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Abstract

Many model inversion problems occur in industry. These
problems consist in �nding the set of parameter values such that
a certain quantity of interest respects a constraint, for example
remains below a threshold. In general, the quantity of interest
is the output of a simulator, costly in computation time.

An e�ective way to solve this problem is to replace the sim-
ulator by a Gaussian process regression, with an experimental
design enriched sequentially with a well chosen acquisition cri-
terion. Di�erent inversion-adapted criteria exist such as the
Bichon (also known as Expected Feasibility Function) and de-
viation number criteria. There also exist a class of enrichment
strategies (Stepwise Uncertainty Reduction) which select the
next point by measuring the expected uncertainty reduction in-
duced by its selection.

In this paper we propose a SUR version of the Bichon crite-
rion. An explicit formulation of the criterion is given and test
comparisons show good performances on classical test functions.
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1 Introduction

Nowadays, many industrial issues are related to a problem of excursion set estimation for instance,
to �nd feasible solutions of complex optimal design problems. This problem consists in �nding, for
a given model, the set of input parameter values such that a quantity of interest de�ned from its
outputs respects a constraint, for example remains below a threshold. In general, the quantity of
interest is an output of a simulator, computationally expensive, which is often a black-box function.
The problem is also known as an inversion problem (Chevalier [2013]). For example, the application
to a vehicle pollution control system, allowing compliance with pollutant emission norms was studied
in El Amri et al. [2020].

An e�ective way to solve this kind of problems is to replace the costly black-box function of
interest by a surrogate model based on Gaussian process. This model is built thanks to a sequential
Design of Experiments (DoE), whose points are chosen accordingly to the optimization of an acqui-
sition criterion (see for example Bect et al. [2012] and Moustapha et al. [2021]). Acquisition criteria
suitable for inversion include: the deviation number denoted U (Echard et al. [2011]), the Bichon
criterion also known as Expected Feasibility Function (Bichon et al. [2008]), and the Ranjan criterion
(Ranjan et al. [2008]). These two last criteria are adaptations of the classical optimization-oriented
Expected Improvement criterion (Jones et al. [1998]) for excursion set estimation.

In addition, there is a more elaborate and in general more e�cient class of criteria that anticipate
the impact of adding new points to DoE: the SUR strategies, for Stepwise Uncertainty Reduction
(Bect et al. [2012]). For example, SUR strategies based on the volume of the excursion set can
be cited as particularly suitable for the inversion framework. It is shown in Bect et al. [2012] that
thoose SUR criteria provide better performances compared to direct criteria.

Chevalier [2013] introduced a SUR strategy based on Vorob'ev random set theory (Molchanov
[2005]), that goes beyond taking into account the volume of excursion sets like other SUR strategies.
However, we have noticed that SUR Vorob'ev criterion (SUR Vorob'ev) is not robust enough in
the sense that with a reasonnable number of simulations it sometimes misses some of connected
components of the set. Moreover, SUR Vorob'ev requires some approximations about the Vorob'ev
threshold. Therefore we propose to tackle these issues by a SUR version of the Bichon criterion (SUR
Bichon), which is easier to set up and more robust than SUR Vorob'ev. It should be noted that a
SUR version of the U criterion could not have been envisaged due its nature and its dependence on
the prediction mean.

This article is divided into three main sections. In section 2, the framework of excursion set
estimation is recalled. Details on the construction of the sequential DoE based on Gaussian process
regression are given as well as details on the Bichon acquisition criterion. Section 3 is dedicated
to Stepwise Uncertainty Reduction (SUR) strategies. Our new criterion, a SUR version of the
Bichon criterion is introduced in Section 4. Both theorical and numerical aspects are discussed with
respectively a simpli�ed and easy-to-implement formulation and numerical tests of SUR Bichon
performances, compared to those of SUR Vorob'ev for several analytical examples. Appendices
present technical proofs, theoretical results on kriging and bases of Vorob'ev theory.

2 The framework for estimating excursion sets

2.1 Some reminders on Gaussian process regression

Let X be a compact set of Rd (d P N�) and g : X Ñ R a black-box function, whose analytical
expression is unknown but which can be evaluated at any point of X at a heavy computational cost.
The objective of an excursion set estimation problem is to estimate the domain de�ned by

Γ� :�
!
x P X, gpxq ¤ T

)
(1)
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with T a �xed threshold, while limiting the number of costly evaluations of g.
Surrogate models, also known as metamodels, are approximations of the output of the simulator

built from a sample of simulations and that are not expensive to evaluate. Therefore they can
replace the original expensive simulator in a time-saving manner. Among surrogate models, Gaussian
Process Regression (GPR) is very popular: g is considered as a realization of a Gaussian process
(GP) ξ de�ned on a probabilistic space pΩ,F ,Pq, i.e. gpxq � ξpx, ωq for a given ω in Ω. This type
of surrogate models gives, in addition to a prediction, an associated prediction error estimate.

More precisely, the process is written as the sum of a deterministic part and a stochastic part:

ξpxq :� mpxq � Zpxq, @ x P X (2)

with m the trend of ξ (deterministic part) and Z a stationary GP, of zero mean, known covariance
kernel k : X2 Ñ R and in particular variance function σ2pxq :� kpx,xq for any x in X (stochastic
part). The choice of the trend m is usually a linear combination of functions f :� tfiuli�1 with
coe�cients β :� tβiuli�1. The choice of the covariance kernel associated with the GP Z is crucial
since it determines the predictor regularity. Di�erent choices are detailed in Section 4.2.

For an initial design of experiments χn :� pxp1q, ...,xpnqq belonging to Xn, let's denote gpχnq :�
pgpxp1qq, ..., gpxpnqqqJ the evaluations of g on χn and En the event ξpχnq � gpχnq, corresponding to n
evaluations of ξ. K :� pkpxpiq,xpjqqq1¤i,j¤n is the covariance matrix on χn and kpxq the covariance
vector between x and χn de�ned by kpxq :� pkpx,xp1qq, ..., kpx,xpnqqqJ for any x in X. We denote
fpxq :� pf1pxq, ..., flpxqqJ the evaluation vector of f on x de�ning the trend and F P Rn�l the matrix
with fpxpiqqJ as ith row. The process ξ conditioned on the event En is then still Gaussian (O'Hagan
[1978]) with mean, variance and covariance respectively denoted mn, σ2

n, and kn given by

mnpxq � fpxqJβ � kpxqJK�1
�
gpχnq � Fβ

�
, (3)

σ2
npxq � σ2pxq � kpxqJK�1kpxq, (4)

knpx,x1q � kpx,x1q � kpxqJK�1kpx1q. (5)

We notice that the best linear unbiased predictor (BLUP) (with respect to mean quadratic error) is
given by (3) with variance (4) and covariance (5).

When β is unknown and estimated by pβ :� �
FJK�1F

��1FJK�1gpχnq the maximum likelihood
estimator (MLE), formulas (3), (4) and (5) become

mnpxq � fpxqJ pβ � kpxqJK�1
�
gpχnq � Fpβ�, (6)

σ2
npxq � σ2pxq � kpxqJK�1kpxq � �

fpxqJ� kpxqJK�1F
��
FJK�1F

��1�
fpxqJ� kpxqJK�1F

�J
, (7)

knpx,x1q � kpx,x1q � kpxqJK�1kpx1q ��fpxqJ� kpxqJK�1F
��
FJK�1F

��1�
fpx1qJ� kpx1qJK�1F

�J
.

(8)
Their interpretation as conditional expectation, covariance and variance is still possible in a bayesian
context with a non informative prior distribution on the parameter β (Helbert et al. [2009]).

In order to save costly evaluations of function g, a sequential strategy of enrichment of the DoE
is classically used (see e.g. Ginsbourger [2017]). Figure 1 provides a generic scheme of a sequential
strategy. The stopping criteria are the budget of simulations and a threshold on the remaining
uncertainty on the estimation of the excursion set.

Among enrichment criteria, one can distinguish criteria that lead to an overall improvement of the
model from goal-oriented criteria, which are adapted to particular frameworks such as optimization
or inversion. The classical Mean Squared Error (MSE) criterion (Jin et al. [2002]), aims to select the
point which has the highest prediction variance, as well as its integral versions IMSE and MMSE
(Picheny et al. [2010]) standing for Integral and Maximum Mean Squared Error. Among direct
goal oriented criteria, classical EI (Expected Improvement) from Jones et al. [1998], is adapted
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Sequential construction of a DoE (by GPR)

Figure 1: Diagram of the sequential DoE construction, coupled with GPR.

for optimization. Several inversion-adapted criteria can be cited: deviation number (Echard et al.
[2011]), ratio of the distance of the model evaluations to the threshold to the kriging standard
deviation; Bichon criterion also known as Expected Feasibility Function (EFF) (Bichon et al. [2008]),
and the Ranjan criterion (Ranjan et al. [2008]). The �rst one is one of the simplest criterion for
inversion.

2.2 Towards more exploration: Bichon criterion

Bichon criterion, originally presented in Bichon et al. [2008] is a direct goal-oriented criterion for the
DoE enrichment. This criterion is an adaptation of the EI (Expected Improvement) criterion from
Jones et al. [1998], used in the context of an optimization problem, to the inversion framework.

As a reminder, the original idea of the EI criterion is to select a point x that allows an improve-
ment of gmin� ξpxq with gmin the current observed minimum on the DoE, while taking into account
the uncertainty of the surrogate model. The idea behind Bichon criterion is to adapt this strat-
egy to the excursion set estimation framework by considering both the variability of the surrogate
model and the potential improvement in the knowledge of the excursion set boundary. This is the
exploration-exploitation compromise.

To introduce Bichon criterion, it is necessary to de�ne, for a �xed x belonging to X, a random
variable FFpxq (Feasibility Function) de�ned by

FFpxq : � εpxq �min
 |T � ξpxq|, εpxq(

� �
εpxq � |T � ξpxq|��, (9)

with p . q� :� maxp . , 0q. This function represents the distance of the surrogate model to the bounds
of the interval rT � εpxq, T � εpxqs only if the surrogate model belongs to this interval and is 0
otherwise. In practice, the interval width εpxq is chosen proportionnal to the kriging standard
deviation σnpxq, leading in particular to a null value of the criterion for the points already present
in the DoE. An example is given in Figure 2. The feasibility function is drawn for one sample path
of ξ|En. Its maximization aims to select points close to the boundary of the excursion set estimate
or points associated to high values of εpxq.

Then, the average of FF over all sample paths, gives the Expected Feasibility Function (EFF)

EFFpxq :� E
��
εpxq � |T � ξpxq|�� ��En�. (10)

To interpret the criterion, it is possible to make an heuristic analogy with the theory of statistical
tests (Dagnelie [1992]). Let x be �xed, suppose that ξpxq|En � N pmnpxq, σnpxqq with mnpxq
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Figure 2: Representation of Feasibility Function (bottom) for a given example of a GP sample path condi-

tioned on 5 evaluations of g function, a threshold T set to 0 and a given εpxq (top).

unknown and σnpxq ¡ 0 known and let us de�ne the following statistical test

H0 : mnpxq � T against H1 : mnpxq � T (11)

We choose υx :� ξpxq�T
σnpxq

���En as the test statistic which follows standard normal distribution under

H0. Consequently, if we want to refute Hypothesis H0 at order α it is necessary that

|υx| ¡ κ (12)

with κ :� q1�α
2
the quantile of order 1� α

2 of the standard normal distribution.
However, what we wish to do is not to refute the hypothesis that mnpxq � T but rather to select,

among the x for which the hypothesis H0 is plausible i.e. κ� |υx| ¡ 0, the x for which the quantity
κ � |υx| is the largest in average. Multiplying pκ � |υx|q� by σnpxq leads to Bichon criterion with
εpxq :� κσnpxq, and has the e�ect to increase the exploration ability of the criterion.

Finally, an explicit formulation of the Bichon criterion (see Bect et al. [2012] for a proof) can be
calculated based on the posterior kriging trend and variance, the threshold T and the width εpxq

EFFpxq � pmnpxq � T q
�

2φ

�
T �mnpxq
σnpxq



� φ

�
T� �mnpxq

σnpxq


� φ

�
T� �mnpxq

σnpxq

�

� σnpxq
�

2ϕ

�
T �mnpxq
σnpxq



� ϕ

�
T� �mnpxq

σnpxq


� ϕ

�
T� �mnpxq

σnpxq

�

� εpxq
�
φ

�
T� �mnpxq

σnpxq


� φ

�
T� �mnpxq

σnpxq

�

,

(13)
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with T� :� T � εpxq, ϕ and φ represent respectively the probability density and cumulative dis-
tribution functions of the reduced centered normal distribution. In practice, the enrichment of the
DoE is done by maximizing the criterion given by Equation (13). The main objective of this work
is to propose a SUR version of this direct goal-oriented criterion, in order to obtain a SUR method
that is simpler to set up and more robust than SUR Vorob'ev.

3 SUR strategies based on Gaussian Process Regression

SUR strategies aim at maximizing the mean uncertainty reduction induced by new evaluations. Let
us introduce an uncertainty measure Hn, that depends on the event En. From this uncertainty
measure, the conditional measure Hn�1pxq is de�ned as the measure Hn, conditionally on the
addition of the point px, ξpxqq to the DoE. This conditional measure is a real random variable
measurable with respect to ξpxq|En. The associated SUR strategy is then de�ned by

xpn�1q P argmin
xPX

Jnpxq with Jnpxq :� E
�
Hn�1pxq

�
. (14)

Note that the expectation in Jnpxq is relative to the distribution of ξpxq|En.
Since SUR strategies are characterized by their uncertainty function Hn and therefore also by the

corresponding sampling criterion Jn, in the following, the abusive name of SUR sampling criterion
will be used to designate Jn. It is possible to easily generalize the SUR strategy de�nition to the
case of simultaneous addition of q points (Chevalier [2013]). However in this article, only the special
case of adding points one by one is presented. More details on SUR strategies and their origin from
k-step lookahead strategies can be found in Bect et al. [2012].

The ξ-measurable random variable µ is de�ned by µ :� PXpΓq with Γ the random set tx P
X, ξpxq ¤ T u, PX a given σ-�nite measure and pnpzq :� Ppz P Γ|Enq the coverage function of Γ
knowing En. Among the classical SUR sampling criteria based on GPR, we can quote for example
the criterion using the variance of µ: Hn :� Varpµ��Enq and one using the coverage function pn
: Hn :� ³

X pnpzqp1 � pnpzqq dPXpzq, both presented in Bect et al. [2012]. For the latter, the
uncertainty is low when pn is close to 0 or 1 and maximal when pn is equal to 1{2. The conditional
measure Hn�1pxq of these two criteria are respectively Hn�1pxq :� Varpµ�� ξpxq,Enq and Hn�1pxq :�³
X pn,xpzqp1� pn,xpzqq dPXpzq with pn,xpzq :� Ppz P Γ

�� ξpxq,Enq.
More complex criteria requiring notions about the random set theory of Vorob'ev (Molchanov

[2005]) are given in the literature. For example, the criterion associated with the Vorob'ev deviation,
introduced in Chevalier [2013], can be cited. This latter will be used as a comparison reference in
the numerical section. We refer to the appendix A for more details on Vorob'ev deviation (and more
generally on Vorob'ev theory) and the associated SUR Vorob'ev method. Besides, recently a more
conservative criterion also inspired by the Vorob'ev deviation, has been proposed in Azzimonti et al.
[2021]. The latter is especially useful in industrial applications where the distinction between false
positives and false negatives is critical, which is not the context of this paper.

Finally, SUR strategies are numerically more complex to implement, but are generally more
e�cient than direct goal oriented strategies (Bect et al. [2012] and Chevalier [2013]), for the same
number of evaluations. A reduction in the numerical complexity of SUR strategies is frequently used
through the use of kriging update formulas used in Chevalier [2013] (see Appendix B)

4 SUR Bichon criterion

4.1 Theoretical aspects

This section focuses on an adaptation of the Bichon criterion to a SUR strategy. The new SUR
criterion we introduce can be implemented in the framework of GPR without any approximation
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unlike SUR Vorob'ev (see Appendix A and Chevalier [2013]). Moreover, SUR Bichon corrects the
lack of robustness observed when applying SUR Vorob'ev, at least on the test cases studied in Section
4.2.

Following the formalism of SUR strategies given in section 3, it is su�cient to de�ne the uncer-
tainty measure Hn. This uncertainty measure is the mean of the Bichon criterion conditioned on
En, according to a given probability measure PX:

Hn :�
»
X
E
��
κσnpzq � |T � ξpzq|�����En� dPXpzq, with κ ¡ 0. (15)

The corresponding conditional uncertainty measure is then de�ned by

Hn�1pxq :�
»
X
E
��
κσn�1pzq � |T � ξpzq|����� ξpxq, En

�
dPXpzq, with κ ¡ 0, (16)

with σn�1pzq the kriging standard deviation given in Appendix B (Equation (31)) with xpn�1q � x.
Hn�1pxq is a real random variable ξpxq-measurable, conditioned on En. In practice, the chosen
probability measure PX is the Lebesgue measure restricted and normalized on X and the coe�cient
κ is usually set to 1 like in the Bichon criterion (Bect et al. [2012]).

Lemma 1.

Jnpxq �
»
X
E
��
κσn�1pzq � |T � ξpzq|�� ���En� dPXpzq. (17)

Proof.
The integrand of the chosen uncertainty measure in (16) is a positive quantity, by positivity of
the expectation. So, by reinjecting the expression of uncertainty (16) into (14), then applying
Fubini�Tonnelli theorem (thanks to σ-�nite measures and positive integrand), we obtain

Jnpxq �
»
X
E
�
E
��
κσn�1pzq � |T � ξpzq|����� ξpxq, En

��
dPXpzq, (18)

where the �rst expectation is relative to ξpxq|En and the second one is relative to ξpzq knowing
ξpxq, En. In addition, in (18) it is possible to reduce the two expectations in one to obtain (17).

Finally, Proposition 1 below provides an explicit formula for the integrand of (17).

Proposition 1. For all x, z belonging to X2, we have

E
��
κσn�1pzq � |T � ξpzq|�� ���En�
� pmnpzq � T q

�
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

� σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(19)

where εxpzq :� κσn�1pzq, T� :� T � εxpzq, ϕ and φ denote the probability density and cumulative
distribution functions of the reduced centered normal distribution, respectively.

The dependency in x in Equation (19) is only given via εxpzq � κσn�1pzq, therefore only via
σn�1pzq, which is independent of the model evaluation on x according to the kriging formulas. In
practice, kriging update formulas (31) will be used to have a fast evaluation of εxpzq. A proof of
Proposition 1 is proposed in Appendix C.
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4.2 Numerical experiments

The performances of SUR Bichon are illustrated on two analytical examples, and compared to
SUR Vorob'ev performances. The DoE after n enrichment iterations with SUR Bichon (resp. SUR
Vorob'ev) is noted χ1,n (resp. χ2,n). The chosen test functions are the rescaled Branin function in
dimension 2 and rescaled Hartmann function in dimension 6 (Picheny et al. [2013]). The choice of
the threshold T for each of these functions is discussed later.

Several DoE enrichment strategies can be considered: an enrichment by SUR Bichon χ1,n and one
using SUR Vorob'ev χ2,n, both after n iterations. The criteria performance is evaluated through two
di�erent estimators: naive estimator Γ̂1 :� m�1

n ps �8, T sq and Vorob'ev estimator noted Γ̂2, which
corresponds to the Vorob'ev expectation (Appendix A). Performance of the di�erent criteria are then
compared after n iterations with the approximation error ErrpΓ̂ipχj,nqq :� PXpΓ̂ipχj,nq∆Γ�q{PXpΓ�q,
for pi, jq P t1, 2u2. This error measures the relative volume of the symmetric di�erence between
estimator Γ̂ipχj,nq and true excursion set Γ� de�ned in (1).

Implementation choices

As mentioned earlier, the choices of trend m and covariance kernel k are fundamental. In the
following, the trend is chosen as a single constant term m, see Roustant et al. [2012] for more
details. A classical kernel product of type Matérn 5{2 is chosen:

kpx,x1q :� Cov
�
Zpxq,Zpx1q� � σ2

c

d¹
i�1

RMatérn 5{2

�
hi, θi

�
, @ px,x1q P X2, (20)

with a vector of parameters θ belonging to R� d
� , estimated by maximizing the likelihood, hi �

|xi � x1i|, σc a �xed parameter and

RMatérn 5{2

�
hi, θi

�
:�

�
1�

?
5|hi|
θi

� 5h2
i

3θ2
i



exp

�
�
?

5|hi|
θi



. (21)

This choice leads to trajectories of class C2 (Paciorek [2003]).
The implementation of SUR Bichon from formulas (17) and (19), is greatly inspired by the

implementation of various SUR criteria in the package KrigInv (Chevalier et al. [2014]). In addi-
tion, the chosen measure PX is the Lebesgue measure restricted to X, which is �nite because X is
compact. In (17), the integration is performed using a Sobol' sequence with n.points integration
points (package randtoolbox Dutang and Savicky [2013]). The criterion is optimized with the genetic
algorithm Genoud (with pop.size � 50d) (package rgenoud, Mebane Jr and Sekhon [2011]). Unless
explicitly stated, κ in (19) is set to 1, initial DoEs are obtained by LHS optimized by maximizing
minimal distances between the points (Latin Hypercube Sampling, Dupuy et al. [2015]) with size to
be speci�ed in the following, and n.points is set to 104.

The volume of Γ� and Γ̂ipχj,nq∆Γ� are approached using a quasi-Monte Carlo methods (Lemieux
[2009]) with a Sobol' sequence of size 104.

Performance tests on Branin-rescaled 2D function

The Branin-rescaled function, de�ned in Picheny et al. [2013] on X :� r0, 1s2, is represented in Figure
3. The Γ� excursion set is de�ned by the upper bound T � 10 on the function values, which leads
to 3 disconnected areas and the volume of Γ� represents 15.74% of the total volume of X. The tests
are performed on 100 di�erent initial DoEs of size 10 and 20 iterations (1 simulation per iteration)
are run for both SUR Bichon and SUR Vorob'ev.

The line plot representation on Figure 4 makes it possible to visualize the enrichment throughout
the iterations for the chosen approximation error. SUR Bichon appears more robust than SUR
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Figure 3: Representation of the Branin-rescaled function on X.

Vorob'ev throughout the enrichment, no matter which estimator is chosen. Indeed, in the case of
SUR Vorob'ev, several extreme cases are present with stagnation of the approximation error. These
rare stagnations in the case of the SUR Vorob'ev are due to the late discovery of one of the three
components of the excursion set as illustrated below on an example with Figure 5. The logarithmic
scale of the graph seems to show a stagnation of the curve for these few cases, but it is in fact a
faster progression towards a threshold value, due to the simpli�cation of the problem to the two
remaining components. Also, the approximation error with Γ̂1 seems more robust than with Γ̂2 (see
Appendix D for more details), and this can be explained by the fact that estimators Γ̂1 and Γ̂2 are
respectively based on an extension of median and mean concepts (Appendix A).

We focus on one run of the enrichment with SUR Vorob'ev associated with one of the outliers of
Figure 4. The associated Γ̂1 (resp. Γ̂2) estimators are represented as green full (resp. dotted) line on
Figure 5, after 20 iterations. This �gure shows that SUR Vorob'ev misses one of the three areas of
the exact excursion set Γ� presented in Figure 3. The use of SUR Bichon allows a better exploration
of the design space, which here allows to detect the three areas of Γ̂�. We notice that there is very
few di�erence between the two types of estimators and given the robustness of naive estimator Γ̂1

compared to Γ̂2 (Appendix D), naive estimator is kept for the remaining tests in dimension 2.
The characteristic statistical values of the empirical distribution for the error approximation with

naïve Γ̂1 estimator are given in Table 1 for both SUR Bichon and SUR Vorob'ev. It can be seen
that only for the quantile 5%, the results are slightly better for SUR Vorob'ev. In all other cases,
SUR Bichon is more e�cient than SUR Vorob'ev: this is due to the outliers of SUR Vorob'ev which
have a strong in�uence on the characteristic values, for example mean or standard deviation.

To summarize, the study of the performances of SUR Bichon on Branin-rescaled function, showed
that for T � 10 the sought excursion set with three connected components is better detected when
using SUR Bichon. Indeed, the latter, unlike SUR Vorob'ev, makes it possible to avoid extreme
cases for which one of the three connected components is completely missed.

Performance tests on Hartmann-rescaled 6D function

In this section the inversion results for the Hartmann-rescaled function from Picheny et al. [2013]
on X :� r0, 1s6 are presented. The excursion set Γ� is de�ned by the upper bound T � �1.6, whith
a volume that represents 15.45% of the total volume of X. The tests are performed on 50 di�erent
initial DoEs of size 30 and 600 iterations of DoE enrichment are run for both SUR Bichon and SUR
Vorob'ev.
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(a) Err
�
Γ̂1pχ1,nq

�
(b) Err

�
Γ̂1pχ2,nq

�

(c) Err
�
Γ̂2pχ1,nq

�
(d) Err

�
Γ̂2pχ2,nq

�

Figure 4: Line plots (with logarithmic scale) of the approximation error Err
�
Γ̂ipχj,nq

�
for the di�erent

criteria during 20 iterations, for Branin-rescaled function inversion (d � 2) with T � 10, for 100 di�erent
initial DoEs of size 10 of type LHS Maximin, for κ � 1 and with n.points� 104. Left column: SUR Bichon
with naive estimator (a) and Vorob'ev estimator (c). Right column: SUR Vorob'ev with naive estimator (b)
and Vorob'ev estimator (d).

(�100)

Crit. ite � 10 ite � 20
SUR B. SUR V. SUR B. SUR V.

Mean 7.82 12.35 1.09 3.18

Median 7.24 7.78 1.08 1.08

Quantile 5% 4.36 4.24 0.57 0.51

Quantile 95% 12.94 36.42 1.59 35.13

Standard Deviation 3.21 10.79 0.34 8.17

Interquartile Range 3.80 5.38 0.52 0.64

Table 1: Summary of empirical distributions of the Err
�
Γ̂ipχj,nq

�
for the di�erent criteria after 10 and 20

iterations, for Branin-rescaled function inversion (d � 2) with T � 10, for 100 di�erent initial DoEs of size

10 of type LHS Maximin.

10
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(a) Γ̂1pχ1,nq (b) Γ̂1pχ2,nq (c) Γ�

(d) Γ̂2pχ1,nq (e) Γ̂2pχ2,nq

Figure 5: Representation of two Γ̂ estimators for each of the two criteria after 40 iterations, in comparison
with the true excursion set (top right), for Branin-rescaled function inversion (d � 2) with T � 10, for a
particular initial DoE of size 10 where SUR Bichon outperforms SUR Vorob'ev. Left column: SUR Bichon
with naive estimator (a) and Vorob'ev estimator (d). Middle column: SUR Vorob'ev with naive estimator
(b) and Vorob'ev estimator (e). Right column: true excursion set and Branin-rescaled contour lines (c) .

Line plots on Figure 6 show the approximation error along the iterations of the enrichment.
Firstly, it can be observed that the improvement of the approximation error during the enrichment is
slower than in dimension 2, which is consistent with the increasing di�culty of the problem in higher
dimension. Moreover, we observe that SUR Bichon performs better than SUR Vorob'ev whatever
the chosen estimator, with respect to the robustness to outliers but also on average, especially from
the 300th iteration. In addition, it is clear from Figure 6 (a) and (c) that naive estimator Γ̂1 gives a
more robust approximation error than Γ̂2, with SUR Bichon enrichment. We thus decide to present
the numerical results in the following of the section for Γ̂1 only.

We focus on one of the outliers of Figure 6 (b) for which the enrichment strategy is based on
SUR Vorob'ev. For an extreme case, we represent in pairwise projection the points of a Sobol'
sequence of size 104 on X belonging to Γ̂1∆Γ�, with Γ̂1 the estimator obtained after 600 iterations
(see Figure 7). There are only 52 misclassi�ed points observed for SUR Bichon, against 233 in the
case of SUR Vorob'ev. Moreover, among the 233 points for the case SUR Vorob'ev, 176 correspond
to Γ̂zΓ� (infeasible points that are predicted feasible), whereas the remaining misclassi�ed points
correspond to feasible points that were predicted unfeasible (as for 2D example). This allows to
further illustrate the robustness of SUR Bichon compared to SUR Vorob'ev.

The characteristic statistical values of the empirical distribution for the approximation error are

11
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(a) Err
�
Γ̂1pχ1,nq

�
(b) Err

�
Γ̂1pχ2,nq

�

(c) Err
�
Γ̂2pχ1,nq

�
(d) Err

�
Γ̂2pχ2,nq

�

Figure 6: Line plots (with logarithmic scale) of the approximation error PX
�
Γ̂ipχj,nq∆Γ�

�
{PXpΓ

�q (with a
Sobol' sequence of size 104) for the di�erent criteria during 600 iterations, for Hartmann-rescaled function
inversion (d � 6) with T � �1.6, for 50 di�erent initial DoEs of size 30 of type LHS Maximin, for κ � 1 and
with n.points� 104. Left column: SUR Bichon with naive estimator (a) and Vorob'ev estimator (c). Right
column: SUR Vorob'ev with naive estimator (b) and Vorob'ev estimator (d).

given in Figure 2 for both SUR Bichon and SUR Vorob'ev. It can be con�rmed that except at the
beginning where enrichment is not yet su�cient, SUR Bichon performs better for all indicators than
SUR Vorob'ev, and not only in terms of robustness (see e.g. the quantile of order 5% or the median).

In summary, the tests on Hartmann-rescaled function in dimension 6 with T � �1.6, further
highlight the robustness of SUR Bichon compared to SUR Vorob'ev, in dimension higher than 2. In
addition to the robustness, it was also observed that in this 6 dimensional case, beyond about 300
iterations, SUR Bichon performs better than SUR Vorob'ev, even without considering the outliers.

Several hypotheses are proposed below to try to understand these di�erences. Firstly, the robust-
ness of SUR Bichon can be explained by its exploratory capability forced by the kriging standard
deviation in factor of the SUR Bichon formulation (see Section 2.2).

The second hypothesis is that the Vorob'ev expectation is strongly dependent on the station-
arity assumption of the underlying Gaussian process (Appendix D), which has an in�uence on the
enrichment, since the enrichment with SUR Vorob'ev is based on the Vorob'ev deviation (Appendix
A), and then on the Vorob'ev expectation. Even if the two test cases studied seem to verify the
stationarity hypothesis, this is never rigorously the case (unless the model is de�ned as a given
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(a) Γ̂1pχ1,nq∆Γ̂� (b) Γ̂1pχ2,nq∆Γ̂�

Figure 7: Pairwise projection plot of Γ̂1∆Γ� for a 104-Sobol' sequence, for the two criteria after 600 iterations,

for Hartmann-rescaled function inversion (d � 6) with T � �1.6, for a particular initial DoE of size 30 where

SUR Bichon outperforms on SUR Vorob'ev, for κ � 1 and for n.points� 104. Left column: SUR Bichon.

Right column: SUR Vorob'ev.

(�100)

Crit. ite � 99 ite � 300 ite � 600
SUR B. SUR V. SUR B. SUR V. SUR B. SUR V.

Mean 40.42 35.05 13.92 16.55 5.61 9.94

Median 40.32 34.72 13.92 15.28 5.66 8.83

Quantile 5% 34.14 28.84 12.09 12.74 4.62 7.17

Quantile 95% 46.67 44.40 15.38 29.42 6.45 11.63

Standard Deviation 3.98 4.48 0.99 6.14 0.61 5.26

Interquartile Range 5.26 4.56 1.13 1.81 0.68 1.75

Table 2: Summary of empirical distributions of the approximation error PXpΓ̂∆Γ�q{PXpΓ
�q (with a Sobol'

sequence of size 104) for the di�erent criteria after 99, 300 and 600 iterations, for Hartmann-rescaled function

inversion (d � 6) with T � �1.6, for 50 di�erent initial DoEs of size 30 of type LHS Maximin, for κ � 1 and

with n.points� 104.

realization of a stationary Gaussian process). The sensitivity of a criterion to this hypothesis can
therefore have a relatively strong in�uence, especially when several points are successively added to
the DoE, leading to an accumulation of errors.

The calculation of the Vorob'ev criterion is sensitive to the determination of the Vorob'ev thresh-
old α� (see Appendix A). However, we have veri�ed that the determination of α� was not the problem
for the robustness of SUR Vorob'ev with verifying the numerical simplicity of the minimum search
for the function α ÞÑ ��E�PXpΓq|En

�� PXpQαq
��.

5 Conclusion

In the framework of solving inversion problems using Gaussian Process Regression, we have pro-
posed a new SUR criterion for DoE enrichment. Numerical simulations have demonstrated its good
exploratory behavior, as far as its robustness from di�erent points of view. Indeed, our new criterion
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is robust with the stationarity assumption of the underlying Gaussian process. Moreover, it is robust
to the geometry of the set to be retrieved, in particular in terms of number of connected components.
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A Basics on Vorob'ev Theory and corresponding SUR strategy

A.1 Vorob'ev expectation

In this part, the notion of expectation for random closed sets in the sense of Vorob'ev is de�ned
from Molchanov [2005]. The framework is a compact set X � Rd and a random closed set Γ of X.
It is recalled that Γ : Ω Ñ C is a random closed set if it is a measurable function on the probability
space pΩ,F ,Pq with values in the set of all compacts of X in the sense that:

@C P C ,
 
w P Ω,Γpwq X C � ∅

( P F . (22)

Let's de�ne the parametric family
 
Qα

(
αPr0,1s

of Vorob'ev quantiles is de�ned by:

Qα :� tx P X : ppxq :� Ppx P Γq ¥ αu, @α P r0, 1s. (23)
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The elements of tQαuαPr0,1s are called the Vorob'ev quantiles of the random closed set Γ and the
function p is called the coverage function of Γ.

To de�ne the expectation of the random closed set Γ, Molchanov [2005] comes back to the
expectation of a real random variable: the measure of the Γ set PXpΓq. From the parametric family
of Vorob'ev quantiles (see (23)), the expectation of Γ in the sense of Vorob'ev is then de�ned as the
Vorob'ev quantile of measure equal (or the closest one higher) to the expectation of the measure of
Γ. More precisely, the Vorob'ev expectation of a random closed set Γ is the set Qα� , where α� is
de�ned as the Vorob'ev threshold by

@α ¡ α�, PXpQαq   ErPXpΓqs ¤ PXpQα�q, (24)

where PX denotes the Lebesgue measure on X. α� is called the Vorob'ev threshold.

Remark 1.


 Based on Equation (23)q, the function α ÞÑ PXpQαq is decreasing on r0, 1s.

 The uniqueness of α� in the de�nition is easily checked. The existence of such α� in the de�nition of
Vorob'ev expectation is based on the decreasing and continuity to the left of the function α ÞÑ PXpQαq
which is itself guaranteed by the superior semi-continuity of the coverage function p (see Molchanov
[2005] page 23).

 The continuity of the function α ÞÑ PXpQαq ensures equality PXpQα�q � ErPXpΓqs in the de�nition
of Vorob'ev expectation.

In the particular case where Γ is given by Γ :� tx P X, ξpxq ¤ T u with ξ a stochastic process
indexed by X with continuous trajectories conditioned on the event En corresponding to n evaluations
of ξ and T a �xed threshold, Γ is a random closed set ([Molchanov, 2005, page 3]). A su�cient
condition to obtain a stochastic process with continuous trajectories is to consider a separable
Gaussian process with continuous mean and covariance kernel of type Matérn 3{2 or 5{2 ([Paciorek,
2003, pages 35 and 44]). Moreover, in this case, the function α ÞÑ PXpQαq is continuous and so the
equality PXpQα�q � ErPXpΓq|Ens is veri�ed. It is also important to notice that naive estimator Γ̂1

is almost surely equal to the median of Vorob'ev (quantile of order 1{2). Indeed, by noting φ the
distribution function of the standard normal distribution,

Γ̂1 �
 
x P X, mnpxq ¤ T

(
a.s.�

"
x P X,

T �mnpxq
σnpxq ¥ 0 and σnpxq � 0

*
�

"
x P X, φ

�
T �mnpxq
σnpxq



¥ φp0q and σnpxq � 0

*
as φ increases

a.s.�
"
x P X, Ppξpxq ¤ T |Enq ¥ 1

2

*
� Q 1

2
. (25)

Repeating the previous calculation and replacing 1{2 by the Vorob'ev threshold α�, we obtain :

Qα�
a.s.�  

x P X, mnpxq ¤ T � φ�1 pα�qσnpxq
(

(26)

A.2 Vorob'ev deviation

The introduction of the concept of Vorob'ev deviation is used to de�ne uncertainty measure Hnpxq
in a SUR strategy. Let's start by introducing the notion of distance between two random closed
sets.
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The average distance dPX with respect to a measure PX on all pairs of random closed sets included
in X is de�ned by: for all random closed sets Γ1,Γ2 de�ned on X,

dPX pΓ1,Γ2q :� E rPX pΓ1∆Γ2qs (27)

where ∆ is the random symmetric di�erence: @ω P Ω, Γ1∆Γ2pωq :� pΓ1zΓ2qpωq Y pΓ2zΓ1qpωq. In
addition, the function dPX checks the properties of a distance.

The following proposition Molchanov [2005] justi�es the choice of the Vorob'ev quantile family
to de�ne the Vorob'ev expectation and also allows to de�ne the Vorob'ev deviation. Moreover,
when ErPXpΓqs � PXpQα�q (especially in the case of Γ :� tx P X, ξpxq ¤ T u with ξ a stochastic
process indexed by X with continuous trajectories), the condition α� ¥ 1

2 is no longer necessary (see
[El Amri, 2019, page 28] for the proof)

Proposition 2. Noting Qα� the Vorob'ev expectation of the random closed set Γ and assuming that
α� ¥ 1

2 , it results that: for any measurable set M included in X such that PXpMq � ErPXpΓqs,

dPX pΓ, Qα�q ¤ dPX pΓ,Mq (28)

The Vorob'ev deviation of the random set Γ is de�ned as the quantity dPXpΓ, Qα�q. The Vorob'ev
deviation quanti�es the variability of the random closed set Γ relative to its Vorob'ev expectation.

A.3 SUR Vorob'ev criterion

Once the basic elements of Vorob'ev theory are introduced, the associated SUR strategy is simply
de�ned from the de�nition of SUR strategies via Equation (14) by taking:

Hn :� E
�
PXpΓ∆Qn,α�nq

��En� and Hn�1pxq :� E
�
PXpΓ∆Qn�1,α�n�1

q�� ξpxq, En
�

(29)

where Qn,α�n denotes the Vorob'ev expectation conditioned on En and Qn�1,α�n�1
the Vorob'ev ex-

pectation conditioned on En and the addition of the point px, ξpxqq to the DoE. The idea behind
(29) is to take as an uncertainty function, the variation with respect to the Vorob'ev expectation
of the random closed set Γ, with Γ :� tx P X, ξpxq ¤ T u. With the assumption that α�n�1 � α�n
and by reinjecting the quantity Hn�1pxq of (29) in the Jn criterion (14), it is possible to �nd a
simpli�ed formulation involving only an integral of a simple quantity Chevalier [2013]. This quantity
is dependent on the cumulative distribution functions of the standard normal distribution and the
bivariate centered normal distribution with given covariance matrix. Such a formulation then allows
less time consuming computations and therefore is implemented in the package KrigInv (Chevalier
et al. [2014]).

B Kriging update formulas

In the context of SUR strategies, the quantity Jnpxq in Equation (14) for a �xed x is usually
simpli�ed thanks to formulas of kriging and conditionally on the point px, ξpxqq added to the DoE,
and more particularly using the kriging standard deviation. Indeed, contrary to the trend, the kriging
standard deviation does not depend on surrogate model observations. For instance the recurrent
formula, used in Chevalier [2013] is e�cient for calculating kriging model in the context of universal
kriging and when the kriging parameters β and θ do not need to be reestimated. These kriging
update formulas are given for all y,y1 in X2 by

mn�1pyq � mnpyq � kn
�
y,xpn�1q

�
kn
�
xpn�1q,xpn�1q

��1
�
g
�
xpn�1q

��mn

�
xpn�1q

�	
, (30)

σ2
n�1 pyq � σ2

n pyq � k2
n

�
y,xpn�1q

�
σ2
n

�
xpn�1q

��1
, (31)
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kn�1

�
y,y1

� � kn
�
y,y1

�� kn
�
y,xpn�1q

�
kn
�
xpn�1q,xpn�1q

��1
kn
�
y1,xpn�1q

�
, (32)

with xpn�1q the n� 1 th observation point.
As for SUR strategies, it is possible to generalize these formulas in the case of simultaneous

additions of q points (Chevalier [2013]). The advantage of these formulas is that the expressions of
mn, σn, and kn are reused to reduce computational time. It is particularly useful in SUR strategies
where many evaluations of the kriging formulas may be required for the numerous evaluations of
the sampling criterion (in the context of its minimization (14)). Finally, it can be shown that
these kriging formulas still coincide with the Gaussian process conditional formulas in the context
of universal kriging (see Appendix A of Chevalier [2013] for a proof).

C Proof of the explicit formula for SUR Bichon

The interest of this appendix is to propose a demonstration of Proposition 1, allowing to give
an explicit expression of SUR Bichon. Let's start by stating and proving an intermediate lemma.

Lemma 2. Let N be a standard Gaussian random variable and pa, bq P R2 such that a   b, then:

E
�
N1ra,bspNq

� � �ϕpbq � ϕpaq (33)

where ϕ is the probability density function of the standard normal distribution.

Proof.

E
�
N1ra,bspNq

� � 1?
2π

» b
a
te�

t2

2 dt � 1?
2π

�
� e�

t2

2

�b
a
� �ϕpbq � ϕpaq (34)

Proposition 1. For all x, z belonging to X2, we have:

E
��
κσn�1pzq � |T � ξpzq|�� ���En�
� pmnpzq � T q

�
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

� σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

(35)

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

where εxpyq :� κσn�1pzq, T� :� T� εxpzq, ϕ and φ denote the probability density and cumulative
distribution functions of the standard normal distribution, respectively.

Proof.
For the proof only and for the sake of lightening the notations, we note En the conditional expec-
tation E r . |Ens. In addition, the expression to be calculated is separated into three terms that are
calculated separately. Speci�cally:

En
��
κσn�1pzq � |T � ξpzq|��� � En

��
εxpzq � |T � ξpzq|�1rT�,T�s�ξpzq��

� En
�
εxpzq1rT�,T�s

�
ξpzq��� En

��
T �mnpzq �mnpzq � ξpzq�1rT�,T r�ξpzq��

� En
��
T �mnpzq �mnpzq � ξpzq�1rT,T�s�ξpzq��
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� En
�
εxpzq1rT�,T�s

�
ξpzq��looooooooooooooomooooooooooooooon

1O

� �
T �mnpzq

��
En

�
1rT,T�s

�
ξpzq��� En

�
1rT�,T s

�
ξpzq���loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

2O

�
�
En

��
mnpzq � ξpzq�1rT�,T s�ξpzq��� En

��
mnpzq � ξpzq�1rT,T�s�ξpzq���loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

3O

(36)

The calculation of the three terms separately is as follows:

1O : � En
�
εxpzq1rT�,T�s

�
ξpzq��

� εxpzqEn
�
1�

T��mnpzq
σnpzq

,T
��mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


�

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(37)

2O : � �
T �mnpzq

��
En

�
1rT,T�s

�
ξpzq��� En

�
1rT�,T s

�
ξpzq���

� �
mnpzq � T

��
En

�
1rT�,T s

�
ξpzq��� En

�
1rT,T�s

�
ξpzq���

� �
mnpzq � T

��
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(38)

For the calculation of 3O, the use of the lemma 2 is necessary, using the notations of it.

3O : � �
�
En

��
mnpzq � ξpzq�1rT�,T s�ξpzq��� En

��
mnpyq � ξpzq�1rT,T�s�ξpzq���

� σnpzq
�
En

��
ξpzq �mnpzq

σnpzq


1�

T��mnpzq
σnpzq

,T�mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


�

� En

��
ξpzq �mnpzq

σnpzq


1�

T�mnpzq
σnpzq

,T
��mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


��

� σnpzq
�
E

�
N 1�

T��mnpzq
σnpzq

,T�mnpzq
σnpzq

��N��� E

�
N 1�

T�mnpzq
σnpzq

,T
��mnpzq
σnpzq

��N���

� �σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

(39)

The expected result is then obtained by reinjecting the expressions of 1O, 2O, and 3O obtained in
Equations (37) to (39) in Equation (36).

Remark 2.


 In this proof of the proposition 1, the fact that mnpzq, σnpzq, εxpzq and T� are constant with
respect to ξpzq is implicitly used, in particular to output mnpzq, σnpzq and εxpzq of the conditional
expectation En, but also for the renormalization of ξpzq and the transition to the density probability
and cumulative distribution functions of the reduced centered normal distribution.
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D Robustness of estimators with respect to the GP stationarity

assumption.

A certain instability of the approximation error was observed at the beginning of the enrichment in
Figures 4 and 6 in the case of estimator Γ̂2 corresponding to Vorob'ev expectation, in comparaison
to Γ̂1 naïve estimator. This robustness of naive estimator Γ̂1 compared to Γ̂2 can be explained by
the fact that naive estimator corresponds to the median of Vorob'ev (Appendix A, equation (25)).
Indeed, even if the notions of expectation and median of Vorob'ev are not similar to the classical
ones, the property of minimising the �rst absolute central moment of the median is preserved when
extending the notion of median to the framework of Vorob'ev random sets (Molchanov [2005] page
178). It is also possible to "read" the lack of robustness on Equation (26) of Appendix A which is
recalled below:

Qα�
a.s.�  

x P X, mnpxq ¤ T � φ�1 pα�qσnpxq
(
.

Knowing the strong dependence of the σn term on the stationarity condition of the process,
it is straightforward that the term φ�1pα�qσnpxq plays an important role in the non-robustness
of Γ̂2 � Qα� estimator, compared to naive estimator Γ̂1 where this term φ�1pα�qσnpxq does not
appear.

To illustrate this robustness issue, we de�ne the Loggruy function in dimension 2 as follows:

@x P R2, Loggruypxq � 10 log10

�
3.6�104

�
2̧

i�1

pxi�aiq2�r2

�
�� � ��

�
2̧

i�1

pxi�eiq2�r2

��
(40)

with paiqi �
�

0.153
0.939



; pbiqi �

�
0.854
0.814



; pciqi �

�
0.510
0.621



; pdiqi �

�
0.207
0.386



; peiqi �

�
0.815
0.146



and r :� 0.07.

The threshold chosen is T � 10 log10p3.6q and the corresponding Γ� excursion set (Equation (1))
is composed of 5 disconnected components. This function is particularly interesting in our context,
since it has strong gradients at the edges of the domain and weaker gradients in the middle, where
the di�erent zones of the Γ� excursion set are located (Figure 8c). This means that the stationarity
assumption of the kriging metamodel cannot be veri�ed.

Figure 8 represents in the case of an enrichment of 100 and 200 points of SUR Vorob'ev, from
an initial DoE of size 10, the contour lines of the coverage probability pn and the kriging mean mn.
Estimators Γ̂1 and Γ̂2 are also represented and compared to Γ�. An irregularity is observed for the
contour lines of pn either after 100 or 200 iterations. But, mn is relatively accurate even after 100
iterations. Γ̂2 estimator is then less performant than Γ̂1 estimator.

In summary, Γ̂2 estimator related to Vorob'ev theory is more dependent on the stationarity
hypothesis than Γ̂1 naïve estimator, and this is essentially explained by the construction of Vorob'ev
expectation which is more sensitive to the kriging standard deviation (Equation (26)). Consequently,
the approximation error Err

�
Γ̂2pχj,nq

�
is more dependent on the stationarity hypothesis than the

naive approximation error Err
�
Γ̂1pχj,nq

�
.
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A SUR version of the Bichon criterion for excursion set estimation

(a) ite � 100, pn (b) ite � 100, mn (c) Loggruy function

(d) ite � 200, pn (e) ite � 200, mn

Figure 8: At left and center, representation of the two Γ̂1 and Γ̂2 estimators after 100 iterations (�rst line)
and 200 iterations (second line) for SUR Vorob'ev, and with the contour lines of pn (�rst column) and mn

(second column), in comparison with the true excursion set (top right), for Loggruy function inversion (d � 2)
with T � 10 log10p3.6q, for a particular initial DoE of size 10.
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