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Abstract

Many model inversion problems occur in industry. These
problems consist in finding the set of parameter values such that
a certain quantity of interest respects a constraint, for example
remains below a threshold. In general, the quantity of interest
is the output of a simulator, costly in computation time.

An effective way to solve this problem is to replace the sim-
ulator by a Gaussian process regression, with an experimental
design enriched sequentially by a well chosen acquisition cri-
terion. Different inversion-adapted criteria exist such as the
Bichon criterion (also known as Expected Feasibility Function)
and deviation number. There also exist a class of enrichment
strategies (Stepwise Uncertainty Reduction - SUR) which select
the next point by measuring the expected uncertainty reduction
induced by its selection.

In this paper we propose a SUR version of the Bichon crite-
rion. An explicit formulation of the criterion is given and test
comparisons show good performances on classical test functions.
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1 Introduction

Nowadays, many industrial issues are related to a problem of excursion set estimation for instance,
to find feasible solutions of complex optimal design problems. This problem consists in finding, the
set of input parameter values such that a quantity of interest defined from its outputs respects a
constraint, for example remains below a threshold. In general, the quantity of interest is an output
of a numerical model, computationally expensive, which is often a black-box function, representing
the complex physical phenomenon. The problem is also known as an inversion problem (Chevalier
[2013]). For example, the application to a vehicle pollution control system, allowing compliance
with pollutant emission norms was studied in El Amri et al. [2020].

An effective way to solve this kind of problems is to replace the costly black-box function of
interest by a surrogate model based on Gaussian processes. The advantage of a Gaussian process
is that it is entirely determined by its two first moments: mean and covariance functions. Also,
the formulas for updating mean and covariance functions conditionally on observations are easily
tractable. The set of evaluation points and the corresponding evaluations of the black-box function
is called Design of Experiments (DoE) and the choice of new evaluation points is made sequentially
by the optimization of an acquisition criterion that depends on the Gaussian process (see for example
Bect et al. [2012] and Moustapha et al. [2021]). Acquisition criteria are useful to select the runs
which provide the best information considering a given objective: improvement of the predictive
quality of the whole response surface, optimizing a quantity of interest, quantification of a failure
probability, estimating an excursion set (inversion), etc. Acquisition criteria suitable for inversion
include: the deviation number denoted U (Echard et al. [2011]), the Bichon criterion also known as
Expected Feasibility Function (Bichon et al. [2008]), and the Ranjan criterion (Ranjan et al. [2008]).
The two last criteria are adaptations of the classical optimization-oriented Expected Improvement
criterion (Jones et al. [1998]) for excursion set estimation. The U criterion is the ratio of the absolute
deviation of the prediction mean from the threshold defining the excursion set, to the value of the
prediction standard deviation. All these criteria are based on an exploration targeted to a better
knowledge of the boundary of the excursion set.

In addition, there is a more elaborate and in general more efficient class of criteria that anticipate
the impact of adding new points to the DoE: the Stepwise Uncertainty Reduction (SUR) strategies
(Bect et al. [2012]). For example, SUR strategies based on the volume of the excursion set can be
cited as particularly suitable for the inversion framework. It is shown in Bect et al. [2012] that those
SUR criteria provide better performances compared to other criteria.

Chevalier [2013] introduced a SUR strategy based on Vorob’ev random set theory (Molchanov
[2005]), that goes beyond taking into account the volume of excursion sets like other SUR strategies.
However, we have noticed that SUR Vorob’ev criterion (SUR Vorob’ev) is not robust enough in the
sense that it lacks exploration such that with a reasonable number of simulations it sometimes misses
some of connected components of the set. Moreover, SUR Vorob’ev requires some approximations
about the Vorob’ev threshold. Therefore we propose to tackle these issues by a SUR version of the
Bichon criterion (SUR Bichon), which is easier to set up and more robust than SUR Vorob’ev. It
should be noted that a SUR version of the U criterion could have been envisaged but this would
require simulation of the observations for the estimation of the associated criterion and therefore a
higher computational cost.

This article is divided into three main sections. In section 2, the framework of excursion set
estimation is recalled. Details on the construction of the sequential DoE based on Gaussian process
regression are given as well as details on the Bichon acquisition criterion. Section 3 is dedicated to
the new SUR Bichon criterion, with some reminders on SUR strategies beforehand, and a simplified
and easy-to-implement formulation of this new criterion. Numerical aspects are discussed in section
4 with tests of SUR Bichon performances, compared to those of SUR Vorob’ev and Bichon for
several analytical examples. Appendices present technical proofs, theoretical results on kriging and
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bases of Vorob’ev theory.

2 The framework for estimating excursion sets

2.1 Some reminders on Gaussian process regression

Let X be a compact set of Rd (d P N�) and g : X Ñ R a black-box function, whose analytical
expression is unknown but which can be evaluated at any point of X at a heavy computational cost.
The objective of an excursion set estimation problem is to estimate the domain defined by

Γ� :�
!
x P X, gpxq ¤ T

)
(1)

with T a fixed threshold, while limiting the number of costly evaluations of g.
Surrogate models, also known as meta-models, are approximations of the output of the simulator

built from a sample of simulations and that are not expensive to evaluate. Therefore they can replace
the original expensive simulator in a time-saving manner. Among surrogate models, Gaussian
Process Regression (GPR) is very popular: g is considered as a realization of a Gaussian process
(GP) ξ defined on a probabilistic space pΩ,F ,Pq, i.e. gpxq � ξpx, ωq for a given ω in Ω. This type
of surrogate models gives, in addition to a prediction, an associated prediction error estimate.

More precisely, the process is written as the sum of a deterministic part and a stochastic part:

ξpxq :� mpxq � Zpxq, @ x P X (2)

with m the trend of ξ (deterministic part) and Z a stationary GP, of zero mean, known covariance
kernel k : X2 Ñ R and in particular variance function σ2pxq :� kpx,xq for any x in X (stochastic
part). To limit the complexity of estimating the trend function m, the choice of this latter is often
parametrized as a linear combination of known basis functions pfiqli�1 with coefficients β :� tβiuli�1

to be estimated. The choice of the covariance kernel associated with the GP Z is crucial since it
determines the predictor regularity. Different implementation choices are detailed in Section 4.1.

Let’s denote gpχnq :� pgpxp1qq, ..., gpxpnqqqJ the evaluations of g on an initial design of exper-
iments χn :� pxp1q, ...,xpnqq belonging to Xn. The random vector ξpχnq then corresponds to the
finite-dimensional distribution of the process pξpxq,x P Xq on χn and we define En as the event
ξpχnq � gpχnq. K :� pkpxpiq,xpjqqq1¤i,j¤n is the covariance matrix on χn and kpxq the covariance
vector between x and χn defined by kpxq :� pkpx,xp1qq, ..., kpx,xpnqqqJ for any x in X. We denote
fpxq :� pf1pxq, ..., flpxqqJ the evaluation vector of f on x defining the trend and F P Rn�l the
matrix with fpxpiqqJ as ith row. When β is known, the process ξ conditioned on the event En is still
Gaussian (O’Hagan [1978]) with mean, variance and covariance respectively denoted mn, σ2

n, and
kn given by

mnpxq � fpxqJβ � kpxqJK�1
�
gpχnq � Fβ

�
, (3)

σ2
npxq � σ2pxq � kpxqJK�1kpxq, (4)

knpx,x1q � kpx,x1q � kpxqJK�1kpx1q. (5)

We notice that the best linear unbiased predictor (BLUP) (with respect to mean quadratic error)
is given by (3) with variance (4) and covariance (5).

When β is unknown and estimated by the maximum likelihood estimator (MLE)

pβ :� �
FJK�1F

��1FJK�1gpχnq, (6)

formulas (3), (4) and (5) become

mnpxq � fpxqJ pβ � kpxqJK�1
�
gpχnq � Fpβ�, (7)
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σ2
npxq � σ2pxq � kpxqJK�1kpxq � �

fpxqJ� kpxqJK�1F
��
FJK�1F

��1�
fpxqJ� kpxqJK�1F

�J
, (8)

knpx,x1q � kpx,x1q � kpxqJK�1kpx1q ��fpxqJ� kpxqJK�1F
��
FJK�1F

��1�
fpx1qJ� kpx1qJK�1F

�J
.

(9)
Their interpretation as conditional expectation, covariance and variance is still possible in a Bayesian
context with a non informative prior distribution on the parameter β (Helbert et al. [2009]).

In order to save costly evaluations of function g, a sequential strategy of enrichment of the DoE
is classically used (see e.g. Ginsbourger [2017]). Figure 1 provides a generic scheme of a sequential
strategy. The stopping criteria can be a budget of simulations or a threshold on the remaining
uncertainty on the estimation of the excursion set.

Sequential construction of a DoE (by GPR)

Figure 1: Diagram of the sequential DoE construction, coupled with GPR.

Among enrichment criteria, one can distinguish criteria that lead to an overall improvement of
the model from goal-oriented criteria, which are adapted to particular frameworks such as optimiza-
tion or inversion. The classical Mean Squared Error (MSE) criterion (Jin et al. [2002]), aims to
select the point which has the highest prediction variance, as well as its integral versions IMSE and
MMSE (Picheny et al. [2010]) standing for Maximum Mean Squared Error. Among goal oriented
criteria, classical Expected Improvement (EI) from Jones et al. [1998], allows for global optimiza-
tion. Several inversion-adapted criteria can be cited: deviation number (Echard et al. [2011]), ratio
of the distance of the prediction mean to the threshold to the kriging standard deviation; Bichon
criterion also known as Expected Feasibility Function (EFF) (Bichon et al. [2008]), and Ranjan
criterion (Ranjan et al. [2008]).

2.2 Towards more exploration: the Bichon criterion

The Bichon criterion (Bichon), originally presented in Bichon et al. [2008] is a goal-oriented criterion
for the DoE enrichment. This criterion is an adaptation of EI from Jones et al. [1998], introduced
in the context of global optimization, to the inversion framework.

As a reminder, the original idea of EI is to select a point x that allows an improvement of
gmin � ξpxq with gmin the current minimum observed on the DoE, while taking into account the
uncertainty of the surrogate model. The idea behind Bichon is to adapt this strategy to the excursion
set estimation framework by considering both the variability of the surrogate model and the potential
improvement in the knowledge of the excursion set boundary. This is the exploration-exploitation
compromise.

To introduce Bichon, it is necessary to define, for a fixed x belonging to X, a random variable
FFpxq (Feasibility Function) defined by

FFpxq : � εpxq �min
 |T � ξpxq|, εpxq(

� �
εpxq � |T � ξpxq|��, (10)
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with p . q� :� maxp . , 0q. This function represents the distance of the surrogate model to the bounds
of the interval rT � εpxq, T � εpxqs only if the surrogate model belongs to this interval and is
0 otherwise. In practice, the interval width εpxq is chosen proportional to the kriging standard
deviation σnpxq, leading in particular to a null value of the criterion for the points already present
in the DoE. An example is given in Figure 2. The feasibility function is drawn for one sample path
of ξ|En. Its maximization aims to select points close to the boundary of the excursion set estimate
or points associated to high values of εpxq. Then, the average of FF over all sample paths, gives

Figure 2: Representation of Feasibility Function (bottom) for a given example of a GP sample path condi-

tioned on 5 evaluations of the g function, a threshold T set to 0 and εpxq :� σnpxq (top).

the Expected Feasibility Function (EFF)

EFFpxq :� E
��
εpxq � |T � ξpxq|�� ��En�. (11)

The new selected points according Bichon are

xpn�1q P argmax
xPX

EFFpxq. (12)

To interpret (11), it is possible to make an heuristic analogy with the theory of statistical tests
(Dagnelie [1992]). Let x be fixed, suppose that ξpxq|En � N pmnpxq, σnpxqq with mnpxq unknown
and σnpxq ¡ 0 known and let us define the following statistical test

H0 : mnpxq � T against H1 : mnpxq � T (13)

We choose υx :� ξpxq�T
σnpxq

���En as the test statistic which follows standard normal distribution under

H0. Consequently, if we want to refute Hypothesis H0 at order α it is necessary that

|υx| ¡ κ (14)
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with κ :� q1�α
2

the quantile of order 1� α
2 of the standard normal distribution.

However, what we wish to do is not to refute the hypothesis that mnpxq � T but rather to
select, among the x for which the hypothesis H0 is plausible i.e. κ � |υx| ¡ 0, the x for which the
quantity κ�|υx| is the largest in average. Multiplying pκ�|υx|q� by σnpxq leads to Bichon criterion
with εpxq :� κσnpxq, and has the effect to increase the exploration ability of the criterion.

Finally, an explicit formulation of Bichon (see Bect et al. [2012] for a proof) can be calculated
based on the posterior kriging trend and variance, the threshold T and the width εpxq

EFFpxq � pmnpxq � T q
�

2φ

�
T �mnpxq
σnpxq



� φ

�
T� �mnpxq

σnpxq


� φ

�
T� �mnpxq

σnpxq

�

� σnpxq
�

2ϕ

�
T �mnpxq
σnpxq



� ϕ

�
T� �mnpxq

σnpxq


� ϕ

�
T� �mnpxq

σnpxq

�

� εpxq
�
φ

�
T� �mnpxq

σnpxq


� φ

�
T� �mnpxq

σnpxq

�

,

(15)

with T� :� T � εpxq, ϕ and φ represent respectively the probability density and cumulative dis-
tribution functions of the standard normal distribution. In practice, the enrichment of the DoE
is done by maximizing the criterion given by Equation (15). The main objective of this work is
to propose a SUR version of this goal-oriented criterion, in order to obtain a SUR method that is
simpler to set up and more robust than SUR Vorob’ev.

3 SUR Bichon criterion

This section focuses on an adaptation of the Bichon criterion to a SUR strategy. The new SUR
criterion we introduce can be implemented in the framework of GPR without any approximation
unlike SUR Vorob’ev (see Appendix A and Chevalier [2013]). Moreover, SUR Bichon performs better
than Bichon criterion and corrects the lack of robustness observed when applying SUR Vorob’ev,
at least on test cases studied in Section 4.

3.1 Reminders on SUR strategies

SUR strategies aim at maximizing the mean uncertainty reduction induced by new evaluations. Let
us introduce a residual uncertainty Hn, computed with the GP model conditioned on En. From
this residual uncertainty, the conditional residual uncertainty Hn�1pxq is defined as the updated
uncertainty when adding x to DoE χn. This conditional uncertainty is then a measurable function
of the random variable ξpxq|En. The associated SUR strategy is then defined by

xpn�1q P argmin
xPX

Jnpxq with Jnpxq :� E
�
Hn�1pxq

�
. (16)

Note that the expectation in Jnpxq is relative to the distribution of ξpxq|En. Eq. (16) means that
evaluating the surrogate model at xpn�1q will decrease at most, the expected residual uncertainty.

More details on SUR strategies and their origin from k-step lookahead strategies can be found
in Bect et al. [2012]. Among classical SUR strategies based on GPR, we can quote for example
different criteria using the excursion set volume, presented in Bect et al. [2012]. A more complex
criterion requiring notions about the random set theory of Vorob’ev (Molchanov [2005]) introduced
in Chevalier [2013], can also be cited. We refer to Appendix A for more details on Vorob’ev theory
and the associated SUR Vorob’ev strategy.

SUR strategies are numerically more complex to implement, but are generally more efficient
than other goal oriented strategies (Bect et al. [2012] and Chevalier [2013]), for the same number of
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evaluations. A reduction in the numerical complexity of SUR strategies is frequently used through
the use of kriging update formulas introduced in Chevalier [2013] (see Appendix B).

3.2 Formulation of the SUR Bichon criterion

Let PX a probability measure on X. Following the formalism of SUR strategies given in section 3.1,
we first define a residual uncertainty Hn by

Hn :�
»
X

EFFpzq dPXpzq

�
»
X
E
��
κσnpzq � |T � ξpzq|�����En� dPXpzq, with κ ¡ 0.

(17)

The corresponding conditional residual uncertainty is then defined by

Hn�1pxq :�
»
X
E
��
κσn�1pzq � |T � ξpzq|����� ξpxq, En

�
dPXpzq, with κ ¡ 0, (18)

with σn�1pzq the kriging standard deviation computed from Equation (34) in Appendix B and x
being the n� 1th observation point. In practice, the chosen probability measure PX is the Lebesgue
measure restricted and normalized on X and the coefficient κ is usually set to 1 like in Bichon
(Bect et al. [2012]). The residual uncertainty Hn represents the average (with respect to PX) of
mean distances (in positive values) of ξpzq to the bounds of the interval rT � κσnpzq, T � κσnpzqs,
conditioned on En. An overall reduction in σn leads to a decrease in the uncertainty Hn. The same
applies to the addition of a new point close to the boundary defined by the threshold T .

The problem is to find

xpn�1q P argmin
xPX

Jnpxq with Jnpxq :� E
� »

X
E
��
κσn�1pzq � |T � ξpzq|����� ξpxq, En

�
dPXpzq

�
,

(19)
with κ ¡ 0. The first expectation is relative to ξpxq|En and the second one is relative to ξpzq
knowing ξpxq, En.

Lemma 1.

Jnpxq �
»
X
E
��
κσn�1pzq � |T � ξpzq|�� ���En� dPXpzq. (20)

Proof.
The integrand of the chosen residual uncertainty in (18) is a positive quantity, by positivity of
the expectation. So, by re-injecting the expression of uncertainty (18) into (16), then applying
Fubini–Tonnelli theorem (thanks to σ-finite measures and positive integrand), we obtain

Jnpxq �
»
X
E
�
E
��
κσn�1pzq � |T � ξpzq|����� ξpxq, En

��
dPXpzq, (21)

Then, in (21) the two expectations are reduced in one to obtain (20).

Finally, Proposition 1 below provides an explicit formula for the integrand of (20).
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Proposition 1. For all x, z belonging to X2, we have

E
��
κσn�1pzq � |T � ξpzq|�� ���En�
� pmnpzq � T q

�
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

� σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(22)

where εxpzq :� κσn�1pzq, T� :� T � εxpzq, ϕ and φ denote the probability density and cumulative
distribution functions of the standard normal distribution, respectively.

The dependency in x in Equation (22) is only given via εxpzq � κσn�1pzq, therefore only via
σn�1pzq, which is independent of the model evaluation on x according to the kriging formulas.
In practice, kriging update formulas (see Equation (34) Appendix B) will be used to get a fast
evaluation of εxpzq. The proof of Proposition 1 is postponed to Appendix C.

4 Numerical experiments

The performances of SUR Bichon are illustrated on two analytical examples, and compared to SUR
Vorob’ev and standard Bichon performances. The chosen test functions are the rescaled Branin
function in dimension 2 and rescaled Hartmann function in dimension 6 (Picheny et al. [2013]).
The choice of the threshold T for each of these functions is discussed later.

Several DoE enrichment strategies can be considered: an enrichment by Bichon χ0,n, one using
SUR Bichon χ1,n and one using SUR Vorob’ev χ2,n, all three after n iterations. The criteria
performance is evaluated through two different estimators: naive estimator Γ̂1 :� m�1

n ps � 8, T sq
and Vorob’ev estimator noted Γ̂2, which corresponds to the Vorob’ev expectation (Appendix A). The
performances of the different criteria are then compared after n iterations with the approximation
error ErrpΓ̂ipχj,nqq :� PXpΓ̂ipχj,nq∆Γ�q{PXpΓ�q, for pi, jq P t1, 2u2. This error measures the relative
volume of the symmetric difference between estimator Γ̂ipχj,nq and true excursion set Γ� defined in
(1).

4.1 Implementation choices

As mentioned earlier, the choices of trend m and covariance kernel k are fundamental. In the
following, the trend is chosen as a single constant term m, see Roustant et al. [2012] for more details.
A classical kernel product of type Matérn 5{2 is chosen:

kpx,x1q :� Cov
�
Zpxq,Zpx1q� � σ2

c

d¹
i�1

RMatérn 5{2

�
hi, θi

�
, @ px,x1q P X2, (23)

with a vector of parameters θ belonging to R� d
� , estimated by maximizing the likelihood at each

iteration, hi � |xi � x1i|, σc a fixed parameter and

RMatérn 5{2

�
hi, θi

�
:�

�
1�

?
5|hi|
θi

� 5h2
i

3θ2
i



exp

�
�
?

5|hi|
θi



. (24)

This choice leads to trajectories of class C2 (Paciorek [2003]).
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The implementation of SUR Bichon from formulas (20) and (22), is greatly inspired by the
implementation of various SUR criteria in the package KrigInv (Chevalier et al. [2014]). In addition,
the chosen measure PX is the renormalized Lebesgue measure restricted to X, which is possible
because X is compact. In (20), the integration is performed using a Sobol’ sequence with n.points
integration points (package randtoolbox Dutang and Savicky [2013]). The criterion is optimized
with the genetic algorithm Genoud (with pop.size � 50d) (package rgenoud, Mebane Jr and Sekhon
[2011]). Unless explicitly stated, κ in (22) is set to 1, initial DoEs are obtained by LHS optimized by
maximizing minimal distances between the points (Latin Hypercube Sampling, Dupuy et al. [2015])
with size to be specified in the following, and n.points defined above is set to 104.

The volume of Γ� and Γ̂ipχj,nq∆Γ� are approached using a quasi-Monte Carlo methods (Lemieux
[2009]) with a Sobol’ sequence of size 104.

4.2 Performance tests on Branin-rescaled 2D function

The Branin-rescaled function, defined in Picheny et al. [2013] on X :� r0, 1s2, is represented in
Figure 3. The Γ� excursion set is defined by the upper bound T � 10 on the function values, which
leads to 3 disconnected areas and the volume of Γ� represents 15.74% of the total volume of X. The
tests are performed on 100 different initial DoEs of size 10. 20 iterations (1 simulation per iteration)
are run for SUR Bichon, SUR Vorob’ev and Bichon.

Figure 3: Representation of the Branin-rescaled function on X.

Black solid lines (line plot) of Figure 4 represent the approximation error for each of the 100
initial DoEs of size 10. This makes it possible to visualize the enrichment performances throughout
the iterations. Bichon seems to perform less well than the other two SUR criteria: the median
is higher. SUR Bichon appears more robust than SUR Vorob’ev throughout the enrichment, no
matter which estimator is chosen. Indeed, in the case of SUR Vorob’ev, several extreme cases
present stagnation of the approximation error. These rare stagnations are due to the late discovery
of one of the three components of the excursion set as illustrated below. The logarithmic scale
of the graph seems to show a stagnation of the curve for these few cases, but it is in fact a faster
progression towards a threshold value, due to the simplification of the problem to the two remaining
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components. Also, the approximation error with Γ̂1 seems more robust than with Γ̂2 (see Appendix
D for more details), and this can be explained by the fact that estimators Γ̂1 and Γ̂2 are respectively
based on an extension of median and mean concepts to sets (Appendix A).

Bichon

(a) Err
�
Γ̂1pχ0,nq

�

SUR Bichon

(b) Err
�
Γ̂1pχ1,nq

�

SUR Vorob’ev

(c) Err
�
Γ̂1pχ2,nq

�

(d) Err
�
Γ̂2pχ0,nq

�
(e) Err

�
Γ̂2pχ1,nq

�
(f) Err

�
Γ̂2pχ2,nq

�

Figure 4: Line plots (with logarithmic scale) of the approximation error Err
�
Γ̂ipχj,nq

�
for the different

criteria during 20 iterations, for Branin-rescaled function inversion (d � 2) with T � 10, for 100 different
initial DoEs of size 10 of type LHS Maximin, for κ � 1 and with n.points� 104. Left column: Bichon with
naive estimator (a) and Vorob’ev estimator (d). Middle column: SUR Vorob’ev with naive estimator (b) and
Vorob’ev estimator (e). Right column: SUR Bichon with naive estimator (c) and Vorob’ev estimator (f).

We focus on one run of the enrichment with SUR Vorob’ev associated with one of the outliers of
Figure 4. The associated Γ̂1 (resp. Γ̂2) estimators are represented as green full (resp. dotted) line on
Figure 5, after 20 iterations. This figure shows that SUR Vorob’ev misses one of the three areas of
the exact excursion set Γ� presented in Figure 3. The use of SUR Bichon allows a better exploration
of the design space, which here allows to detect the three areas of Γ̂�. We notice that there is very
few differences between the two types of estimators and given the robustness of naive estimator Γ̂1

compared to Γ̂2 (Appendix D), naive estimator is kept for the remaining tests in dimension 2.
The characteristic statistical values of the empirical distribution for the error approximation

with näıve Γ̂1 estimator are given in Table 1 for SUR Bichon, SUR Vorob’ev and Bichon. This
table confirms the poor performance of Bichon in relation to the two SUR criteria. In the following,
Bichon is set aside to focus on the comparison of the two SUR Bichon and SUR Vorob’ev. It can
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SUR Bichon

(a) Γ̂1pχ1,nq

SUR Vorob’ev

(b) Γ̂1pχ2,nq (c) Γ�

(d) Γ̂2pχ1,nq (e) Γ̂2pχ2,nq

Figure 5: Representation of two Γ̂ estimators for each of the two criteria after 20 iterations, in comparison
with the true excursion set (top right), for Branin-rescaled function inversion (d � 2) with T � 10, for a
particular initial DoE of size 10 where SUR Bichon outperforms SUR Vorob’ev. Left column: SUR Bichon
with naive estimator (a) and Vorob’ev estimator (d). Middle column: SUR Vorob’ev with naive estimator
(b) and Vorob’ev estimator (e). Right column: true excursion set and Branin-rescaled contour lines (c).

be also seen that only for the quantile 5%, the results are slightly better for SUR Vorob’ev. All
others results show SUR Bichon is more efficient than SUR Vorob’ev: the outliers of SUR Vorob’ev
deteriorate the characteristic values especially mean or standard deviation.

To summarize, the study of the performances of SUR Bichon on Branin-rescaled function, showed
that for T � 10 the sought excursion set with three connected components is better detected when
using SUR Bichon. Indeed, the latter, unlike SUR Vorob’ev, makes it possible to avoid extreme
cases for which one of the three connected components is completely missed.

4.3 Performance tests on Hartmann-rescaled 6D function

In this section the inversion results for the Hartmann-rescaled function from Picheny et al. [2013]
on X :� r0, 1s6 are presented. The excursion set Γ� is defined by the upper bound T � �1.6,
with a volume that represents 15.45% of the total volume of X. Results of clustering methods (not
presented here) suggest that Γ� is composed of only one large connected component. The tests are
performed on 50 different initial DoEs of size 30 and 600 iterations of DoE enrichment are run for
both SUR Bichon and SUR Vorob’ev.
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(�100)

Crit. ite � 10 ite � 20
SUR B. SUR V. B. SUR B. SUR V. B.

Mean 7.82 12.35 15.07 1.09 3.18 1.71

Median 7.24 7.78 11.94 1.08 1.08 1.59

Quantile 5% 4.36 4.24 5.53 0.57 0.51 0.89

Quantile 95% 12.94 36.42 37.87 1.59 35.13 3.25

Standard Deviation 3.21 10.79 9.97 0.34 8.17 0.73

Interquartile Range 3.80 5.38 9.24 0.52 0.64 0.89

Table 1: Summary of empirical distributions of the Err
�
Γ̂ipχj,nq

�
for the different criteria after 10 and 20

iterations, for Branin-rescaled function inversion (d � 2) with T � 10, for 100 different initial DoEs of size

10 of type LHS Maximin.

Line plots on Figure 6 show the approximation error along the iterations of the enrichment.
Firstly, it can be observed that the improvement of the approximation error during the enrichment
is slower than in dimension 2, which is consistent with the increasing difficulty of the problem in
higher dimension. Moreover, we observe that SUR Bichon performs better than SUR Vorob’ev
whatever the chosen estimator, with respect to the robustness to outliers but also on average,
especially from the 300th iteration. In addition, it is clear from Figure 6 (a) and (c) that naive
estimator Γ̂1 gives a more robust approximation error than Γ̂2, with SUR Bichon enrichment. We
thus decide to present the numerical results in the following of the section for Γ̂1 only.

We focus on one of the outliers of Figure 6 (b) for which the enrichment strategy is based on
SUR Vorob’ev. For an extreme case, we represent in pairwise projection the points of a Sobol’
sequence of size 5.103 on X belonging to Γ̂1∆Γ�, with Γ̂1 the estimator obtained after 600 iterations
(see Figure 7). There are only 55 misclassified points observed for SUR Bichon, against 247 in the
case of SUR Vorob’ev. Moreover, among the 247 points for the case SUR Vorob’ev, 191 correspond
to Γ̂zΓ� (unfeasible points that are predicted feasible), whereas the remaining misclassified points
correspond to feasible points that were predicted unfeasible (as for 2D example). This allows
to further illustrate the robustness of SUR Bichon compared to SUR Vorob’ev. A comparable
study was carried out on the other extreme runs as well as on the non-extreme ones. The results
showed that the configuration for the other extreme run is comparable to that in Figure 7 while
the configurations for the non-extreme runs are all more or less similar and relatively balanced in
terms of number of misclassified points between SUR Bichon and SUR Vorob’ev criteria.

The characteristic statistical values of the empirical distribution for the approximation error are
given in Figure 2 for both SUR Bichon and SUR Vorob’ev. It can be confirmed that except at
the beginning where enrichment is not yet sufficient, SUR Bichon performs better for all indicators
than SUR Vorob’ev, and not only in terms of robustness (see e.g. the quantile of order 5% or the
median).

In summary, the tests on Hartmann-rescaled function in dimension 6 with T � �1.6, further
highlight the robustness of SUR Bichon compared to SUR Vorob’ev, in dimension higher than 2. In
addition to the robustness, it was also observed that in this 6 dimensional case, beyond about 300
iterations, SUR Bichon performs better than SUR Vorob’ev, even without considering the outliers.

The robustness of SUR Bichon can be explained by its exploratory capability forced by the
kriging standard deviation in factor of the SUR Bichon formulation (see Section 2.2). Besides,
the Vorob’ev expectation is strongly dependent on the stationarity assumption of the underlying
Gaussian process (Appendix D), which has an influence on the enrichment, since the enrichment
with SUR Vorob’ev is based on the Vorob’ev deviation (Appendix A), and then on the Vorob’ev
expectation. This could explain the lack of robustness of SUR Vorob’ev. Indeed, in practice the

12



A SUR version of the Bichon criterion for excursion set estimation

SUR Bichon

(a) Err
�
Γ̂1pχ1,nq

�

SUR Vorob’ev

(b) Err
�
Γ̂1pχ2,nq

�

(c) Err
�
Γ̂2pχ1,nq

�
(d) Err

�
Γ̂2pχ2,nq

�

Figure 6: Line plots (with logarithmic scale) of the approximation error PX
�
Γ̂ipχj,nq∆Γ�

�
{PXpΓ

�q (with a
Sobol’ sequence of size 104) for the different criteria during 600 iterations, for Hartmann-rescaled function
inversion (d � 6) with T � �1.6, for 50 different initial DoEs of size 30 of type LHS Maximin, for κ � 1 and
with n.points� 104. Left column: SUR Bichon with naive estimator (a) and Vorob’ev estimator (c). Right
column: SUR Vorob’ev with naive estimator (b) and Vorob’ev estimator (d).

stationarity hypothesis is never rigorously checked (unless the model is defined as a given realization
of a stationary Gaussian process). Eventually, the calculation of the Vorob’ev criterion is sensitive
to the determination of the Vorob’ev threshold α� (see Appendix A). However, we have verified
that the determination of α� was not the problem for the robustness of SUR Vorob’ev by checking
the numerical simplicity of the minimum search for the function α ÞÑ ��E�PXpΓq|En

�� PXpQαq
��.
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SUR Bichon

(a) Γ̂1pχ1,nq∆Γ̂�

SUR Vorob’ev

(b) Γ̂1pχ2,nq∆Γ̂�

Figure 7: Pairwise projection plot of Γ̂1∆Γ� for a 5.103-Sobol’ sequence, for the two criteria after 600

iterations, for Hartmann-rescaled function inversion (d � 6) with T � �1.6, for a particular initial DoE of

size 30 where SUR Bichon outperforms on SUR Vorob’ev, for κ � 1 and for n.points� 104. Left column:

SUR Bichon. Right column: SUR Vorob’ev.

(�100)

Crit. ite � 99 ite � 300 ite � 600
SUR B. SUR V. SUR B. SUR V. SUR B. SUR V.

Mean 40.42 35.05 13.92 16.55 5.61 9.94

Median 40.32 34.72 13.92 15.28 5.66 8.83

Quantile 5% 34.14 28.84 12.09 12.74 4.62 7.17

Quantile 95% 46.67 44.40 15.38 29.42 6.45 11.63

Standard Deviation 3.98 4.48 0.99 6.14 0.61 5.26

Interquartile Range 5.26 4.56 1.13 1.81 0.68 1.75

Table 2: Summary of empirical distributions of the approximation error PXpΓ̂∆Γ�q{PXpΓ
�q (with a Sobol’

sequence of size 104) for the different criteria after 99, 300 and 600 iterations, for Hartmann-rescaled function

inversion (d � 6) with T � �1.6, for 50 different initial DoEs of size 30 of type LHS Maximin, for κ � 1 and

with n.points� 104.

5 Conclusion

In the framework of solving inversion problems using Gaussian Process Regression, we have proposed
a new SUR criterion based on the Bichon criterion for DoE enrichment. Numerical simulations have
demonstrated its good exploratory behavior, as far as its robustness from different points of view.
Indeed, our new criterion is robust with the stationarity assumption of the underlying Gaussian
process. Moreover, it is robust to the geometry of the set to be retrieved, in particular in terms of
number of connected components.
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A Basics on Vorob’ev Theory and corresponding SUR strategy

A.1 Vorob’ev expectation

In this part, the notion of expectation for random closed sets in the sense of Vorob’ev is defined
from Molchanov [2005]. The framework is a compact set X � Rd and a random closed set Γ of X.
It is recalled that Γ : Ω Ñ C is a random closed set if it is a measurable function on the probability
space pΩ,F ,Pq with values in the set of all compacts of X in the sense that:

@C P C ,
 
w P Ω,Γpwq X C � ∅

( P F . (25)

Let’s define the parametric family
 
Qα

(
αPr0,1s

of Vorob’ev quantiles is defined by:

Qα :� tx P X : ppxq :� Ppx P Γq ¥ αu, @α P r0, 1s. (26)

The elements of tQαuαPr0,1s are called the Vorob’ev quantiles of the random closed set Γ and the
function p is called the coverage function of Γ.

To define the expectation of the random closed set Γ, Molchanov [2005] comes back to the
expectation of a real random variable: the measure of the Γ set PXpΓq. From the parametric family
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of Vorob’ev quantiles (see (26)), the expectation of Γ in the sense of Vorob’ev is then defined as the
Vorob’ev quantile of measure equal (or the closest one higher) to the expectation of the measure of
Γ. More precisely, the Vorob’ev expectation of a random closed set Γ is the set Qα� , where α� is
defined as the Vorob’ev threshold by

@α ¡ α�, PXpQαq   ErPXpΓqs ¤ PXpQα�q, (27)

where PX denotes the Lebesgue measure on X. α� is called the Vorob’ev threshold.

Remark 1.
 Based on Equation (26)q, the function α ÞÑ PXpQαq is decreasing on r0, 1s.
 The uniqueness of α� in the definition is easily checked. The existence of such α� in the definition
of Vorob’ev expectation is based on the decreasing and continuity to the left of the function α ÞÑ
PXpQαq which is itself guaranteed by the superior semi-continuity of the coverage function p (see
Molchanov [2005] page 23).
 The continuity of the function α ÞÑ PXpQαq ensures equality PXpQα�q � ErPXpΓqs in the definition
of Vorob’ev expectation.

In the particular case where Γ is given by Γ :� tx P X, ξpxq ¤ T u with ξ a stochastic pro-
cess indexed by X with continuous trajectories conditioned on the event En corresponding to n
evaluations of ξ and T a fixed threshold, Γ is a random closed set ([Molchanov, 2005, page 3]).
A sufficient condition to obtain a stochastic process with continuous trajectories is to consider a
separable Gaussian process with continuous mean and covariance kernel of type Matérn 3{2 or 5{2
([Paciorek, 2003, pages 35 and 44]). Moreover, in this case, the function α ÞÑ PXpQαq is continuous
and so the equality PXpQα�q � ErPXpΓq|Ens is verified. It is also important to notice that naive
estimator Γ̂1 is almost surely equal to the median of Vorob’ev (quantile of order 1{2). Indeed, by
noting φ the distribution function of the standard normal distribution,

Γ̂1 �
 
x P X, mnpxq ¤ T

(
a.s.�

"
x P X,

T �mnpxq
σnpxq ¥ 0 and σnpxq � 0

*
�

"
x P X, φ

�
T �mnpxq
σnpxq



¥ φp0q and σnpxq � 0

*
as φ increases

a.s.�
"
x P X, pnpxq ¥ 1

2

*
� Q 1

2
, (28)

where pn is the coverage function pnpxq :� Ppξpxq ¤ T |Enq.
Repeating the previous calculation and replacing 1{2 by the Vorob’ev threshold α�, we obtain :

Qα�
a.s.�  

x P X, mnpxq ¤ T � φ�1 pα�qσnpxq
(

(29)

A.2 Vorob’ev deviation

The introduction of the concept of Vorob’ev deviation is used to define residual uncertainty Hnpxq
in a SUR strategy. Let’s start by introducing the notion of distance between two random closed
sets.

The average distance dPX with respect to a measure PX on all pairs of random closed sets included
in X is defined by: for all random closed sets Γ1,Γ2 defined on X,

dPX pΓ1,Γ2q :� E rPX pΓ1∆Γ2qs (30)
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where ∆ is the random symmetric difference: @ω P Ω, Γ1∆Γ2pωq :� pΓ1zΓ2qpωq Y pΓ2zΓ1qpωq. In
addition, the function dPX checks the properties of a distance.

The following proposition Molchanov [2005] justifies the choice of the Vorob’ev quantile family
to define the Vorob’ev expectation and also allows to define the Vorob’ev deviation. Moreover,
when ErPXpΓqs � PXpQα�q (especially in the case of Γ :� tx P X, ξpxq ¤ T u with ξ a stochastic
process indexed by X with continuous trajectories), the condition α� ¥ 1

2 is no longer necessary (see
[El Amri, 2019, page 28] for the proof)

Proposition 2. Noting Qα� the Vorob’ev expectation of the random closed set Γ and assuming that
α� ¥ 1

2 , it results that: for any measurable set M included in X such that PXpMq � ErPXpΓqs,

dPX pΓ, Qα�q ¤ dPX pΓ,Mq (31)

The Vorob’ev deviation of the random set Γ is defined as the quantity dPXpΓ, Qα�q. The Vorob’ev
deviation quantifies the variability of the random closed set Γ relative to its Vorob’ev expectation.

A.3 SUR Vorob’ev criterion

Once the basic elements of Vorob’ev theory are introduced, the associated SUR strategy is simply
defined from the definition of SUR strategies via Equation (16) by taking:

Hn :� E
�
PXpΓ∆Qn,α�nq

��En� and Hn�1pxq :� E
�
PXpΓ∆Qn�1,α�n�1

q�� ξpxq, En
�

(32)

where Qn,α�n denotes the Vorob’ev expectation conditioned on En and Qn�1,α�n�1
the Vorob’ev ex-

pectation conditioned on En and the addition of the point px, ξpxqq to the DoE. The idea behind
(32) is to take as residual uncertainty, the variation with respect to the Vorob’ev expectation of
the random closed set Γ, with Γ :� tx P X, ξpxq ¤ T u. With the assumption that α�n�1 � α�n and
by re-injecting the quantity Hn�1pxq of (32) in the Jn criterion (16), it is possible to find a sim-
plified formulation involving only an integral of a simple quantity Chevalier [2013]. This quantity
is dependent on the cumulative distribution functions of the standard normal distribution and the
bivariate centered normal distribution with given covariance matrix. Such a formulation then allows
less time consuming computations and therefore is implemented in the package KrigInv (Chevalier
et al. [2014]).

B Kriging update formulas

In the context of SUR strategies, the quantity Jnpxq in Equation (16) for a fixed x is usually
simplified thanks to formulas of kriging and conditionally on the point px, ξpxqq added to the DoE,
and more particularly using the kriging standard deviation. Indeed, contrary to the trend, the
kriging standard deviation does not depend on surrogate model observations. For instance the
recurrent formula, used in Chevalier [2013] is efficient for calculating kriging model in the context of
universal kriging and when the kriging parameters β and θ do not need to be re-estimated. These
kriging update formulas are given for all y,y1 in X2 by

mn�1pyq � mnpyq � kn
�
y,xpn�1q

�
kn
�
xpn�1q,xpn�1q

��1
�
g
�
xpn�1q

��mn

�
xpn�1q

�	
, (33)

σ2
n�1 pyq � σ2

n pyq � k2
n

�
y,xpn�1q

�
σ2
n

�
xpn�1q

��1
, (34)

kn�1

�
y,y1

� � kn
�
y,y1

�� kn
�
y,xpn�1q

�
kn
�
xpn�1q,xpn�1q

��1
kn
�
y1,xpn�1q

�
, (35)

with xpn�1q the n� 1 th observation point.
As for SUR strategies, it is possible to generalize these formulas in the case of simultaneous

additions of q points (Chevalier [2013]). The advantage of these formulas is that the expressions of
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mn, σn, and kn are reused to reduce computational time. It is particularly useful in SUR strategies
where many evaluations of the kriging formulas may be required for the numerous evaluations of
the sampling criterion (in the context of its minimization (16)). Finally, it can be shown that
these kriging formulas still coincide with the Gaussian process conditional formulas in the context
of universal kriging (see Appendix A of Chevalier [2013] for a proof).

C Proof of the explicit formula for SUR Bichon

The interest of this appendix is to propose a demonstration of Proposition 1, allowing to give
an explicit expression of SUR Bichon. Let’s start by stating and proving an intermediate lemma.

Lemma 2. Let N be a standard Gaussian random variable and pa, bq P R2 such that a   b, then:

E
�
N1ra,bspNq

� � �ϕpbq � ϕpaq (36)

where ϕ is the probability density function of the standard normal distribution.

Proof.

E
�
N1ra,bspNq

� � 1?
2π

» b
a
te�

t2

2 dt � 1?
2π

�
� e�

t2

2

�b
a
� �ϕpbq � ϕpaq (37)

Proposition 1. For all x, z belonging to X2, we have:

E
��
κσn�1pzq � |T � ξpzq|�� ���En�
� pmnpzq � T q

�
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

� σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

(38)

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

where εxpyq :� κσn�1pzq, T� :� T � εxpzq, ϕ and φ denote the probability density and cumu-
lative distribution functions of the standard normal distribution, respectively.

Proof.
For the proof only and for the sake of lightening the notations, we note En the conditional expec-
tation E r . |Ens. In addition, the expression to be calculated is separated into three terms that are
calculated separately. Specifically:

En
��
κσn�1pzq � |T � ξpzq|��� � En

��
εxpzq � |T � ξpzq|�1rT�,T�s�ξpzq��

� En
�
εxpzq1rT�,T�s

�
ξpzq��� En

��
T �mnpzq �mnpzq � ξpzq�1rT�,T r�ξpzq��

� En
��
T �mnpzq �mnpzq � ξpzq�1rT,T�s�ξpzq��
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� En
�
εxpzq1rT�,T�s

�
ξpzq��looooooooooooooomooooooooooooooon

1O

� �
T �mnpzq

��
En

�
1rT,T�s

�
ξpzq��� En

�
1rT�,T s

�
ξpzq���loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

2O

�
�
En

��
mnpzq � ξpzq�1rT�,T s�ξpzq��� En

��
mnpzq � ξpzq�1rT,T�s�ξpzq���loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

3O

(39)

The calculation of the three terms separately is as follows:

1O : � En
�
εxpzq1rT�,T�s

�
ξpzq��

� εxpzqEn
�
1�

T��mnpzq
σnpzq

,T
��mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


�

� εxpzq
�
φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(40)

2O : � �
T �mnpzq

��
En

�
1rT,T�s

�
ξpzq��� En

�
1rT�,T s

�
ξpzq���

� �
mnpzq � T

��
En

�
1rT�,T s

�
ξpzq��� En

�
1rT,T�s

�
ξpzq���

� �
mnpzq � T

��
2φ

�
T �mnpzq
σnpzq



� φ

�
T� �mnpzq

σnpzq


� φ

�
T� �mnpzq

σnpzq

�

(41)

For the calculation of 3O, the use of the lemma 2 is necessary, using the notations of it.

3O : � �
�
En

��
mnpzq � ξpzq�1rT�,T s�ξpzq��� En

��
mnpyq � ξpzq�1rT,T�s�ξpzq���

� σnpzq
�
En

��
ξpzq �mnpzq

σnpzq


1�

T��mnpzq
σnpzq

,T�mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


�

� En

��
ξpzq �mnpzq

σnpzq


1�

T�mnpzq
σnpzq

,T
��mnpzq
σnpzq

��ξpzq �mnpzq
σnpzq


��

� σnpzq
�
E

�
N 1�

T��mnpzq
σnpzq

,T�mnpzq
σnpzq

��N��� E

�
N 1�

T�mnpzq
σnpzq

,T
��mnpzq
σnpzq

��N���

� �σnpzq
�

2ϕ

�
T �mnpzq
σnpzq



� ϕ

�
T� �mnpzq

σnpzq


� ϕ

�
T� �mnpzq

σnpzq

�

(42)

The expected result is then obtained by re-injecting the expressions of 1O, 2O, and 3O obtained in
Equations (40) to (42) in Equation (39).

Remark 2.
 In this proof of the proposition 1, the fact that mnpzq, σnpzq, εxpzq and T� are constant with
respect to ξpzq is implicitly used, in particular to output mnpzq, σnpzq and εxpzq of the conditional
expectation En, but also for the renormalization of ξpzq and the transition to the density probability
and cumulative distribution functions of the standard normal distribution.
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D Robustness of estimators with respect to the GP stationarity
assumption.

A certain instability of the approximation error was observed at the beginning of the enrichment in
Figures 4 and 6 in the case of estimator Γ̂2 corresponding to Vorob’ev expectation, in comparison
to Γ̂1 naive estimator. This robustness of naive estimator Γ̂1 compared to Γ̂2 can be explained by
the fact that naive estimator corresponds to the median of Vorob’ev (Appendix A, equation (28)).
Indeed, even if the notions of expectation and median of Vorob’ev are not similar to the classical
ones, the property of minimizing the first absolute central moment of the median is preserved when
extending the notion of median to the framework of Vorob’ev random sets (Molchanov [2005] page
178). It is also possible to ”read” the lack of robustness on Equation (29) of Appendix A which is
recalled below:

Qα�
a.s.�  

x P X, mnpxq ¤ T � φ�1 pα�qσnpxq
(
.

Knowing the strong dependence of the σn term on the stationarity condition of the process,
it is straightforward that the term φ�1pα�qσnpxq plays an important role in the non-robustness
of Γ̂2 � Qα� estimator, compared to naive estimator Γ̂1 where this term φ�1pα�qσnpxq does not
appear.

To illustrate this robustness issue, we define the Loggruy function in dimension 2 as follows:

@x P R2, Loggruypxq � 10 log10

�
3.6�104

�
2̧

i�1

pxi�aiq2�r2

�
�� � ��

�
2̧

i�1

pxi�eiq2�r2

��
(43)

with paiqi �
�

0.153
0.939



; pbiqi �

�
0.854
0.814



; pciqi �

�
0.510
0.621



; pdiqi �

�
0.207
0.386



; peiqi �

�
0.815
0.146



and r :� 0.07.

The threshold chosen is T � 10 log10p3.6q and the corresponding Γ� excursion set (Equation (1))
is composed of 5 disconnected components. This function is particularly interesting in our context,
since it has strong gradients at the edges of the domain and weaker gradients in the middle, where
the different zones of the Γ� excursion set are located (Figure 8c). This means that the stationarity
assumption of the kriging meta-model cannot be verified.

Figure 8 represents in the case of an enrichment of 100 and 200 points of SUR Vorob’ev, from
an initial DoE of size 10, the contour lines of the coverage probability pn and the kriging mean mn.
Estimators Γ̂1 and Γ̂2 are also represented and compared to Γ�. An irregularity is observed for the
contour lines of pn either after 100 or 200 iterations. But, mn is relatively accurate even after 100
iterations. Γ̂2 estimator is then less efficient than Γ̂1 estimator.

In summary, Γ̂2 estimator related to Vorob’ev theory is more dependent on the stationarity
hypothesis than Γ̂1 naive estimator, and this is essentially explained by the construction of Vorob’ev
expectation which is more sensitive to the kriging standard deviation (Equation (29)). Consequently,
the approximation error Err

�
Γ̂2pχj,nq

�
is more dependent on the stationarity hypothesis than the

naive approximation error Err
�
Γ̂1pχj,nq

�
.
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(a) ite � 100, pn (b) ite � 100, mn (c) Loggruy function

(d) ite � 200, pn (e) ite � 200, mn

Figure 8: At left and center, representation of the two Γ̂1 and Γ̂2 estimators after 100 iterations (first line)
and 200 iterations (second line) for SUR Vorob’ev, and with the contour lines of pn (first column) and mn

(second column), in comparison with the true excursion set (top right), for Loggruy function inversion (d � 2)
with T � 10 log10p3.6q, for a particular initial DoE of size 10.
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