequencies and vibration modes and quantify their effects, particularly focusing on (iii) the applied material pair for inner and outer scissor like elements, finite joint stiffness and member length imperfections (in a stochastic approach) and topological parameters of the module that a designer would potentially adjust for a modular structure to tame its dynamic behavior. This clearly defines a gap of knowledge, and giving a contribution to the understanding of the dynamic behavior of BDS, the identification and quantification of effects influencing it are the main original goals of this work. This contribution is organized as follows: Section 2 presents the computational tool, the main ingredients of the numerical model employed for BDS, the considered design parameters and their range. Section 3 is dedicated to the computational results and their analysis. Finally, the main conclusions and future research paths are given in Section 4.
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Computational model for dynamic analysis

The computational model set up for the dynamic analysis of a single square bistable module is presented in this section. The necessary details for the understanding of the behavior of the hinge finite element developed in [? ] are recalled first with an original procedure of identifying the joint FE parameters from realistic bushing geometries. The derivation of the mechanical response of the joints serves subsequently for feeding the stiffness relationship into the modal analysis. Next, the basic steps of the modal analysis incorporating internal stresses in the deployed state, as a consequence of manufacturing imperfections on the beam length are described. The modal analysis makes use of the stiffness and mass matrices in the deployed state to obtain, via the associated eigenvalue problem, the natural frequencies and vibration modes of the deployable module.

Finally, the choice of the selected BDS module parameters and their range for the subsequent dynamic parametric study are given.

Computational tool and ingredients

The studied square bistable module, shown in Fig. 1 is meant to be part of modular BDS. This module was first proposed by [? ] and is composed of beams forming the inner and outer scissors. Its geometry is selected in such a way that the inner SLE are subjected to compressive axial forces and bending moments in both directions of the transformation (opening and closing), which generates the bistable behavior of the system. The force vs displacements transformation curves of this system were studied by many researchers, including more recently in [? ], where the effect of the finite stiffness of the joints was considered.

In the numerical simulations, each beam half span is discretized into five FE, which is confirmed to be a converged mesh. Each of these 2-noded elements The finite size hubs that serve as connection of more than two beams, situated at the corners and at the intersection of the inner diagonal scissor like elements (SLEs) are also modeled using these beam FE, however a very high stiffness is associated to them to match the usual design assumption that hubs are rigid [? ? ].

Revolute hinges incorporating deformable bushings connect beams to beams and beams to hubs (Fig. 2). These are made of rubber, undergoing small elastic deformations, and are modeled employing the dedicated finite element allowing for incorporating a finite stiffness for the radial direction and for rotations
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ACCEPTED MANUSCRIPT / CLEAN COPY around axes perpendicular to the hinge axis, referred to as tilting modes (explained in details later). This finite stiffness models the revolute hinge system in which two deformable bushings are inserted, its stiffness along these free directions is a user set parameter that can vary between very large values compared to the scissor beam stiffness (rigid pinned connection) and low values allowing for the relative movements of the connected parts that can be useful to compensate for manufacturing imperfections [? ]. The axial movement of the hinge is set strictly to zero, independently of the other stiffness terms to simplify the model, considering that the axial stiffness of the hinges is expected to not play a significant role in their structural behavior. An important question that was not addressed in [? ] is the identification of the stiffness parameters from actual bushing geometries, which is an original contribution presented in the following.
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Flexible hinge model and parameter identification

The derivation of the radial and tilting stiffness (Fig. 3) of a single cylindrical bushing when linear elastic behavior and small strains are supposed has been Note that in a single beam-beam and beam-hub joint two of these bushings are mounted, as shown in Fig. 2 and the derivation of the stiffness relationships of the associated joint finite element (relating the shearing force to the relative radial displacement u h in Fig. 4a and the tilting moment to the relative tilting 7

ACCEPTED MANUSCRIPT / CLEAN COPY rotation θ h in Fig. 4b) is a non-trivial task. The related main equations are given in the following, starting with the relationships describing the kinematics of the two-bushing joint and the force and moment equilibrium allowing to deduce the radial and rotational stiffness for the joint assembly. The pin inserted in the bushings is assumed to move as a rigid body (Fig. 5a) with a displacement u p and a rotation θ p , as a result of the deformation of the two compliant bushings. Points B 1 and B 2 are the intersection of the pin axis and the two beam center lines. Their displacements (u 1 and u 2 ) can be described by the following kinematics:

u h F θ h M (a) (b) 
u 1 = u p - w s + e s 2 θ p (1) 
u 2 = u p + w s + e s 2 θ p (2)
with the beam thickness w s and spacer size e s as shown in Fig. 2.

For the sake of simplicity it is assumed that a shearing force induces only relative radial displacement and a tilting moment induces only relative tilting 8 ACCEPTED MANUSCRIPT / CLEAN COPY rotation in the finite element formulation, i.e. the coupling of shearing force and relative tilting rotation, θ h is disregarded in [? ].

The assumed deformation of the system for a shearing load is shown in Fig. 4a. The forces acting on the rigid pin are equilibrated by the internal forces due to the radial deformation of the two bushings (Fig. 6a). Considering the relative radial displacement u h between the two compliant bushings and the single bushing radial stiffness K r , the following force equilibrium relation can then be derived: Combining Eqs. (1 -3), the radial displacement of the pin u p can be obtained as:

K r u 1 + K r (u 2 -u h ) = 0 (3) B 1 B 2 u p u 1 u 2 θ p (a) Pin kinematics Node 1 Node 2 t 1 t 2 (b) Joint FE
u p = u h 2 (4)
The moments generated in the pin by the eccentric radial forces and the tilting moments associated to the single bushing tilting stiffness K t can be related in the following equilibrium equation:

2K t θ p + e s + w s 2 K r (u 2 -u h ) - e s + w s 2 K r u 1 = 0 (5) 10 ACCEPTED MANUSCRIPT / CLEAN COPY Combining Eqs.
(1 -2) and Eq. ( 5), the pin rotation θ p can be obtained as:

θ p = (e s + w s ) K r 4K t + (e s + w s ) 2 K r u h (6)
Finally, the joint radial stiffness is obtained by taking the equilibrium of forces at the loaded bushing (Fig. 4a):

F = K r (u h -u p ) = K r 2 u h (7)
The assumed deformation of the system for a torsion moment is shown in Fig. 4b. The moments acting on the rigid pin are equilibrated by the internal moments due to the tilt deformation of the two bushings (Fig. 6b). The force equilibrium relation of the rigid pin can be written as:

K r u 1 + K r u 2 = 0 (8) 
Combining Eqs. (1 -2) with Eq. ( 8), the pin radial displacement u p can be obtained as:

u p = 0 (9)
Considering the relative tilt rotation θ h between the two compliant bushings (Fig. 4b) and the single bushing tilting stiffness K t , the following moment equilibrium relation can then be derived:

K t θ p + K t (θ p -θ h ) + (e s + w s ) K r e s + w s 2 θ p = 0 (10)
Combining Eqs. (1 -2) with Eq. ( 10), the rigid pin tilt rotation θ p can be 11 ACCEPTED MANUSCRIPT / CLEAN COPY obtained as:

θ p = 2K t 4K t + (e s + w s ) 2 K r θ h (11)
Finally, the joint tilt stiffness is obtained by taking the equilibrium of moments at the loaded bushing (Fig. 4b):

M = K t (θ h -θ p ) = K t 2K t + (e s + w s ) 2 K r 4K t + (e s + w s ) 2 K r θ h (12)
From the results above, the joint combined radial stiffness in (Eq. 7) is half of the single bushing radial stiffness. The joint combined tilting stiffness (Eq. 12)

depends on the single bushing radial K r and tilting K t stiffness. In the choice of dimensions and material parameters of the present work, the term on the single bushing radial stiffness K r in Eq. ( 12) is very large when compared with the term on the single bushing tilting stiffness K t , and so the joint combined tilting stiffness is approximately equal to K t .

The details of the joint finite element formulation, including the kinematic transformations via the corotational method and the explicit expressions of the internal force vector and tangent stiffness matrix, are given in [? ]. A flowchart of the procedure is shown in Fig. 7. Provided the displacements and rotations of the nodes connected to the bushings, the corotational method is used to filter the rigid body motion of the joint and capture the portion of the motion that causes radial u h and tilting θ h movements. A nonlinear constitutive model, that uses as parameters the combined bushing stiffness of Eqs. ( 7) and ( 12 ACCEPTED MANUSCRIPT / CLEAN COPY here for the sake of focus and brevity.

Once the stiffness K e and inertia M e matrices of each element are assembled into the global stiffness K and inertia M matrices of the structure, respectively, the modal analysis of the deployable unit is performed evaluating the eigenvalues, ω (natural frequencies) and eigenvectors, v (vibration modes) of the system, via the following symmetric generalized eigenvalue problem:

K(d) -ω 2 M v = 0 (13)
Here, the stiffness matrix 

K(d) = K m (d) + K g (d)
K(d) = T T KT Km + ∂T T ∂d : f Kg (14)
with f and K = ∂f /∂d being the internal force vector and (elastic) material stiffness matrix in the corotational system, respectively, and T is the transformation operator between structural and corotational axes.
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Study parameters

The topology, geometrical parameters and dimensions of the studied square The choice of the materials used for inner and outer scissor beams is a basic degree of freedom in BDS design [? ]. In these structures the buckling that 16 ACCEPTED MANUSCRIPT / CLEAN COPY induces the snap-through behavior during transformation is limited to the inner scissors. Increasing the elastic stiffness of these beams by the appropriate choice of the material leads to a higher peak force required for module transformation and a higher structural stiffness in the deployed service state. Choosing a material with low stiffness for the inner scissor beams can also be a viable strategy when aiming for a reduction of this peak force to allow human force induced transformation. Considering the above, a case in which the inner scissor beams are made of HDPE [? ] (specific mass 940 kg / m 3 , elastic modulus 0.8 GPa), while the outer ones are Aluminum will be studied to assess the effect of the material pair choice on the dynamic behavior of the module.

A given modular structure, with fixed volume, can be constructed with different number of modules, by controlling the size of the modules. Reducing the size of a single square module (i.e. the length of the square edge, L) naturally implies shorter scissor beams resulting in the variation of the module stiffness and consequently of its natural frequencies. This effect is considered in this work by varying the square module edge length with respect to the reference case.

Another geometrical design parameter incorporated here is the top center point (CT) height at the intersection of the inner diagonal scissors, h, shown in Fig. 8. Increasing this height was shown to result in a higher transformation peak force in [? ] with a high sensitivity on this parameter. Changing h is a viable manipulation to tune the peak force of transformation in the design and since it modifies the orientation of the inner scissors it may also have an impact on the module's dynamic behavior, which motivates incorporating it in this study.

The cross-section geometry influences the mass and stiffness matrices via its area (A) and moments of inertia (J, I 22 and I 33 ). In the order to keep the focus on external geometrical parameters, the influence of the section geometry on the natural frequencies and vibration modes is not considered in the present work.

The procedure to incorporate them would be analogous to the one used for the other parameters, computing the natural frequencies and vibration modes via the obtained mass and stiffness matrices.

Previous work [? ] shows that the behavior of deformable hinges and manufacturing imperfections [? ] have a large influence on the transformation response of BDS. It is naturally expected that the hinge behavior and such imperfections impact the dynamic structural response as well, which is why they are assessed computationally in a stochastic approach in Sec. 3.2. Note that adjusting the hinge stiffness impacts directly the global structural stiffness, but a very low hinge stiffness may also allow for new vibration modes to appear, resulting in more freedom of deformation of the module. In all the analyses presented in the following a single model parameter is varied while keeping the others at their nominal values given for the reference model. The transformation load vs displacement curves of the module will therefore be reported in this work as well, when relevant.

Modal analysis of bistable deployable structures

First the results for the reference pure Aluminum model, i.e. excluding manufacturing imperfections and supposed to be built with rigid hinges are presented first. In the present work, all the transformation load vs displacement curves are obtained with a displacements driven algorithm, where the vertical degree of freedom of the top node is controlled. The transformation load vs top central point vertical displacement curve is shown in Fig. 9, exhibiting clearly a bistable nature: the force required to fold the initially deployed structure increases first with increasing displacement, followed by a force decrease leading to a range 18
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where this force is negative and ending at the compact folded equilibrium configuration with a zero external load required. 

Material and geometrical parameters

This section investigates the effect of changing the material to HDPE for the inner scissors that buckle during transformation and the variation of the square module's edge length and the height of the top center point. Fig. 9 shows the dominant impact of the HDPE inner scissors on the transformation response of the module. The peak force magnitude is roughly fifty-fold decreased as a result of the reduction of the elastic modulus of the inner scissors by a factor of 59.7, which clearly illustrates the nonlinear nature of the structural behavior during transformation. The eigenvalues of the module are reported in Tab. 2 and are 6.6 to 7 times lower than the pure Aluminum reference case. A variation of lesser degree in the natural frequencies than in the transformation peak force (both being related to stiffness quantities) can be explained partially by the decrease in the mass of the structure when changing the material pair that accompanies the decrease in the structural stiffness and in part by the difference between the linear modal analysis and the geometrically nonlinear transformation analysis 21 ACCEPTED MANUSCRIPT / CLEAN COPY assumptions.

The first two natural frequencies are the same, corresponding to similar bending vibration modes (around perpendicular axes x and y) and the third vibration mode is torsional, as for the pure Aluminum module. The choice of the material pair thus impacts significantly the transformation and vibrational behavior of the module, as expected, and could be used to target a desired range of natural frequencies. In view of the very low transformation forces that make the structure sensitive to self deployment from the folded configuration, the pure Aluminum structure is studied exclusively in the following.

The transformation load vs top center point displacement curves as a function of the edge length L and of the top center point height h are plotted in Fig. 11. The influence of the geometric parameters on the transformation of the module has been studied in [? ]. The present work focus on the influence of these parameters on the modal analysis of the structure and its link with the transformation peak load. Reducing the edge length leads to shorter inner scissor length and therefore a higher peak force required for their buckling, as it can be observed on Fig. 11a. Halving the edge length results in an increase of 200% in the peak load, while a 50% increase in L roughly halves it. When h is decreased, the magnitude of the geometrical incompatibility also reduces, which was shown to have a dominant effect on the transformation behavior in [? ]. This trend is confirmed in Fig. 11b,i the edge length to half results in a 3.4 to 3.8 times increase in the first three natural frequencies, while increasing its value by 1.5 gives natural frequencies that are 41% to 46% of the ones of the reference case; these trends are in line with the one observed for the peak transformation load. Considering the magnitude of these variations, a special attention is thus required when the edge length of such a square bistable module is modified in the design, potentially requiring recomputing not only its transformation but also its dynamic behavior.

An interesting phenomena occurs when h equals 0.325 m, as shown in Fig. 12a: at this geometry the three first natural frequencies become the same, which from a practical point of view means that the three first vibration modes are excited simultaneously by a harmonic load at 3.7 Hz. This design should be avoided, because it could induce internal resonance and thereby large magnitude vibrations [? ? ? ]. It is noteworthy that for h < 0.325 the order of the vibration modes changes, i.e. the torsional vibration mode is first followed by the two bending modes of equal natural frequencies (Tab. 3). Fig. 12a shows the highly nonlinear evolution of the natural frequencies as a function of h exhibiting an abrupt change below 0.37 m and a smooth evolution above. It is emphasized that even though the variation of h, induces a small relative variation in the natural frequencies, it should not be disregarded in a rigorous design approach, since it also impacts the eigenmode order and hence the dynamic structural behavior. The observed small sensitivity of the natural frequencies accompanied by a substantial variation of the transformation peak force can be explained by the different phenomena governing these quantities: structural stiffness in the deployed state and buckling during the transformation, respectively.

23 ACCEPTED MANUSCRIPT / CLEAN COPY h[m] L[m] f [Hz] 0.
The findings above illustrate the complex nonlinear nature of the dynamic behavior of bistable deployable structures and how natural frequencies of such BDS can be adjusted by varying two geometrical parameters of the design, e.g.

decreasing the edge length increases the natural frequencies.
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Finite stiffness joints and imperfect member length

The positive influence of having compliant joints in bistable deployable structures in order to decrease the impact of imperfections on the transformation For the sake of completeness, the transformation force vs top center point displacement curves for soft and hard joints (as defined in Sec. 2.1.1) are compared to the reference case with rigid joints in Fig. 13. It is clearly apparent that incorporating compliance in the hinges is beneficial, since it results in the reduction of the peak transformation load, while the shape of the curve and the part in the negative force range remain practically the same. This implies that additionally to compensating for manufacturing imperfections in the transformation behavior, employing compliant hinges is a practically relevant way in a design for decreasing the force required for transforming BDS without changing the global nature of the curve (as opposed to the top center point height in Fig. 11).

Considering the natural frequencies, a logical decreasing trend is observed in Tab. 4 when the hinge compliance is increased. The natural frequencies of the soft joint case are 74% to 77% of the rigid case (for a peak force decrease of around 68%), which is a moderate variation when compared to the dominant effect of L (Sec. 3.1). It is noteworthy that no vibration mode order change was observed here.

In the following the coupled effect of manufacturing imperfections and joint
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ACCEPTED MANUSCRIPT / CLEAN COPY The findings above show that employing compliant hinges in BDS can be recommended as a practical means to (i) decrease the peak transformation force, (ii) manage the spurious effects of geometrical imperfections on the transformation behavior [? ], while (iii) maintaining a similar vibrational behavior than when using rigid hinges, only resulting in the decrease of the mean natural frequencies and in an expected increase in the variance in the results when the hinge stiffness is decreased.

Conclusions

A computational study was presented in which the natural frequencies and vibration modes of a single square BDS module were evaluated, incorporating the effects of the variation of particular design parameters (material choice, geo- 
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ACCEPTED MANUSCRIPT / CLEAN COPY vast majority of the cases. The torsional mode was observed to be similar to the deformation mode of the structure when transformation takes place and the inner scissors buckle. The first three natural frequencies of the pure Aluminum structure were found between 2 Hz and 5 Hz. The study allowed to identify the dominant influence of the material pair choice for inner and outer scissors and of the edge length of the square BDS module. The top center point height was observed to affect the natural frequencies to a lesser extent, however decreasing this parameter led to a reversal in the order of the vibration modes, i.e.

the torsional mode became the one with the lowest natural frequency. Incorporating finite joint stiffness led to the decrease of the natural frequencies, as expected. When it was coupled to taking geometric imperfections into account in a probabilistic approach, it resulted in a larger variance in the results, while maintaining a dynamic response similar to the reference case with rigid hinges.

The presented results illustrate the complex nonlinear nature of the dynamic behavior of bistable deployable structures and show how their natural frequencies can be adjusted by making practical design choices. Incorporating compliant hinges in the design can be clearly recommended, since (i) it was shown to compensate for manufacturing imperfections in the transformation behavior, (ii) it is a practically relevant way in a design for decreasing the force required for transforming BDS, while (iii) resulting in a moderate decrease in the natural frequencies and keeping a dynamic behavior similar to the one for rigid hinges.

Examples of realistic hinges incorporating two bushings for BDS were presented and the procedure to derive the corresponding hinge FE stiffness was explained.

Another practical recommendation is to pay a special attention to the edge length variation in iterative BDS design, potentially requiring recomputing not only the transformation but also the dynamic behavior. 

Figure 1 :

 1 Figure 1: The studied bistable deployable square module in the deployed (a) and in the folded (b) states.

Figure 2 :

 2 Figure 2: Three dimensional view of the embedded deformable hinge in a single scissor showing the cutting plane (a) in which the details of the proposed technological solution are sketched with the bushings shown in light blue (b).

  established in the literature. The expressions from[? ] and [? ] serve in this work to obtain the single bushing radial and tilting stiffness, using E bushing = 0.8 GPa [? ]. The inner and outer diameters are D in = 0.01 m and D out = 0.03 m and D in = 0.02 m and D out = 0.03 m, with a bushing width of w s = 0.01 m for the soft and hard bushings, respectively. The resulting soft and hard single bushing radial and tilting stiffness values are obtained as K r = 3.96 × 10 7 N/m and K t = 9.40 × 10 2 N m/rad and K r = 1.87 × 10 8 N/m and K t = 4.20 × 10 3 N m/rad, respectively. The compliant bushings are spaced by a distance e s = 0.004 m (Fig. 2), corresponding to the beams interdistance.

Figure 3 :

 3 Figure 3: Allowed deformation modes of a single deformable bushing.

Figure 4 :

 4 Figure 4: Assumed deformations of the hinge composed of two compliant bushings for shearing load (a) and for a tilting/torsion moment (b).

Figure 5 :

 5 Figure 5: Rigid pin in the deformable hinge of a single beam-beam or beam-hub connection and the associated joint FE and its axis.

Figure 6 :

 6 Figure 6: Force and moment free body diagram of the deformable hinge for shear and torsion loads.

ACCEPTEDFigure 7 :

 7 Figure 7: Joint finite element procedure.

  depends on the system degrees of freedom d and so incorporates the effects of internal stresses generated by the gravity load and by initial imperfections. In the present work it's assumed that the damping characteristics of the system are of traditional Aluminum structures (around 1.5% of the critical damping [? ]) and therefore having a negligible influence on the natural frequencies of the deployable module. The routine employed to solve the generalized eigenvalue problem in Eq. (13) is dsygv provided in the classical numerical library Lapack [? ]. The term K m (d) corresponds to the material stiffness (depending on the displacements because of the geometrically nonlinear corotational formulation employed here), while K g (d) incorporates internal stress induced stiffness, often referred to as geometric stiffness in the literature [? ? ]:

  bistable module are shown in Fig. 8, where a diagonal cut plane (CT -T -B -CB) is shown. In the subsequent parametric study the thickness of the module (H = 0.40 m) and the hubs size (r = 0.05 m) are kept constant, while the edge length L and top center point height h are varied. The considered boundary condition is setting all degrees of freedom of the bottom central point (CB) to zero, as often applied in transformation simulations [? ? ]. Note that establishing more realistic support conditions to mimic the effect of other neighboring modules in a modular structure (e.g. by adding an equivalent stiffness along the square edges) is part of future work. When the transformation of the module is studied, four horizontal transformation forces are applied on the top nodes of the module in a direction along the square diagonals. In the figures reporting transformation load vs displacement data the magnitude of a single diagonal transformation force F is plotted as a function of the top center point's (CT) vertical displacement w, systematically.The reference case is defined as a single square module excluding geometric imperfections, made entirely of Aluminum (specific mass 2700 kg / m 3 , elastic modulus 70 GPa) with rigid joints, i.e. sufficiently high stiffness to concentrate the deformation in the scissors only, while ensuring that no numerical ill-conditioning appears. The relative variation in the modal analysis results (e.g. natural frequencies) as a consequence of the variation of different model parameters is measured against this case (which corresponds to the design stud-

Figure 8 :

 8 Figure 8: Half-diagonal plane cut of the studied square BDS and corresponding geometric variables.

Figure 9 :

 9 Figure 9: Transformation load vs displacement curves for different material pairs.

Figure 10 :

 10 Figure 10: Top view of the first three vibration modes of the module in the deployed state.
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 11 Figure 11: Transformation load vs displacement curves for different geometrical parameters.

Figure 12 :

 12 Figure 12: First three natural frequencies of the module as a function of different geometrical parameters.
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 13 Figure 13: Transformation load vs displacement curves for different hinge stiffness.
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  metric parameters, finite joint stiffness) and manufacturing imperfections. The first three vibration modes were two bending and a third torsional mode in the 28

Figure 14 :

 14 Figure 14: Probability distribution of the natural frequencies of the first three vibration modes when incorporating random member length imperfections for different hinge stiffness.

Table 1 :

 1 Reference model parameters.

Table 2 :

 2 First three natural frequencies of the structure built from different material pairs.

Table 3 :

 3 First three natural frequencies of the module for different values of the edge length L and of the top center point height h.

	250 1.00	2.89	3.81	3.81
	0.325 1.00	3.66	3.66	3.73
	0.500 1.00	3.16	3.16	5.02
	0.500 0.50 12.17 12.17 17.35
	0.500 1.50	1.29	1.29	2.32

Table 4 :

 4 First three natural frequencies of the module for different hinge stiffness.stiffness on the first three natural frequencies of the BDS module in the deployed state are focused upon. The study is performed in a stochastic framework, considering the length of every beam in the structure as random variable with a uniform distribution. The range of these geometric imperfections in the uniform PDF is chosen to be -0.1 % and +0.1 %, similar to[? ]. They are incorporated as fictitious thermal strains resulting in internal stresses in a preliminary step to the modal decomposition, as explained in Sec. 2. For achieving statistical representativity a total of 50.000 simulations were run for each studied case, i.e.

	Hinge	f [Hz]
	Rigid 3.18 3.18 5.02
	Hard 2.52 2.52 4.15
	Soft	2.35 2.35 3.90

Table 5 :

 5 Statistical data on the first three natural frequencies of the module for different hinge stiffness.

  The present work leaves of course space for future improvement. Note that 30 ACCEPTED MANUSCRIPT / CLEAN COPY establishing more realistic support conditions in the modal analysis to mimic the effect of other neighboring modules in a modular structure (e.g. by adding an equivalent stiffness) is part of future work, as well as considering larger, multimodular structures. The present work focuses on a pure numerical approach for obtaining the modal properties of the system (natural frequencies and vibration modes) yielding results of practical interest, that could indeed be verified and coupled to an experimental study in a future work. Addressing the transformation (deployment) behavior of BDS, incorporating friction as energy dissipation mechanism is also part of future work of immediate interest. For this, a full nonlinear dynamic analysis is required and the effects of snap-through and instabilities, present in bistable deployable structures, must be investigated.
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