
Block low-rank compression inmixedprecision
for the solution of sparse linear systems

Matthieu Gerest, Cifre PhD student (EDF R&D, LIP6)
Joint work with P.Amestoy, O.Boiteau, A.Buttari, F.Jézéquel, J.-Y.L’Excellent, T.Mary

Low-precision arithmetics

Mantissa (m) Exponent Range u = 2−m−1

fp64 (double) 52 bits 11 bits 10±308 1× 10−16

fp32 (single) 23 bits 8 bits 10±38 6× 10−8

fp16 (half) 10 bits 5 bits 10±5 5× 10−4

bfloat16 (half) 7 bits 8 bits 10±38 4× 10−3

BLR matrices
We consider a certain class of matrices, whose off-diagonal blocks

have low numerical ranks. More precisely, the singular values of such
blocks decrease rapidly, typically following an exponential decay. BLR
compression consists in approximating each of those block as a product
of two smaller rectangular matrices (low-rank approximation). It may be
based on a truncated SVD or QR decomposition.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example of a BLR matrix
(perf009, RIS pumpfrom EDF).

Color scale: numerical ranks of the blocks

Low rank approximation of
a block: B ≈ X × Y T

Low-rank approximation in mixed precision
We introduce a new approach to handle a low-rank approximation, in

case it is based on a truncated SVD or QR decomposition. We propose
to separate the columns into several groups, associated with different
floating-point formats.

- A criterion for storing columns xi and yi in precision fp32:
ε

ubf16
∥B∥ < σi ≤ ε

ufp32
∥B∥

- Compression error: ∥B −XΣY ∥ ≲ 5ε∥B∥, instead of ε∥B∥

X1X2 X3

Y T
1

Y T
2

Y T
3

Σ1Σ2 Σ3

× ×

: fp64 : fp32 : bfloat16
Approximation of a block as a truncated SVD

0 10 20 30 40 50 60 70

10
-20

10
-15

10
-10

10
-5

10
0

Repartition of the singular values
of a block: a typical example

(perf009, block (12,11))

LU factorization (dense matrices)
- Block LU factorization algorithm, step k:
→ Compute LkUk = Akk

→ Update formula: for i, j > k,
Aij ← Aij − (AikU

−1
k )× (L−1

k Akj)

- With BLR compression, the approximation Aik ≈ XikY
T
ik allows to

reduce the number of operations.

- Example of kernel in mixed precision: multiplication LR × matrix :

× = × + ×

computed in fp64 computed in fp32

- This new algorithm is numerically stable (see [1]), like its
monoprecision variant (see [2]):

L̂Û = A+∆A, ∥∆A∥ ≤
(
c1ε+ c2ρnufp64

)
∥A∥

Results on dense matrices
- We emulate a LU factorization with BLR in 3 precisions: fp64, fp32

and bfloat16.

- Hypothesis: time cost = flops(fp64) + 1
2flops(fp32) + 1

4flops(bf16)

- We plot the relative gains with mixed precsion compared to double
precision, as a function of the error. We notice that, for a given
error, the mixed precision variant achieves better performances than
the double precision (×2 to ×3 in terms of storage and expected time).

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

LU factorization of sparse matrices
A multifrontal solver, such as MUMPS[3], computes a LU

factorization of a sparse matrix. In order to do that, many
partial LU factorizations of smaller dense matrices are computed.

The LU factors are potentially BLR matrices,
and their storage cost is a large part of the
memory peak. We added an option in MUMPS
that converts the low-rank blocks to mixed
precision when they are not used.

If mixed-precision BLR is used for storage
gains only, only a conversion operation is needed
for the formats. Instead of the 3 common
floating-point formats, we decided to use 7,
respectively on 64, 56, 48, 40, 32, 24, and 16 bits.

L
U

L
U

L
U

L
U

L
U

L
U

L
U

: memory for factors
: working memory

- Example: conversion from fp32 to "fp24":

sign
exponent
(8 bits)

mantissa
(23 bits)

copy
bytes

sign exponent
(8 bits)

mantissa
(15 bits)

Representation of a low-rank

block stored in 7 precisions

- Our first results show that, by adding mixed precision, there is a gain
of storage between ×1.2 and ×1.7 regarding the LU factors:

Matrix precision Factor size
(GBytes)

Memory peak
(GBytes)

Scaled
residual

thmgas fp64 95 120 6.4E-14
mixed 59 86 5.5E-14

perf009 fp64 25.6 36 1.3E-10
mixed 20.5 32 1.4E-10

Perspectives
- Aim for times gains in MUMPS by performing computations in mixed

precision

- Develop a variant of the algorithm that uses fp16 instead of bloat16.
Scaling methoids will be required.

- A QR factorization algorithm may be accelerated using mixed precision

References
[1] P.Amestoy, O.Boiteau, A.Buttari, M.Gerest F.Jézéquel, J.-Y.L’Excellent,T.Mary.

Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU
Factorization, 2021 (preprint)
[2] N.Higham, T.Mary, Solving Block Low-Rank Linear Systems by LU Factorization is

Numerically Stable, IMA Journal of Numerical Analysis, 2019
[3] https://mumps-solver.org


