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Abstract

In this paper, we revisit the concentration inequalities for the supremum of the cumulative distribution
function (CDF) of a real-valued continuous distribution as established by Dvoretzky, Kiefer, Wolfowitz and
revisited later by Massart in in two seminal papers. We focus on the concentration of the local supremum
over a sub-interval, rather than on the full domain. That is, denoting U the CDF of the uniform distribution
over [0, 1] and U, its empirical version built from n samples, we study IP’( SUPyefu,a) Un(u)—U(u) > 5) for
different values of u, @ € [0, 1]. Such local controls naturally appear for instance when studying estimation
error of spectral risk-measures (such as the conditional value at risk), where [u, ] is typically [0, a] or
[1 — o, 1] for a risk level a, after reshaping the CDF F of the considered distribution into U by the general
inverse transform F'~!. Extending a proof technique from Smirnov, we provide exact expressions of the local
quantities P(supuemﬁ] Un(u) — U(u) > s) and P(supuemyﬂ] U(u) — Up(u) > 5) for each n, e, u, u.
Interestingly these quantities, seen as a function of ¢, can be easily inverted numerically into functions of
the probability level 4. Although not explicit, they can be computed and tabulated. We plot such expressions

log(1/4)

and compare them to the classical bound 4/ === provided by Massart inequality. We then provide an

application of such result to the control of generic functional of the CDF, motivated by the case of the
conditional value at risk. Last, we extend the local concentration results holding individually for each n to
time-uniform concentration inequalities holding simultaneously for all n, revisiting a reflection inequality
by James, which is of independent interest for the study of sequential decision making strategies.
Keywords: Cumulative Distribution Function; Concentration inequalities; DKW; Risk measure.

1. Introduction

Let X be a real-valued random variable. The cumulative distribution function (CDF) F', that associates to
each = € R the quantity F'(x) = P(X < x) has been at the heart of statistics since its early ages, as F' charac-
terizes the law of X. The quantile function Q(9) = inf{z € R : F(z) > J} enables to simulate the random

variable, since X £ Q(Y), where Y is uniform on [0, 1]. More generally one can reduce the study of the
supremum of F,,(x) — F'(x) over a set X', where F, is the empirical version of F' built from 7 i.i.d. samples
of a distribution with CDF F’ to the supremum of U,,(u) — U(u) over its image F'(X'), where U denotes the
CDF of the uniform distribution on [0, 1] and U,, denotes its empirical version built from 7 i.i.d. samples.
The CDF is at the heart of the Glivenko-Cantelli theorem — sometimes called the fundamental theorem of
statistics — that states that P(lim,,_,oc sup,cg |Fn(z) — F(z)| = 0) = 1. This result led to the definition of
P-Glivenko-Cantelli classes of functions F, for which 7}1_%10 sup |P,(f) — P(f)| — 0 almost surely, where
feF

P(f) = E[f(X)] denotes the measure associated to the random variable X, and P,, denotes the empirical
measure built from n i.i.d. samples. This definition had a prominent role in the development of function
process theory as Glivenko-Cantelli theorem shows that the class of functions F = {z — I{zx < t} : teR}
is an example being P-Glivenko-Cantelli for all probability measure P on R, which opened the quest for
other such classes. While Glivenko-Cantelli classes are nice, great efforts have been put on obtaining not
only asymptotic results but further understand the speed of convergence of the supremum towards 0. One
important part of the literature focuses on Donsker classes where the supremum of /n(F,(z) — F(x)) is
studied as a random process (See [8], wrongly extended by [4] but later corrected; we refer the interested



reader to [2], [12], [5] or [14] for further details and overview of the field). An alternative approach to this
prolific field of research is the one proposed by Dvoretzky—Kiefer—Wolfowitz in their seminal paper [6] that
looks at deviation inequalities of the supremum process for each n. The initial result from [6] is based on
an exact derivation from [15], and shows that

IP’( sup Up(u) —U(u) > z-:) < Ce 2
u€(0,1]

hence providing an exponentially decreasing upper bound on the deviation probability, yet for some unspec-
ified constant C'. In a seminal paper, [11] later showed that the result holds for the constant C' = 1 provided
that e~2n=* < 1 /2, and that this constant cannot be improved. Such a result is especially interesting as it
enables the practitioner to derive tight confidence bands on CDF. Indeed, it can be used to show that for any
d € [0,0.5], with probability higher than 1 — §, uniformly for all z € R, then

Fo(r) —e < F(z) < Fp(x) + ¢ wheree = logéi/&)'

Risk-aversion estimation One important example of application of CDF deviation inequalities is when
considering spectral risk-measures, such as the Conditional Value At Risk (CVAR) that is popular in econ-
omy (See [10, 13]). The definition of the CVaR changes from author to author, depending on conventions,
such as whether it applies to a non-negative or non-positive random variable, and whether the risk corre-
sponds to the upper or lower tail. We choose below a non-negative random variable with focus on its lower
tail for this short presentation. While CVaR at risk level o € [0, 1] is classically defined as an optimiza-
tion (see Section 4 for more details), when the CDF F’ of the considered random variable is a continuous
bijection, it takes the following convenient form

CVaRL(v) = E, [X‘X < xa(u)] _ éE[X]I{X <Fa()}] :é [ max(a—F(@).0)da.

where we introduced the (upper) Value at Risk Z,,(v) = inf{z € R : F(x) > «}. In particular the CVaR
writes as a function of the CDF in the form CVaR] (v) = hT(fX g (F(x))dx), where h" and ¢" are

known monotonic functions. Further ¢"(3) = (a — )+ has support [0, &) that is a strict subset of [0, 1]
for < 1, and « is typically small (e.g. @ = 0.01,a = 0.05). This property is actually not limited
to the CVaR risk-measure (see e.g. spectral risk-measures [1]) and suggests to focus on controlling the
local deviations of the CDF in order to later control the risk-measure. Note also that since in this case
SUPge(0,3.(v)] Fn(T) — F(2) £ SUPyc(0,0] Un(u) — U(u) and « is given by the practitioner, controlling the
local supremum for the uniform distribution ensures a control for any unknown distribution. Hence, such
results are universal in a sense, which is especially interesting when the class of distributions generating the
samples is unknown to the practitioner.

Outline and contribution The purpose of this work is not to greatly extend the vast literature on function
process theory, but rather to focus specifically on the local control of the CDF concentration. Namely, we
ask how to revisit the initial results from Smirnov in the case when the supremum is not considered on R but
on a sub-interval X'. Obviously the results by DKW and Massart already apply to yield confidence bands in
such cases. However, making use of the existing bound to uniformly control the deviations on a set X that is
“small” may result in unnecessary large confidence bands that may be concerning for the practitioner. In this
article, extending the proof techniques from [15], we derive in Section 2 exact expressions for the quantities

IF’( SUPyefum Un(u) —U(u) > 5) (see Theorem 3) and P( SUPyefum U(w) — Un(u) > 5) (see Theorem 4)
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for any n € N;e > 0 and u,u € [0,1]. This derivation, up to our knowledge, is (perhaps surprisingly)
novel. Interestingly, these probabilities, seen as functions of € can be inverted numerically, and directly
yield confidence bands on the CDF. In Section 3, we plot these functions and their inverse, which enables
to highlight their non-trivial behavior and compare them to the simplified bound obtained by application of
DKW and Massart bound. This also shows that deriving approximations of the exact quantities may not be
necessarily required for practical usage. Although these plots reveal the strikingly good match between the
simplified and exact bound when considering the full interval [0, 1], which is expected since the constant
C = 1 obtained by Massart cannot be improved, they also reveal the conservative nature of the simplified
bounds when considering a supremum over a sub-interval of the form [0, a] or [1 — «, 1] for small values of
a. We believe making use of the exact bounds may thus greatly impact the practitioner interested in tight
bounds. To provide greater perspective, in Section 4, we quickly detail the case of the risk-measure known
as Conditional Value At Risk. In Section 5, we finally describe a generic way to turn the concentration
bounds of Section 2, valid with high probability for each n € N, into concentration bounds that are time-
uniform, that is, valid with high probability simultaneously for all » € N. This extension is not trivial as it
seems difficult to make use of Doob’s maximal inequality in this context, hence we describe an alternative
way to derive such results that is of independent interest.
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2. Local CDF concentration

For a distribution v with CDF F', we denote by F;, the empirical CDF built from a sample of size n from v.
We consider distributions with continuous CDF in the sequel. Since the uniform distribution on [0, 1] plays
a special role, we denote its CDF by U and empirical CDF with a sample of size n by U,,.

Let us first recall the result obtained by Massart’s version of DKW inequality from [11].

log(1/4,
Yoy €1[0,0.5) IP’< sup F(x) — F,(x) > og(/o)> < do.
TEX 2n

Yoy €10,0.5) IP’(sup F,(z) — F(z) > log(l/éo)) < do-
TEX 2n

We now introduce the following closely related quantities on which we shall focus

Sum(me) = P( sup Un(u) = Uu) > ) epm(n,d) = inf{e : dz(n,e) < 0}

u€[u,u]

5[%5] (n,e) = IP( sup U(u) — Uy(u) > 5) Efug)(n,6) = inf{e : S[Eﬂ](n,e) <6}

u€[u,u]

Since in general, Uy, (u) # —Upn(1 — u), then 6, 7)(n, €) is in general different from S[Qﬂ} (n,e). Also, since
U, — U is right continuous with a left limit, but U — U, is left continuous with a right limit, the supremum of
these functions have different behavior. In particular, the following result, whose proof is immediate given
this observation, shows that considering the second supremum should be considered with care.

Lemma 1 (Asymmetry) On the one hand, the value of the optimization problem sup,c(, 3] Up(u) — Ul(u)
is achieved at one of the points v = uy,) or at v = «, where (U(k))ke[n] are the order samples received from
the uniform distribution, such that 0 < u() < ... < U@, < 1.

sup Up(u) — U(u) = max {Un(v) —U(v) :v € {a} U{ug@y, -, um)} N [a,ﬁ]} .
u€[of]

On the other hand, the value of the optimization problem sup,,c(o 5 U(u) — Uy (u) is not realized at
any point, but can be approached from below when approaching some of the v = u ) or point v = j3 from
below.

sup U(u) — Up(u) = max{ lim  U(u) — Up(u) 1 v € {B} U{uqy, ., um} N (a,ﬁ]}

ue[a,ﬁ] U—v,u<v

To complement this lemma, let us recall that sup,¢(o,5 Un(u) — U(u) and sup,cp—g,1-a) U(u) — Un(u)
should have the same law. Nevertheless, we now provide the following result that gives a first explicit ex-
pression of 0, 7 and 6 [u,u]- For the second quantity, we make use of a construction inspired from Skorokhod
convergence since the considered function is not corlol (continuous on the right with a limit on the left).

Lemma 2 (Exact CDF concentration) Let U denote the CDF of a random variable uniformly distributed
on [0,1] (that is, U(x) = z). Let U, denote the empirical CDF built from n i.i.d. samples from this
distribution. Let us introduce the following notation I (z;aq, .. .,ar) = ffl f;; . f;:_l dty ...dty, for all



0.05

0.05 -
0.00 -
0.00 -
—0.05 1

~0.05 A ~0.10 1

_0.104 —0.15 1

—0.20 1
—0.15 1

—0.254

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Illustration of the random function u +— Uy, (u) —u (left) and u — u— U, (u) (right) using n = 15.

keNyandx > a1 > ... > ar, € R, and Iy(z;0) = 1. Let o, B be such that [, 3] C [0,1], € > 0 and
n € N. Then it holds

Tlo,e—1
n\ o
IP’( sup Up(u) —U(u) > 8) = Z (6) Zﬁaf!fe(l;ﬂl,a, o Bee) s

nge—l

P( sup U(u) — Up(u) > 5) =
ue[‘%ﬂ} /=0

(]

ny\ .,— ~ ~
(£>o¢?+f’€€!1g(l; Qle,..-Oyg).

where we introduced f, . = min(8,(n—k+1)/n—¢), 3 =1—-0, &y =min(l —a,1 —e—(k—1)/n)
aswellasna . = [n(l —a—¢€)] andng. = [n(B —¢)].

Sketch of proof of Lemma 2  We provide below a sketch of proof of the key steps leading to the control
of sup,¢(q, ) Un(u) — U(u) in Lemma 2. The full proof is detailed in and deferred to Appendix A. This
enables to highlight the main ingredients of the proof, and in particular the smart use of a generic Taylor
expansion by Smirnov, that we reuse in order to prove this novel result.

The first step of the proof consists in showing that

IF’( sup Up(u) —U(u) < 5)
u€[of]

if uy, € th >k _
— n!/.../H{O<u1<...un<1;Vk6[n], 1 ui € o f] ek 2 T }dul...dun.
ifk>n(e+a) thena ¢ [ug, uki1)

The second step enables to simplify the expression, leading, after careful rewriting, to

1 rty tnge—1
IP’( sup Up(u) — U(u) < 5) = n!/ / / It (tha . )dtm, .. . .dty,
1 B2 Bra,e

u€[a,f]

k

where Ji.(z) = %7, B = min(3, (n — k+1)/n —¢) and g . = [n(1 — € — a)].



At this point, the key trick, originating from [15], is to make use of the following variant of the Taylor
expansion at multiple points aq, ag, . . ., of the value of a smooth function f at point x, given by
k
fl) = fla)+ >

T rh te—1
f(g)(aé-i-l)/ / / dt
=1 a1 Jaz ak
x t1 th—k—1
a1 Jaz an—k

applied to the function f(z) = z™. This enables to rewrite the multiple integral in explicit terms. After
some careful computations, this yields the desired result.

n—k—1

Explicit local CDF concentration In this section, we now detail the computations of the multiple integrals
Iy appearing in Lemma 2. Theorem 3 and Theorem 4 below constitute the main results of this paper, as they
provide the exact value of 6, (1, €) and 6, ) (1, €). The full proof is deferred to Appendix A.

Theorem 3 (Exact Left-CDF concentration) Let U denote the CDF of a random variable uniformly dis-
tributed on [0, 1] (that is, U(x) = x). Let Uy, denote the empirical CDF built from n i.i.d. samples from
this distribution. Let «, 8 be such that [o, 5] C [0,1], ¢ > 0and n € N. Let g = [n(1 — o — €)], then
ng =n(l — B —¢) and m = min{|ng| + 1,Mq — 1}. It holds when ng > 0,

P sup Un(u) ~ U() > <) = ij (Z) (min {1—2—5,6})H(1 - B)*
=0

u€la,f]

(200G RO (5 ]

(Using the convention that Z is 0 if 1 > j for both sums.) If, on the other hand ng < 0, then
=i

Tla,e—1 3
P( sup Un(u)—U(u)>5) = Z <Z>(1—ﬁ—5)n_€€(fl+€)g 1.

Theorem 4 (Exact Right-CDF concentration) Let U denote the CDF of a random variable uniformly dis-
tributed on [0, 1] (that is, U(x) = x). Let U,, denote the empirical CDF built from n i.i.d. samples from this
distribution. Let cv, 8 be such that o, 3] C [0,1], e > 0andn € N. Let g, = [n(B —¢)], nq = n(a—e¢),
and finally m = min{|n.| + 1,723, — 1}. Then, when ny > 0

IP( sup U(u) — Up(u) > 5) = i <Z> (min {1—%—5, l—a})n_eo/

SO S0

On the other hand, when n., < 0, it holds

P<u2}i},}m U(u) — Up(u) > 5) - 670 <2)<1_i_5>"4[5(£+5>f—1] .



Remark 5 (Left-Right tails) Interestingly, note that it holds 5[2@] (n,€) = (1,1 (N, €). This should not
be surprising since Sup,,c(q. g Un(u) — U(u) and sup,cp_g1-q) U(u) — Up(u) indeed have the same law.
Also we have the trivial bound sup,¢ o g Un(u)—U(u) € [=B,1-al, as well as sup,¢ (4 5 U(u)—Up(u) €
[a—1, B]. Hence §j, g)(n,¢) = 0fore >1— aand 5[a75](n,5) =0fore > .

Corollary 6 (Exact concentration in specific cases) Ifc < 1 — q, then

[n(l—a—<)]-1
Y/ =1 /n {N\
P(uzl[g)u Up(u) —U(u) > 5) = g 6(5—#6) <£> <1_€_ﬁ> .

Now, if e < 1, then for m = min{|ng| + 1, [n(8 —¢)] — 1},

]P’( sup Up(u) — U(u) > 5) = zm: (Z) <min {1_£_€75}>n—€(1 - B)f
-0

ue[ovﬂ} Y4
[n(1—e)]-1

) n 1 m—1 . 51
= 2 (05 G X ()5 e
Pl n n . n 7 n
If B > ¢, then

(g oo-vo>9 =" 5 ()01 6]

=0

Now, ife < 1, form = min{|[n,| + 1, [n(l —¢)] — 1},

(s 000~ 000> ) = 3 (1) (min {1 L < 1-a}) o

u€la,1] —0
[n(1—e)]-1 n 1 w1 . =1
n 14 14 na—Jj | (O\[({—1a\
= 2 @U0-) G+ 0E) )
{=m+1 7=0
Proof of Corollary 6:

In case 3 = 1,then ng = —ne < 0 and o = [n(1 — o — €)]. This yields the first equality. In case
a=0ande < 1,thenng = n(l — f —¢) and o = [n(1 — €)], which yields the second result. We
proceed similarly for the right-tail inequality. U

The previous result shows that for the global concentration ([u,u] = [0, 1]), we recover the classical
DKW derivation. Indeed, from Corollary 6, we get the following expressions

[n(1—€)]-1
n Y/ 1 AN =4
IP’( sup Up(u) —U(u) > 6) = Z <€)€<n+6) (1_€_ﬁ>
u€[071} =0
[n(1-e)]—-1 -1 nt
n ¢ 14
IP’( sup U(u) — Up(u) >€> = Z <£>€<n+€> <1—n—5> ,
u€(0,1] =0



while, on the other hand, from [15, eq.(50) p.9], we get the following equivalent expression

n—1 n , ¢ / n—t—1
P( sup Un(u)—U(u)>e> = 1-¢)"+ Z ( >s<—5> <1——|—5>

u€l(0,1] (={ne)+1 14 n n
N O
Z el ——¢ I1——+e¢

l n n

l=|ne|+1
—|ne]-1

() G
= Z ell———¢ —+4¢ .
l n n
(=0
Now, Theorem 3,4 and Corollary 6 provide a detailed control of the CDF concentration over arbitrary
intervals [«, 5] of [0,1]. As we detail in Section 4, this is of special interest when « and 3 are risk-levels

and one is interested in functionals of the CDF such as the conditional value at risk or more generic risk
measures, since in that case « and /3 are known and specified by the practitioner.

3. Numerical illustration of the bounds

In this section, we provide a numerical illustration of the concentration bounds provided in Theorem 3 and
Theorem 4. This is made possible thanks to the fact the functions 4, 7 and dy, 7 are fully explicit although
with fairly complicated expressions. We illustrate these functions as well as their inverse in this section in
order to provide intuition and also to show that they can be easily computed. We thus humbly suggest the
practitioner to make use of the quantity €[, z)(n, 0) instead of the approximation y/log(1/d)/2n suggested
by DKW and Massart. Indeed, this approximation is primarily interesting for large values of n in order to get
an idea of the scaling of the bound. However, for small values of n, this approximation can be detrimental.

In Figure 2, we plot & — d,, 7)(n, ) for various intervals [u, %], and in Figure 3, we plot e — 5[%@} (n,e).
The plots highlight the non-trivial behavior of these functions, especially for small values of n, having
plateaus, abrupt changes and non-linear behavior. These functions become smoother as n increases (which
is expected). Let us note the striking impact of changing [u, u] on the resulting function. In Appendix B,
we further provide in Figure 5 and Figure 6 a numerical comparison between the computation of the exact
probabilities from Theorem 3, and direct Monte Carlo simulations of the bound. The plots were obtained
using M = 10* simulations (we consider that the accuracy of such plots is hence good enough for values
not less than 10~3), and perfectly match the theoretical bounds, as expected.
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Figure 3: Plot of ¢ — & [u,a) (1, €) for various values of n and interval [u, 1].
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In Figure 4, we plot the inverse function § — [, z)(n,0) as well as the explicit approximation given
by Massart of the inverse probability function £ ;) for comparison. More precisely, we plot e(n,d) =

%, 1}, simply called “DKW” in the plots (let us recall this function is only shown to control

the deviations provided that § € [0, 0.5), but this does not prevent us from plotting it for [0, 1]). From the
perspective of confidence bands, we believe that this function is the most interesting to plot, as it shows the
exact magnitude of the estimation errors, and as such are not improvable. The plots confirm that the Massart
bound is a valid upper bound on the exact probability functions, as can be seen by comparing in each plot the
curve called DKW with the one obtained for the full set [0, 1]. On the other hand, we also observe that this
convenient but simplified bound can be quite conservative when considering a local supremum as opposed
to a supremum over [0, 1]. Also, the plots confirm that a simple expression cannot be obtained to accurately
describe the behavior of e[, 7. The simplified bound provided by Massart is in this sense an especially
convenient tool to trade-off accuracy and simplicity of the expression. However, we recommend using the
exact bounds out of tightness, especially when the number of considered samples n is small. Indeed in that
case, the numerical cost of computing the exact bound should not be high.

min {

Interestingly, we remark that a computation of e, 7 and €, 7 can be achieved numerically (hence,
yielding the different plots) and readily translates into confidence bands over the local supremum deviation,
offering tighter bounds for the practitioner. The computation of €[, ) can further be done simply, e.g. by
dichotomous search, in an efficient way up to a desired precision 7. For instance Figure 4 has been obtained
using precision 7 = 10~7. We believe this is a key point, as it indicates one can use such bounds in various
applications, at a controlled computational cost. Note also that one can tabulate this function off-line, which
is convenient for applications involving sequential decisions with increasingly many observations.

For ease of use, we provide for the interested reader the implementation details in the gitlab repository
that is available at https://gitlab.inria.fr/omaillar/article-companion/—-/tree/
master/2020-1local-dkw. In order to avoid some numerical instabilities, the code uses a simple trick
to replace expressions such as ¥ by exp(¢log(x)). It also enables to reproduce all the plots displayed in
the different figures of this article. Further, we provided a method to tabulate the inverse functions e, 7 and
€[u,z) for any given sub-interval of [0, 1], number of observations 7 and given probability level §, which we
believe to be useful for the practitioner.
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4. Application to the CVAR and other functionals of the CDF

In this section, we first introduce some background material and intuition about the risk measure known as
the conditional value-at-risk (CVaR). For a probability distribution » € P(X) taking values in X C R, let
[E, denote its expectation operator and F' : x — P, (X < x) its Cumulative Distribution Function (CDF).
Given «, chosen by the practitioner, one may want to measure a risk using E, [X|X < z,] for some z, € X
such that F'(z,) = « in case X is a variable we want to maximize (reward), or E,[X|X > z,] for some
x,, € X such that F'(z,) = k in case X is a variable we want to minimize (loss). Unfortunately, when F’
is not continuously increasing, the points x, x,, may not exist. This is typically the case when v = v, is
the empirical distribution built from n observation. One way to overcome this problem is to introduce the

Left Tail Conditional Expectation LTCE,(v) = E, [X

X < xa(u)] together with the upper Value at Risk

ZTo(v) = inf{z € R : F(x) > «a}, or the Right Tail Conditional Expectation RTCE, () = E, [X‘X >

xﬂ(y)] together with the lower Value at Risk z,.(v) = inf{z € R : F(z) > x}. Unfortunately, since in

general F(T,(v)) > F(z,(v)) > « without equality, this makes such quantities difficult to interpret. The
idea behind the classical definition of the CVaR is hence to interpolate between the values of F' around «,
using the following! optimization problems ([13])

1 1
CVaR[ (v) = i}ég {QE[min(X—x,O)] + a:} , cvart (v) = ;rel]% {a: + T

E[max(X —z, O)}} .
Let X be a non negative random variable upper bounded by 7 for which F' is increasing and continuous.
Then the following is known (see e.g. [1], or [16]; we reproduce this result in Appendix C for completeness)

Proposition 7 (CVaR to CDF reduction) The quantity z,.(v) is a solution to the CVaRf; optimization prob-
lem, and the following rewriting holds

1 T

cvarl(v) = iﬂiy (X1 >2,(0)] = RrCE, (1) =7 [ (P(a) =)o
CVar (1) = éEV [X1{X <70()}] = TTCE () = é /0 (o~ Fla)).dz.

In particular the CVaR writes as a function of the CDF in the form CVaR[,(rv) = h" ( v g (F (x))dm),

where h" and ¢" are monotonic functions. Further ¢" () = (o — )+ has support [0, «) that is a strict subset
of [0, 1] for @ < 1. This property is actually not limited to the CVaR and allows to focus on controlling the
deviations of the CDF to later control the risk-measure. Indeed, one can then build the confidence bands

CVaRZj:“S = hr(/ 9" (Fu(z) £ ep,01(n, 5))da:> :
” X

Functional of the CDF We now present a generalization of this procedure to other functionals of the
CDE. In the sequel, we let S; = {a = (agy...,ag),p = 0 < a1 < -+ < ay = 1} denote the
set of increasing sequences partitioning the interval [0, 1] into J segments. Further, for 5 € S;, we let

Sk(B)=qae€Sk:Tky <k, - <ky s.tag; = Bj ¢. We now introduce a definition for convenience.

1. the superscript r stands for rewards, and ¢ for losses
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Definition 8 (Locally right-Lipschitz function) A function ¢ is locally lower-right-Lipschitz if it satisfies

IJEN,BESLER]Yje{l,..., Iy € [Bj_1,Bj], Ve>0, ?y) _f(y+€) <.

A function @ is locally upper-left-Lipschitz if it satisfies

IJEN,BESLER]Vje{l,..., Iy € [Bj_1,Bj], Ve>0, So(y_ei_""(y) <.

For illustration, let us remark that CvaR’(v) = [, ¢(F(z))dz with p(y) = 1 — (%) . This non-
increasing function is locally upper—left Llpschltz with J = 2, 8 = (0,k,1) and ¢ = (0, ﬁ) On the
other hand, CVaR,(v) = [, ¢(F(x))dz with ¢(y) = (O‘*y) This non-increasing function is locally

«
lower-right Lipschitz Wlth J=23=(0,a,1)and ¢ = (1,

0). This motivates the following result.

Theorem 9 (Functional of continuous CDF deviation) For a distribution on X with continuous CDF F,

let 1 = [ @(F(x))dx, where @ is assumed to be a known, non-increasing function. Forany K € N,a € Sy,
and all 5, € [0,1],k € {1,..., K} it holds that

K 1 Top R K

( < / + F +€[ak7ak+l](n75k)>> < Z(Sk ,
. k}:{l

( > Z / ( (.Z‘) - S[ak,ak+1](na 5/{:))) < Z Ok ,
k=0 k=1

where x,, = inf{x € R: F(z) > H}. Further, when @ is locally lower-right Lipschitz with known (J, 3, ()
and the quantile function k — x,, is y-Lipschitz, then if o € Sk (B), the following holds

kj—1

J
]P’(u < /Xgo(Fn(a:))da: — Zﬁj Z V(1 — )€y ap 1] (M Ok) > Z(Sk

j=1  k=k;j_,
If instead ¢ is locally upper-left Lipschitz with known (J, 8, £) and o € S (B), then

kj—1

7
P(M > / o(Fn(z))dz + Zej Z (k11 — k)€ [y, ap,1) (1) Ok) ) Z5k
X

j=1  k=k;_,

We only stated the result for a non-increasing function . Alternative results for a non-decreasing function
and corresponding upper-right or lower-left assumptions can be derived too.

Proof of Theorem 9:

Indeed, first, using the definition of  an the monotony of ¢, it holds for all « € Sk ()

o= E:l Bais go(ﬁn(x) + F(x) — ﬁn(x)>d:n

WV

Loy ~ ~
/ rH go(Fn(z) + sup F(x) — n(x))dx
z T, STLT,
k=0 " oy g 41
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~

Now, using that sup, <,<, F(z)— F,(z) £ SUPq, <u<ap,, U(0) — Uy (u), we get that
Zay, £ IUX

gy
r K-l oo ~ .
+1
T / @(Fn(az) + sup Uu)— Un(u))dac
k=0 Y Zay QUSSR
K=1 4
Sap4 ~ B
= / SO( n($) +€[Oék7ak+1](n75k)>dx-
k=0 Y Zay

where the last inequality holds on an event of probability higher than 1 — ) le 1. Last, using the local
Lipschitz property, we get

J k;].,l

P(u < /Xw(ﬁn(x)) - Zﬁj Z (Zay —x%)g[ak’akﬂ](n,(gk)) <

j=1  k=k;_,

O -

gl

We conclude using the assumption that F' has «-Lipshitz quantile function. ([

5. Time-uniform concentration inequalities

In this section, we now provide an extension of the previous result and focus on the number of samples n.
The previous result provide a confidence bound valid with high probability for each n. In some situations,
one way want to have a high probability control valid simultaneously for all n in a given range, or even
simultaneously all n € N. In order to derive such bounds, classical techniques consists of using (1) a
union bound argument, (2) a geometric time-peeling argument together with Doob’s maximal inequality for
sub-martingales, or (3) a method of mixture (Laplace method) for specific distributions. These techniques
lead to different bounds, the union bound technique being the simplest yet yielding the largest time-uniform
confidence bands. In the following, we provide a version of the geometric time-peeling argument for the
control of the supremum CDEF. One difficulty is that a Martingale cannot be easily built in this case, and
hence we replace the use of Doob’s maximal inequality with a weaker reflection inequality that can be
traced back at least to [7].

We first show below a slight extension of [14, Inequality 13.2.1] (the result from [14] itself originates
from, and slightly extends that of [7]). The proof of this result easily follows by looking at inequality (a) p.
513 in the proof of [14, Inequality 13.2.1] and thus is not reproduced here.

Lemma 10 (Reflection inequality) Ler > 1, A\ > 0 and then u,u € [0,1]. Let c € (0,1) be such that
2y2
% Z SUP,clu,] x(1 — x) for some C > 1 Then, for all integers ni,ny €N such that ny < nm,

it holds

]P’( max  sup ﬁ(Un(x)—U(x)> >)\> < cp( sup M(UNQ(x)—U(x)) > }A)

TISNSN2 pefu, 7] w€[u,m] n

]P’( max  sup \/E(U(x)—Un(x)) >)\> < C]P’( sup \/@(U(x)—Um(a:)) > }A)

NISNSN2 gy 7] z€[u,T) n

We deduce from this key result the following maximal inequality
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Corollary 11 (Maximal inequality) Let n>1, C > 1, u,u € [0, 1] then ¢ = sup ¢,z (1 — z). For any

n1,no € N such that ng <nny and for any € > 0 such that € > (%‘Z_(?S}l)l, it comes

IP’( max sup Uy(z)-U(z) > 5) < C[P( sup U, (z ) > \/> Cq n—1) )) _
NISNSN2 gy ) o€, 27 - 1 nl
1
IP’( max  sup U(z)—Un(x)>5> < C[p)< sup U(x) >\/7 C'q77 )))
MSNSN2 g fu,7] z€[u,q] nan —1)m

Proof of Corollary 11:

3

First, we successively derive

IP( max  sup Un(:r)—U(x)>5> < IP( max  sup ﬁ(Un(x)—U(x)>>s>

ni<nNEng z€[u,T] ni<NEnN2 z€fua] VT

- 1@( max  sup ﬁ(Un(x)—U(x))>me>

nI<NEN2 € [u,T]

< OIP’(le[i;?u] \/772<Un2(x) - U(x)) > ﬁsc) .

Note that in the first line, we considered the event that sup, Uy, (z) — U (x) > 0. Indeed the complementary
event does not intersect the event of interest. Now, we choose for ¢ € (0, 1) the maximal value such

C—1)(1—c)?e> . A/ C(n-1) . 1
that % > SUPgefym ¢(1 — ), thatis ¢ = 1 — ﬁ, provided that (C("I))q < e.
Reorganizing the terms yields the conclusion. We proceed similarly for the second inequality. ([

We are now ready to prove Theorem 12. To this end, we combine Corollary 11 together with the local
DKW inequality, on top of the standard geometric time-peeling technique.

Theorem 12 (Time-Uniform local DKW inequality) Ler n € N, and consider any random stopping time
Ny, a.s. upper-bounded by n. Let us introduce a function e}, z) such that

Voe(0,1),VneN, IP’( sup Upn(r) —U(z) > pum (n, 5)) <9.

€ [u,u]

Then for all n > 1, for all 6,, € (0, 1), and C > 1, it holds

nfs[uu< H‘WCQ + CC_lqn(n—nD <6,

(log(n)

IP( sup Un, (x)=U(z) >
log(n)

z€(u,T] Ny, (n 1) {

Likewise, if €[, ) controls supyc, 7 U(z) — Un(2), a similar inequality holds replacing Uy (z) — U (z) with
U(x) — Un(x) and e m) with €[y, z)-

Corollary 13 (Time-Uniform global DKW inequality) In particular for [u,u] = [0, 1], choosing C' = 2,
and using that ¢ < 1/4 it comes Yo € (0,0.5),

P(ﬁfu Uni(2) =U(@) > 5 - i=1)) [U%Og (“2% §> " n(n_l)D <0
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Corollary 13 is stated for convenience, to show an explicit formula that can be used to control uniform
deviations uniformly over time. This result should be compared to the term y/log(1/9)/2n obtained for a
single n by application of Massart’s inequality. Note the loglog(n) scaling, compared to the log(n) term
one would obtain from a simple union bound.

Proof of Theorem 12:

Let us introduce t; = |n*|, fork = 0,..., K with K = [loi(z)] (thus n < tg), for some constant

log(n)
1 > 1. Let also € be a non-increasing positive function on R, to be defined later.

IP’( sup Uy, (z) — U(z) > s(Nn)>

z€u,u]

< iﬂ”(ﬂt € [t ti—1] : sup (Ut@:) —U(x)) >5(t)>

k=1 o€ [u,u]

K
S F Up(z) -U > ety — 1

; <te[tflii—1} le[zpu}< +(z) (@) (tk ))

K

lk—1 Cq(n—1)

< P o RN )

;C <w:1[fu} (Vuerte) - V(@) > (tk—l)n(g(tk ) (C—l)tk71>

In order to make use of local DKW inequality, let us choose the function ¢ such that

th—1 Cq(n—1)

m<8(tk_l) B m) > epm(te—1,01) -

Indeed, this ensures by local DKW inequality that, provided that d; € (0, 1),

K
P( sup (UNn(m) - U(:c)) > E(Nn)> < ZCdk,
] k=1

z€[uu

and assuming C' > 1, we can further choose §;, = §/(CK) for 6 € (0,1). That is, we want

<\/m<€[u7u} (tk—l, CLK) + Cc_lq(n—l)>

e(ty—1) =

1
Vi1

We now use the fact that
=1 = [l =1<n =1 = [y (0 = [ -1
<t + (n—1).

Hence, we conclude the proof by choosing the function

) = o= (Vi )+ gy a-)
1 ) C
= \/m(n\/ig[u,u} (t, C’K) + C_1q77(77_1)) .

17



An application to the cumulative control of sequential deviations Using Theorem 12, we deduce the
following control, together with tuning recommendations for the practitioner.

Corollary 14 (Time uniform cumulative error control) Let ¢ = sup,¢p,m ©(1 — x). Let (n:); be a de-
creasing sequence converging to 1, and (6); C (0, 1). Then, it holds

;T;P( sup Un,(v) —=U(z) > Nt—l(nt—l)[nt Nie (Nt,5t) + Qqnt(nt—l)}>

z€[u,u]
T
log(t) 1
< 2 ot
tzl {log(nt) t

1

In particular, provided that (a) log(n;)~! = O(log®(t)) for some o < 1, choosing &; such that log(t)*8; =
O(1/t) ensures that the right hand side term is o(log(T")). This quantity is also

o(log(T)) for(b) n = JC(th)(:)_l and 0y = exp(—f(t)) wheref(t) = log(t) + £ loglog(t) with & > 2.
[ log(t) | =1 )
<1 for(c) &= Log(m)-‘ 29(0) where tz:; m < 1 provided that §; < 1

Remark 15 The tuning of n, using f(t) is the one suggested in [3] for the tuning of the KL—UCB algorithm,
and this is the one we suggest using in practice. In the last case c), the condition §; < 1 constrains the
choice of 1y that cannot be too small. In particular, it cannot converge too fast towards 1. Some classical
choice for g include g(t) = 3t3/2, g(t) = t(t + 1) or g(t) = (t + 1)log?(t + 1)/ log(2). See Appendix D
for other possible choices for g.

Remark 16 For comparison, note that a union bound argument yields the alternative bound
T
ZP( sup Uy (2) — U(2) > epug (Ve 50 ) Ztah

which suggests choosing e.g. 0; = (tg(t))~1. A classical choice is e.g. §(t) = (t*(t + 1))~ !

Proof of Corollary 14:

We apply Theorem 12 with C' = 2 in order to get the claimed inequality.

The first claim follows from the fact that Ltogg(gt))-‘ 8 = Ot tlog(t)'t*=2) = o(t~!) under the

considered assumption.
Regarding the second claim, for the choice 7, = £ (t()J)rl and 0; = exp(—f(t)) where f(t) = log(t) +
¢ loglog(t), we obtain that

Z [lg)gg((;j) -‘ 0 = e Z tlog15(t) “OgQ(t) + ¢ log(t) loglog(t)]

1 log log(t) 1
oS ey e 5 s
't logt~%(t) tlogt (1) tlog®(t)

Hence, provided that & > 2, this sum is o(log(7")). The last claim is direct; note that the condition ¢; < 1
constrains the choice of admissible 7. O
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Appendix A. Proofs of the main results

Proof of Lemma 2:

We let [n] = {1,...,n} foralln € N,.
Left tail, step 1 Let first recall the following remark by Smirnov [15, p.10], showing thatif u(q), ..., u(y)
denotes the order samples received from the uniform distribution, then

P( sup Up(u) —u<e) = ]P’(Vk: €nl, Unlug) —¢ < u(k))
u€(0,1]

= ]P’(W{:E[n], k/n—e<u<k))
= n!/.../H{Ogulé...ungl;Vk,ukZk‘/n—e}dul...dun. (1

When restricting the supremum to [« /3], this equality needs to be modified. First of all, it holds that

sup U,(u) —u = max {Un(v) —v:v € {afU{uny,. ., up N [a,ﬁ]} .
u€la,f]
Hence, we deduce that

{ sup U, (u) —uge}

u€la,f]

- N {U(k) € 0.8 = Un(u(k))—agu(k)}ﬂ{Un(a)<5+a}

k€(n]
= {u(k) €la,B] = k/n—e< u(k)} n { > Hugy < a} < n(€+a)}
keln] k=1

= ﬂ {u(k) € la,f] = k/n—séu(k)}ﬂ{u(k) <a<Upqy = k/n<z~:+a},
keln]

where we introduced the term U(ns1) = 1 in the last line and used that £ + o > 0 to exclude the term
u(g) = 0. Using the distribution of the order statistics, we deduce that

IP( sup Up(u) —U(u) < 5)
u€la,f]

if th >k _
:n!/.../H{Ogulé...unél;Vke[n}, %uke[a,ﬂ] el = ™€ }dul...dun.
ifk>n(e+a) then o ¢ [uk, ukt1)

Left tail, step 2 Following [15], we introduce the notation t;, = w,_k1, constant v, = (n — k +
1)/n — € (non-negative for k < n — |en]) as well as Sy = min(y, ). We thus have the following
rewriting

{t €10,1] :if t € [a, B] then t > yk} = [0,a] U [min(yk, £),1] = [0,a] U [B, 1],
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which further reduces to [0, 1] when v, < o. Welet ng . = n(l—e—a), g,e = [na,| and remark that
Ve < aiff bk > ng e+ 1. Also, 7, < avas soon as k > T, .. Let us also note that n — k+ 1 > n(e + «) iff
k < nge+1,and that 7, ¢ < 1 + 1. This means in particular that if £ > 7, - + 1, then both conditions
in the integral vanish (so contribute to 1 in the integral).

P( sup Up(u) —U(u) < 5)
u€lo,f]

_ n!/.../n{ogtng...t1<1;Vke[n],tke[o,a]u[ﬁk,1],Vk<na,g,a¢[tk,tk1)}dtn...dt1

= n!/.../]I{Ogtna,ag...tlgl;

Vk éﬁa’g, tk € [O, ()Z]U[Bk,l] and « ¢ [tk, tk_l)}Jn%a,a(tnayg)dtna,g' .. dtl 5

where we integrated out all terms for & > 7, . into the short-hand notation Ji(z) = ’”k—lf In the integral,
we note that if ¢z < «, then so must be all terms ¢ for &’ > k.

We now proceed with integration. Starting with ¢, we see that if ¢; < «, then this implies « € [t1, tg].
Hence, the corresponding terms are 0, and it remains to integrate ¢; on («, 1], that is on [y, 1].

Regarding to, if to < o < t1, this contradicts « ¢ [t2, t1], hence it remains it remains to integrate to on
(o, 1], that is on [32, 1]. Proceeding similarly, for all k& < 72, . we obtain that

1t trg.e—1
IP’( sup Up(u) — U(u) < 5) = n!/ / / In—tta.. (thg o )dlz, .. . dty.
1Y B2 Bria,e

u€|a, )
In order to compute the multiple integral, similarly to [15], we make use of the following variant of the
Taylor expansion

n—k—1
=

x t1 to_1
f@) = fla)+ > f(@(am)/ / / dt, ... dt;

1

z lp—k—1
+/ / . / f(nik) (tn—k)dtl coodty, g,
ay Jaz An—k

which, using the [; notation, yields the following form

T rt tn—k—1 n—k—1
/ / / PO b )dty - dt g = [@) = fla) = S fO(ar) (i an, . ar).
a1 Jaz an—k —

1

This is applied to the function f(z) = 2", k = n — 7. Indeed, we then get f(" %) (z) = T =

nlg™ Mo

r = nlJ, g5, (). This in turns yields

(n—Ta,e)!
Na.e—1
P( sup U (u)—U(u)<£) — 18— Z gt B )
uelof] S (n— o
Na,e—1
nY\ ,p_
= 1- Z <€>B[+1€€'IZ(1’BD/B€))



using the convention that Iy(z; ) = 1. This completes the proof regarding the left tail concentration.
Right tail We proceed similarly for the right tail. First, using our notation we note that

sup U(u) — Up(u) = max{ lim  U(u) — Un(u) :v € {BYU{uqay, -, um N (a,ﬁ]}

ue[a,ﬁ] Uu—v;u<v

To be more precise, we let (1) e[ > 0 be arbitrary small constants. We also let o < minc[,,) 7% and
define 7 = maxj[,) 7. We further introduce, for each k € [n], u(_k) such that u) —n = u( k) < U(k)s and
B~ such that 8 — g = 5~ < B. Then, we introduce the notation
s[apﬁ] U(u) — Up(u) = max {U(v) —Un(v) v € {B7}U{uy, -y upy N (a,ﬁ]} .
u€|a,

Before proceeding, we note that Vn € N, limz_,o IP’(rnlnke n] Uy — U(k—1) > N,) = 1 Indeed, it holds

P(greu[rrll]u(k)—u(k NS 77k) = P(E”fe U(k _u(k:fl)\nk)
< P(Fij € nli<j, |Xi— X;| <)
n(n

< ><\X1 X| < 7) = n(n — 1)7.

In the following, we use a construction similar to that of [9] for Skorokhod convergence. Note that under
the event that €2, = { MiNg ey Uk) — Uk—1) > nk} (where gy = 0) we have the following rewriting

{ sip u— Un(u) < 6}
u€la,f]

= [ {u(’” €lonfl = “(kz>—5<Un(u@)}ﬂ{ﬂ‘—ngnw—)}

keln|

- Dl = et (St <5200 -9)
ke(n] —

— ﬂ {u(_k)e[a,ﬂ] = ugy—€ < (k—l)/n} N {u(k_1)<5—<u(k) e (h—1)/n > B‘—s}.
ke(n]

In the last line, we used that 5~ = 3 — ng and 79 < minge,) 7k to rewrite Y ) T{ugy < B}, in terms
of u(ry < B~ <u(pu). Then we shifted k£ by 1, and used the fact that 5 < 1 implies 1 > 8~ — € in order to
exclude the term u(, 1) = 1.

Welet 3 =1—8,&d =1—a, 7 = 1 — u and introduce for all k¥ the constant pr =1—e—k/n
(non-negative for all k < n(1 — ¢) as well as &, = min(pg_1,&). We also let Bt =1-p5". Finally, we
let 7, <p 7,1 if and only if 7 + mx < T_1. Using the distribution of the order statistics together with

these notations,we then naturally study the quantity limz_,o P ( SUPyefa,g Ul(u) — Un(u) < 5) where

IF’”( sup U(u) — Up(u) < 5) = IP’( stip U(u) —Up(u) <en Qn)

u€[a,f] u€|a, 8]
ifu- h —gﬂ
= nl/ /{ —up <1;Vk€n], 1 u, €l f] then ty, S e }dul...dun.
ifk—1<n(f™—¢e) then S~ ¢ [ug_1, ug)
if ;7 €[, a then 7,7 > pj,_
= n!/../ﬂ{0<7n<n...7'1<11;‘v’k‘€[n], 1 7 €16,4] N T ZPk-1 }dTn...dTl.
ifk—1<n(f~—e) then 8% ¢&[r, Th_1)
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Now, [0, 5]U[min(py_1, @), 1] reduces to [0, 1] when py_1 < 3. Weletng. = n(f—¢),fig. = [np.]
and remark that p;_1 < B iff £ —1 > ng.. We first deal with the case when ng. € N. In this situation,
provided that 7o is sufficiently small, then ng- . = ng. = ng. and also, k — 1 < ng- . iff £ < ng- ..
If £ > ng,, then pp_1 < /3 and both restrictions disappear in the integral. In the general situation when
nge ¢ N, then g, > ng. and ng- . = ng.. Also, k —1 < ng- . iff k < ng- .. If k > ng, then
Ph—1 < /3 and again restrictions disappear in the integral. We deduce that provided that 7 is sufficiently
small,

IF’”( sup U(u) — Up(u) < 6>
u€la,f]

= n!/. . ./]I{Oém <p...m<11;Vke[n], 7 €[0, B U [, 1],Vk<ﬁﬁ_’g,5+ ¢ [Tk,Tk_l)}dTn coodm

= n'/ . ‘/]I{Ongﬁ,s<nﬁ,s Lo <11

Vk<Tig., 7 €0, BU[ag, 1] and B¢ [Tk,’rkl)} Jg—ﬁg (g )Ty, - dT1,

™

‘ml

We now proceed with integration. Starting with 71, we see that if 7 < ﬁ then this implies ﬁ € [11,70)-
The case when 5* > 19 = 1, thatis 8~ < 0 is excluded by the assumption that 5 > 0. Hence, this in
turns implies B+ € [r1,70), provided that 79 < 19 — B B. Since this event is excluded by the indicator
function, the corresponding terms are 0, and it remains to integrate 71 on ( 8, 1], thatis on [&q, 1]. Regarding
To, if T < 6 < 71, this contradicts 5+ ¢ [72,71), hence it remains to integrate 75 on (B+, 1], that is on
[G2, 1]. We proceed similarly for all k& < 72,,.. We obtain that for 77 sufficiently small,

Pn(uzgﬁ U(u) — Un(u) < a)

Tnﬁgfl
= nl// / I3 0< Ty <mg, -1 <11 pJ)_ Rige (Trg. )Ty, . dT1.
a1J a2 QA

Now, we remark that limz .o H{0<¢n5,€<nﬁ,s T < 1} = H{Ogrnﬁ,sg LTS 1}, and so

where we integrated out all terms for k& > Tig . in the term J;}, (), that satisfies limg_,o Ji)(z) =

=0 N ugla,f]

L pmy Tig e —1
lim ]P’"( sup U(u) — Up(u) < 6) = n![ /~ /~ In-ng . (Tng . )dTn, .- .dT1
a1 as Gmg

In order to compute the multiple integral, we resort to a Taylor expansion as for the Left tail, and
deduce that

nge—1

n
lim P7( s Uw)—Up(u)y<e) = 1-— arinr(; e, . .. .
g <) < 1= E (it

It remains to note that limgz_,q IF’( sup”
thus

u€la,f] U(u) o Un(u) sen Q%) < hmﬁ%OP(Q%> = 0, and

lim IP’( sip Ul(u) — Un(u)> = lim JP’( sip U(u) — Un(u) N Qn)
7—0 u€la,f] n—0 u€la,f]
= lim P”( sup U(u) — Up(u) < E) .
=0 Nugla,fl
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This shows that the limit of ]P’(supu clof] U(u) — Un(u)> indeed exists and hence gives the value of

P(supue[a’m U(u) — Un(u))
(]

Proof of Theorem 3:

We now compute for £ > 1 the quantity

Ie(:f:;ﬁl,...,ﬂz):/‘:/ﬂz /ﬁtel

We further let ng = n(1 — 8 — ¢€), ng = [ng] and note that 8 = min((n — k + 1)/n — ¢, 8) is equal to
Biff k < ng+ 1. Also, B;, = 3 as soon as k < ng+ 1 Last, 3 = (n—k+1)/n—e.

Case 1 When ng < 0, then 3, = -y, for all £ > 1. In this case, since 75 — 74,1 = —1/n, we deduce
that

15(1;617"'7/85) = 15(1;715"'7/-”)

(1= =y +/m)!
/! ’

and hence since y; =1 —¢,and 41 =1 —¥¢/n — ¢,
Tlae—1
_ \ n =t -1
P(uszm Un(u) — Ulu) < 5) - 1- ; <£> ((1 —t/n— 5) —a >€(6+€/n)

Case 2 We now consider the general case when ng > 0. For instance if ng > 0 but ng = 0 (that is,
0 < ng < 1), then, we deduce that 3, = ;, for all £ > 2, while 3, = 3. Hence, we deduce that

[ dtr = (1-p) ife=1
f/; Ip_1(t1;y2, ... ye)dty if 0> 1.

Likewise, when ng = 1, then we deduce that Br. = i for all k > 3, while 81 = B2 = 3, and so

12(1;51,---,512)_{

_gy¢ _
L(1:Br, .., Be) = fﬂlft gttty dty = U if0<2
‘fIB f IZ 2 ng+1a7nﬁ+2,---7’7€)dt2dt1 lf£> 2.

More generally, for a generic ng > 0, we deduce (using the convention that ¢y = 1) that

L

J5 3 jtf Vdty. .. dty = U5 if 6 <ng+1
1 t1 tn .
fﬁ f/j fﬁ A Ig_ﬂﬁ_l(tﬂﬁ+1§’}/@ﬁ+2,...,Vg)dtﬂﬁ_H...dtl if ¢ > ng +1.

IZ(13517~--7/8€):{

Further, since v — v~ = —1/n for all ¢, and introducing {3 = ¢ — ng — 1 we also have (see [15])

(t - Vﬂﬂ+2)(t - r}/ﬂ,@‘i’Q + gﬁ/n)ZE_l

7
(t=B+Cp)% 1(t=B+Cp)e !
75! N (o1

If[g (tv Vﬂﬁ+27 e 774)
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where in the second line, we also introduced Cy, = 8—"n +2+{g/n = (B+¢) — (n—{)/n. In particular,
Cps = (£ —np)/n > 0for £ > ngz + 1. From this expression, we deduce that if £ > ngz + 1, then

Lot tug (tn,+1 —ﬁ+Ce )%
IZ(l;/Bla...aﬁﬁ) = / / / £ ' e dtﬂﬁ+1...dt1

t tag (tn 41— B+ Cpy)!
i
—— dty, coodty .
/ / / (L5 —1)! gt O

In order to compute both terms, we use the following inequality for given &, ¢, C,

/ /t1 /tk b = ﬁ—i_C) dtgqq ... dty
/ /tl'”/tk 1 tk _ﬁ+c)€+1 " 1 Cﬁ—i—l / /tl /tk 1
s Js s ((+1)! o (C+1)!

t1 tp—j—1 tk _ 5+C)E+j+1 C€+j+1 C£+1
= dtv_ . .. dtj———— B, . —..—— B
/ / / (L+7+1)! k- g (1) "
B — B+ )tk zk: CHI+L (1= gYk—
N (€+k+ 1)! C+5+10! (k—j)!

Jj=

Hence, we deduce that

(1= B+Cp)etmett
I (1; 81, ...y = - =

(1—B+ Gyt
(s +ng)!

n lg+j+1 . n 4 j .
B iﬁ ng J (1 o B)Qﬂ*] N l i Ceg"'] (1 _ B)ngfj
o+ 7+ 1! (25— ) 5+ ) ()"

[1—ﬁ+CzB 1:|(1—ﬁ+053)2_1

1 n (¢ —1)!
n l—ng+j—1 .
_i[ Cos 1] Co, (1 gymo
= l—ng+j n](l—-ng+j—1! (ng—j)

After reorganizing the terms, and remarking that Cp, = b — 1+ ¢ +{/n = (£ — ng)/n, we obtain that
then if ¢ > ng+ 1, then

_ C 1[l4ne J(@ne)tt K[ f—ng ((€=ng)/n)ne (1—g)ns
I { iy i = T W e i ey i v

_ €<f/nze>f g_llznﬁ J( .>(e—nn5>f‘j‘1<1_5)j

- T b i () () Ty

J=0

26



Combining all steps together, we deduce thatif ng > 0 and [ng| + 1 < 7q — 1, then

ﬂg'ﬁ‘l

IP’( sup Un(u)—U(u)<£) =1- Z ( >ﬁg+1( - B)
u€[a,f] £=0
Na,e—1 n—~{ /-1
— " 1—6—&?) €<€+€>
Z—%—ﬂ <€> < n n
Ta,e—1

-2 00 RO 0w

where B = min((n — k +1)/n — £,0), Mo e = [n(1 — a —€)] ng = [n(1 — B — ¢)]. Introducing the
term mg = min{ |ng| + 1,7, — 1}, we get more generally when ng > 0,

IP’( sup Up(u) —U(u) < s) =1- % <Z> (min {1—2—875»”—6(1 - B)
=0

u€[a,f]

Na,e—1

2 00 R O )

(= m/;-l—l

Proof of Lemma 4:

We let@ =1-p,&a=1—a, 7, =1 — uy and consider for all k the constant p, = 1 — & — k/n (non-
negative for all k < n(1 — ). We recall that & = min(pg_1,&).Welet nge = n(B —¢€), g = [nge|
and remark that p;, < ﬁ iff k > ng.. Also, pp, < B assoonas k — 1> ng..

We now compute the quantity

te—1
Ij(z;a,. .., 0 / / / dty...dty,
ay Jao Gy

where @, = min(pg_1, &@). We further let ng = n(a — €), n, = |nq| and note that & = min(l — ¢ —
(k—1)/n,&) is equal to & iff k < ng + 1. Also, &, = & as soonas k < ng + 1.

Case 1 When ng < 0, then &y, = pg_1 forall & > 1. In this case, since p — px—1 = —1/n, we deduce
that
I@(l;&lr'w&f) = If(l;p()r'wpéfl)
(L =po)(1 = po+/n)!
N 1l ’

and hence since pg = 1 — e, and py = 1 — {/n — ¢, it comes

nge—1

]P’( sup U(u) — Up(u) > E) = Z <Z> (1 - 2 — E)n_gg(g + £)€—1 '
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Case 2 We now consider the general case when ns; > 0. For instance if ng > 0 but n; = 0 (that is,
0 < ng < 1), then, we deduce that &, = pg_1 for all k > 2, while &; = &. Hence, we deduce that

[Ydt =1 -a) ife=1
f; Ip_1(ti;p1,y. ..y pe—r)dty if€>1.

Li(La,...,00) = {

Likewise, when n; = 1, then we deduce that & = pg_; forall £ > 3, while &1 = &ia = &, and so

S f e ar, ey = 050" i <2

Li(L;aq,...,40) = ]
f; fél Ig_g(t@&-H; Prs+1s--- ,pg_l)dtgdtl if 6 > 2.

More generally, for a generic n; > 0, we deduce (using the convention that £y = 1) that

1 pt to_ 1-a&)¢ .

I(1; 64 ay) = Jo Ja o J& ldtf"'dtlz% ifl <ng+1
) gy 1 n~ .

5 ff o J3 T 1 (b 15 P15 - - oy Pr—1)dbn 1. dby AL > 41

Further, since py — py—1 = —1/n for all £, and introducing {5 = ¢ — n; — 1 we also have (see [15])

(t - pﬂ&Jrl)(t — Png+1 T Ea/n)éd_l
IZd(t; Pgd+1,...,pg_1) = o
&l

(t —a+Cp,)la
£5!

(t —a+ Cyp,)lat
(lz -1l

1
n

where in the second line, we also introduced Cy, = & — pp_+1 +4a/n= (1 —a+¢e)— (n—£)/n.
In particular, it holds that Cy, = (¢ — ng)/n > 0 for £ > ng + 1. From this expression, we deduce
that if £ > ns; + 1, then

- - bon tns (tn, 11 — &+ Cy,)'s
L(L; ... ap) = / / / st /-1 —dtp 1. .dl
& ;i a

a a
1t ta (tny 11— @+ Cpy)'s!
—— — < dty,. 1+1...dt1.
n/ / / (a—1)! et

Hence, we deduce that

~ - (1—a+Cp)atnatl 1 (1—a+Cp )latna
Ip(1; = o _ a
o(L; 6,00, a) ot +1) W (0 tng)
3 R ) S A D
Uit G+ (g =) 2 ot ) (ng— )
1= a+Cy 1 (1—0&+Cga)€_1
B 14 n (-1
S G 1] G e
iz b—ng+j nl(l—ng+j—1! (ng—Jj)
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where we used that /5 +n; +1 = (. After reorganizing the terms, and remarking that Cp, = e —a+{/n =
(¢ — na)/n, we obtain that then if £ > n; + 1, then

f-ns  ]((E=ng)/m) 2t (1-G)2a
‘ 1}

l—ng+j (l—nzg+i—1!  (n5—7)

E—nn&>€—j—1(1_d)j£1! (j)

Combining all steps together, we deduce thatif n; > 0 and |ng| + 1 < 7fig. — 1, then

~—~
~
|
—_
\_/\_/
T
~
|
M\3
)
S|
| — |

. 5 1{/l+ne {/n—+e
I(1;a1,. .., G) = n[ —1](/

ﬂa+1
n\ ., .
]P’( sup Un(u)—U(u)<€) =1- Z <£> H_f(l @)
ue[a»ﬁ} /=0
(04 ()
- Z 1———¢ el —+e
Pty 14 n n
nge—1 n—0 Na . =1
n ¢ na—jl [\ [{—ng\ "’ Y
-2 () 20 e
l=nsz+2 7=0

where &y, = min((n — (kK —1))/n —¢,&), nge = [n(B —¢€)] ng = [n(a — ¢)]. Introducing the term
mg = min{|ns| + 1,7, — 1}, we get more generally when ng > 0,

IP’( sup Up(u) —U(u) < 5) =1- %li (Z) (min{l—é—s,dbn_é(l —a)’

T 00 RO o)
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Appendix B. Monte Carlo simulations of the confidence bounds

eps -> Pr( sup U_n-U > eps)

eps -> Pr( sup U_n-U > eps)

1071 4 1071 4
1073 4 1073 4
1075 1075
=@= MC [0.0,0.05], n=2 =@- [0.0,0.05], n=2
== MC [0.0,0.1], n=2 == [0.0,0.1], n=2
1077 4 == MC [0.0,0.2], n=2 1077 4 =4= [0.0,0.2], n=2
~{= MC[0.0,0.5], n=2 ~{= [0.0,0.5], n=2
=de=_MC [0.0,0.9], n=2 == [0.0,0.9], =2
=p= MC [0.0,1.0], n=2 =p= [0.0,1.0], n=2
1070 1 — - - - - 1070 — - - - - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1071 4 1071 4
1073 4 1073 4
1075 4 1075 4
=@= MC [0.0,0.05], n=5 =@- [0.0,0.05], n=5
== MC [0.0,0.1], n=5 == [0.0,0.1], =5
1077 { == MC[0.0,0.2], n=5 1077 4 == [0.0,0.2], n=5
== MC[0.0,0.5], n=5 == [0.0,0.5], n=5
=de=MC [0.0,0.9], n=5 == [0.0,0.9], =5
== MC [0.0,1.0], n=5 =p= [0.0,1.0], n=5
1072 +— . . . . . 1072 +— - - - - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
L L
107t 4 1071 4
1073 4 1073 4
[ ]
1075 A 1075 A
=@= MC[0.0,1.0], n=2 == [0.0,1.0], n=2
== MC[0.1,1.0], n=2 == [0.1,1.0], n=2
1077 A == MC [0.5,1.0], n=2 1077 A =§= [0.5,1.0], n=2
== MC [0.8,1.0], n=2 == [0.8,1.0], n=2
== MC [0.9,1.0], n=2 o= [0.9,1.0], n=2
=p== MC [0.95,1.0], n=2 =p= [0.95,1.0], n=2
1072 +— - = - - 1072 — - = - - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
10! 4 1071 4
1072 4 1072 4
P
1075 A 1075 4
=@= MC[0.0,1.0], n=5 =@= [0.0,1.0], n=5
== MC [0.1,1.0], n=5 == [0.1,1.0], n=5
1077 A =4§= MC [0.5,1.0], n=5 1077 A =§= [0.5,1.0], n=5
== MC[0.8,1.0], n=5 == [0.8,1.0], n=5
== MC [0.9,1.0], n=5 == [0.9,1.0], n=5
=p= MC [0.95,1.0], n=5 =p= [0.95,1.0], n=5
1070 — v L v v v 1070 +— v = v v -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: MCMC (left) versus Exact (Right) plot of & — 4,z (n,e) for various values of n and interval
[u, W] build from M = 10* replicate.
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eps -> Pr( sup U_n-U > eps)

eps -> Pr( sup U_n-U > eps)

== MC [0.0,0.05], n=10 == [0.0,0.05], n=10

101 4 =fe= MC [0.0,0.1], n=10 10711 == [0.0,0.1], =10
== MC[0.0,0.2], n=10 =4§= [0.0,0.2], n=10
== MC [0.0,0.5], n=10 == [0.0,0.5], n=10
=de= MC [0.0,0.9], n=10 == [0.0,0.9], n=10

10-3 4 =p= MC [0.0,1.0], n=10 10-3 1 =p= [0.0,1.0], n=10

p A >

1075 1075 4

1077 A 10-7 4

107° 1— T . ; 1079 1 i

107°

107 4
1073 4
1072 A
1077 4

0.0 0.2 014 016 0.8 1.0
eps -> Pr( sup U_n-U > eps)

=@= MC [0.0,0.05], n=100
=fe= MC [0.0,0.1], n=100
=§= MC [0.0,0.2], n=100
== MC [0.0,0.5], n=100
== MC [0.0,0.9], n=100
=P MC [0.0,1.0], n=100

0.0

0.2

0;4 0;6 0;8 1.0
eps -> Pr( sup U_n-U > eps)

=@~ [0.0,0.05], n=100
== [0.0,0.1], n=100
== [0.0,0.2], n=100
== [0.0,0.5], n=100
== [0.0,0.9], n=100
=p== [0.0,1.0], n=100

T T

0.0 0.2 0.4 0.6 0.8 1.0
eps -> Pr( sup U_n-U > eps)

10—1 B

103 4

107° 4

107

1070 - -
0.0 0.2 0.4

06 0.8 1.0
eps -> Pr( sup U_n-U > eps)

== MC [0.0,1.0], n=10 =@ [0.0,1.0], n=10

101 4 =fe= MC [0.1,1.0], n=10 10-1 4 == [0.1,1.0], n=10
== MC [0.5,1.0], n=10 == [0.5,1.0], n=10
~i= MC [0.8,1.0], n=10 == [0.8,1.0], n=10
=d=_MC [0.9,1.0], n=10 == [0.9,1.0], n=10

10-3 4 =p= MC [0.95,1.0], n=10 10-3 4 == [0.95,1.0], n=10

b

1075 A 1075 A

1077 A 1077 A

1072 +— - - 107° — v v

10-1 4

1073 4

1077 4

0.0 0.2 04 0.6 0.8 1.0
eps -> Pr( sup U_n-U > eps)

== MC [0.0,1.0], n=100
== MC [0.1,1.0], n=100
== MC [0.5,1.0], n=100
~f= MC [0.8,1.0], n=100
== MC [0.9,1.0], n=100
=== MC [0.95,1.0], n=100

0.0

0.2

04 0.6 0.8 1.0
eps -> Pr( sup U_n-U > eps)

~@- [0.0,1.0], n=100
= [0.1,1.0], n=100
=4= [0.5,1.0], n=100
~#5= [0.8,1.0], n=100
= [0.9,1.0], n=100
== [0.95,1.0], n=100

-
o
|
a
%

107°

1071 4
1073 4
1075 4
1077 4
T T T T T T 1070 +— T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: MCMC (left) versus Exact (Right) plot of ¢ — .5[%51 (n, £) for various values of 7 and interval
[u, W] build from M = 10* replicate.
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Appendix C. Technical details regarding the CVAR
Proposition 7 is a consequence of the following more general results.

Proposition 17 (Conditional value at risk) Any solution x* to the following problem

) 1
cvart (v) = i%%{gc + aE[maX(X—:E,O)]}

must satisfy 1 — a € [F(z*) — P(X = x*), F(z*)]. Further, it holds

cvart  (v) = ;<E [XH{X > x*}} + o (F(a:*) - (1—a))> .

Proof of Proposition 17:

Let us introduce the function H : x — z + éE[max(X —x,0)]. This is a convex function. Let
OH (z) denotes its subdifferential at point . In particular, for y € OH (z), we must have V', H(z') <
H(z) 4+ y(2' — z), and x is a minimum of H if 0 € JH (z). Using Minkowski set notations, we first have

OH(xz) = {1} + é@E[max(X—m, 0)],

hence we focus on computing OE[(X —x)I{X > x}]. To this end, we look at the y such that
ve',  E[(X -2 )[{X>2'}] > E[(X—2)[{X >z} +y(z' — )
ieVe, —(z—-2)E[{X>z}|+E[(X —2")([{X>2"} —[{X>z})] > y(a' —2)

Remarking that if z > 2/, then [{X > 2’} — [{X > 2} = I{X € (2/,]}, while if 2/ > =z then
H{X >z} —{X >z} = -I{X € (x,2']}, and reorganizing the terms, this means we must have

V' >z, —E[{X>z}] - E[g:?ﬂ{x e (z, Y] >y
W' <z —E[{X>z)] +E[<§:?H{X € (@ 2]} <y

Further, note that if 2’ > x, then (X,__wl)l X € (z,2]} € (-I{X € (z,2']},0], while if z > 2/, then
, X x
(f,fpz)ﬂ{X € («/,x]} € [-I{X € («/,z]},0). Hence, we deduce that such y must satisfy

inf —P(X>z)+P(X € (z,2]) 2y> sup —P(X>z)—P(X € (2/,2]).
'’ > ' <z
Hence, —-P(X >z) > y > —P(X > z), OE[(X —2)[{X > z}] C [-P(X > 2),-P(X > z)] =
[F(z) —1—P(X = x), F(x) — 1], from which we deduce that

OH(z) C | 2(F(z) — P(X =) — (1 — ), i(F@;) . a))} .

This means that a minimum z* of H should at least satisfy that 1 — « € [F(z*) —P(X = z*), F(z*)].
Finally, the value of the optimization is given by

* *

o+ éIE[X]I{X > 2"} - %(1—F(m*)) - éE XI{X > x*}} + % (F(x*) - (1—a)) .
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Proposition 18 (Expected shorfall) Any solution x* to the following problem

CVar (1) = sup{lE[min(X—:c,O)]+x}

z€R (&

must satisfy o € [F(x*) — P(X = o), F(z*)]. Further, it holds

CVar. (1) = ;(E [XI{X <} + (0= F(a") + P(X = x))> .

Proof of Proposition 18:

Let us introduce the function H : = +— éE[min(X —2,0)] + z. This is a concave function. Let
OH (x) denotes its subdifferential at point z. In particular, for y € OH (x), we must have V', H(z') >
H(z) + y(2' — x), and x is a minimum of H if 0 € OH (z). Using Minkowski set notations, we first have

OH () = é@E[min(X—x, 0)] + {1},

hence we focus on computing OE[(X —x)I{X <x}]. To this end, we look at the y such that
Vo', E[(X—-2){X<2'}] <E[(X—2)[{X<z}] +y(z' — )
ieVe, —(z—-2)E[{X<z}|+E[(X —2")([{X <2} —[{X<z})] < y(a' —x)

Remarking that if > 2/, then [{X < 2’} — {X < a2} = —I[{X € [2/,z)}, while if 2/ > « then
KX <2} —I{X <z} =I{X € [z,2)}, and reorganizing the terms, this means we must have

Vo' >a. —BIX <o)+ EE=DIx € o)) <
Ve <z,  —E[{X<z}] - E[(jj :“;)]I{X ez, x)}] >y

Further, note that if 2/ > x, then (X_wl)H{X € [z,2)} € (-I{X € [z,2)},0], while if x > 2/, then

' —x

(f,:m:;)}l{X € [2/,x)} € [-I{X € [2/,2)},0). Hence, we deduce that such y must satisfy

sup —P(X<z)-P(X € [r,2)) <y < inf —-P(X<z)+P(X € [2,x)).
o' > o' <z
Hence, -P(X < z) < y < —P(X <2), OE[(X —2)[{X <z}] C [-P(X < z),-P(X < 2)] =
[—F(z), —F(z) + P(X = z)], from which we deduce that

« «

OH (z) [1(—F(a:) ta), L (—F(z) + P(X = 2) + oz)] .

This means that a minimum z* of H should at least satisfy that « € [F(z*) — P(X = z*), F(z*)].
Finally, the value of the optimization is given by

S
*

o+ éE[X]I{X <o)~ T (FE) ~PX = %))

— éE XI{X <a*}| + %*( — F(a) + P(X =27)).
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Proposition 19 (Integrated and Optimization forms) Let X be a real-valued random variable with dis-
tribution v and CDF F. Let a,b € R be such that P,(a < X < b) = 1. Let o € [0,1] and x* be any
solution to the optimization problem CVaR:__,(v). Let (x;)icz denotes the discontinuity points of F (empty
when F' is continuous), and let k = 1—«. Then, if a > 0, the following rewriting holds
¢ I . a
Cvar,(v) = / [a — max (F(z)—k, F(x )—H)] dx + o
a

(0}

+$ > P(X =xi)[{xi>2"} + %*(F(QE*)_”) :
ieZ

In particular if X is continuous, a > 0 and b < oo, then

cvarl(v) = (b—a)— ;( / " ma(F () —r. 0)dz — a> .

Proof of Proposition 19:

Indeed, we first have that
1
cvarl(v) = = <IE [X]I{X > x*}] +a* (F(x*) . (@)) .

Now, if a > O then Y = X ]I{X > z*} is a non-negative random variable, hence we can use the following
rewriting E[Y’ fo dy =a+ f (Y > y)dy. Hence,

ElY] = a+/ab <X]I{X>x} >dx
- a—&—/ab]P’(X2x>]1{x>w*}—HF’<X>x*>]1{x<a:*}dx
b b
= a +/a (1—-F(z){x > 2"} + (1 — F(2")[{z < 2*}dx + /a P(X =2)[{z > 2"}

= a+/b1—F(x)H{a:>x*}—F(x*)]I{x *}d:v—i—Z]P’ zi) {x; > 2"}
, 1€EL

= a+/ 1 — max(F(z) d;U—I—ZIE” zi) {x; > 2™},
a 1€Z

where the last line is by monotony of F'. We conclude remarking that 1 — max(F'(z), F(z*)) = a —
max (F(z)—(k), F(z*)— (k). O

Proposition 20 (Integrated and Optimization forms) Let X be a real-valued random variable with dis-
tribution v and CDF F. Let a,b € R be such that P,(a < X < b) = 1. Let a € [0,1] and x* be any
solution to the optimization problem CVaR., (v). Let (x;)icz denotes the discontinuity points of F' (empty
when F is continuous). Then, if a > 0, the following rewriting holds

b
Cvar,(v) = ~ / (F(*) ~ F(a)) do+
+— Z =) <2} + %* (a —F(z*)+P(X = a:*)) )

ZGZ
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In particular if X is continuous, a > 0 and b < oo, then

b a
CVarT (1) = 1/(04—F(ac))+dx+a.

«

Proof of Proposition 20:

Indeed, we first have that
1 * * * *
CVaR” (1) = — (1[«: [X]I{X <z }} +a (a ~Fa")+PX =z )))
o

Now, if a > O then Y = X ]I{X < x*} is a non-negative random variable, hence we can use the following
rewriting E[Y fo y)dy = a + f (Y > y)dy. Hence,

E[Y] = a—|—/abP<XH{X<x*} >m)daz
= a+0X]I{a:}:c*}%—/ab]?(a:*>X>x>]1{x<:c*}dac
= a+ /ab(F(a:*) —P(X =2")— F(z) + P(X = 2))[{z < 2" }dx

b
= a+ / (F(z*) — F(x))ydx + z:(pZ —P(X =2")[{x; < 2*}.

1€Z
Hence, we deduce that
- 1P . a
CvaR,(v) = — [ (F(z*)—F(z))4dz+ —
a J, Q
1 *
=3 i = POX = 2 ) < @)+ (0= F(a*) + P(X = a%))

Appendix D. Other result

We provide below for the interested reader some examples of functions ¢ satisfying Z (i

Lemma 21 (Controlled sums) The following functions g satisfy Z (i

log? lo log lo 2
+ 9(t) =392 g(t) = t(t + 1), g(t) = I, glr) = (ARSI,

* Foreachm € N, gn(t)=Cp, (@@ (t)? H?L—ol @@(t), where f@ denotes the m-fold composition
of function f, log(t) = max{log(t), 1}, and we introduced the constants C; = 2 + log(2) + 1/e,

Cy = 2.03 + log(e® — 1) as well as C, = 2 + log (exp@(1)> form > 3.
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Proof of Lemma 21:

Note that @@(t) =1log@(t) for t > exp@ (1) and 1 else. Using that g(t) = C,, (@@(t))2 |y @@(t),
and that #— ——L— has derivative ¢ 1 , it comes

log® (t) (log® (1)) T ' log™t)
0 [exp® (1)]-1

Com 1

—_m 4 —
tz:; g(t tZ:; t t— feg@(lﬂ (10g®(t>)2 Hi:Ol logqt)

< 1+log (exp®@(1)]-1) +
1 n 1
(log® ([exp@(1)]))? T2 log X [exp@(1)1) 1og@((exp@(1)1)
1

= 2+log ([GXP@(lﬂ - 1) + I expm=(1)
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