

Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers

Roméo Molina, Stef Graillat, Fabienne Jézéquel, Théo Mary

▶ To cite this version:

Roméo Molina, Stef Graillat, Fabienne Jézéquel, Théo Mary. Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers. Sparse Days Meeting 2022, Jun 2022, Saint-Girons, France. . hal-03780522

HAL Id: hal-03780522 https://hal.science/hal-03780522v1

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Adaptive Precision Sparse Matrix–Vector Product and its Application to Krylov Solvers Roméo Molina^{1,2} Stef Graillat¹ Fabienne Jézéquel^{1,3} Theo Mary¹ ¹Sorbonne Université, CNRS, LIP6, Paris, France ²Laboratoire de Physique des 2 infinis Irène Joliot-Curie – IJCLab,

For more details:

Today's floating-point landscape

	Bits			
	<pre>Signif.(t)</pre>	Exp.	Range	$u = 2^{-t}$
fp8-e4m3	4	3	$10^{\pm 2}$	1×10^{-1}
fp8-e5m2	5	2	$10^{\pm 5}$	3×10^{-1}
bfloat16	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	53	11	$10^{\pm 308}$	1×10^{-16}
fn128	113	15	$10^{\pm 4932}$	1×10^{-34}

• Low precision increasingly supported

CNRS, Orsay, France

- Great benefits:
 - Reduced **storage**
 - Reduced **energy**
 - Increased **speed**
- Some limitations:
 - Low accuracy (large u)
 - Narrow range

An example

³Université Paris-Panthéon-Assas, France

Targeting an fp64 accuracy using precisions bfloat16, fp32 and fp64

- 66% elements dropped
- 11% converted to bf16
- 12% converted to fp32

Mixed precision algorithms

Objectives:

- Performance benefits of low precisions
- Accuracy and stability of high precisions

Opportunity for mixed precision:

all computations are not equally "important"!

64 bits

a

+b

Unimportant bits

 \Rightarrow We can adapt the precisions to the data at hand

Uniform vs adaptive precision SpMV

$A \in \mathbb{R}^{m \times n}, x \in R^n$

• only 11% stay in fp64

Adaptive methods achieve an accuracy similar to that of the uniform ones

Storage gains

precision u_k

Theorem 1: Adaptive SpMV error bound

Given an accuracy target ϵ the buckets B_{ik} must be built as $B_{ik} = \{ j \in nnz_i(A) : |a_{ij}x_j| \in (\varepsilon\beta_i/u_{k+1}, \varepsilon\beta_i/u_k] \}$

to get

 $|\widehat{y}_i - y_i| \leq n_i \varepsilon \beta_i$

with:

• $\beta_i = \sum_j |a_{ij}x_j|$ for componentwise (CW) error: $\forall i |\hat{y}_i - y_i| \leq O(\epsilon) \sum_j |a_{ij}x_j|$

• $\beta_i = ||A|| ||x||$ for normwise (NW) error: $||\hat{y} - y|| \le O(\epsilon) ||A|| ||x||$

Adaptive methods achieve significant storage gains, up to a factor $36 \times$

Time gains

Storage gains translate into time gains, up to a factor $7 \times$

Adaptive SpMV within GMRES

GMRES $r = b - Ax_0$ $\beta = \|r\|_2$ $q_1 = r/\beta$ for k = 1, 2, ... do $y = Aq_k$ for j = 1: k do $h_{jk} = q_j^T y$ $y = y - h_{jk}q_j$

GMRES-based iterative refinement for i = 1, 2, ... do $r_i = b - Ax_{i-1}$ in high precision Solve $Ad_i = r_i$ by GMRES in lower precision $x_i = x_{i-1} + d_i$ end for The bottleneck of GMRES is SpMV

Experimental settings

- 34 matrices from SuiteSparse collection and industrial partners with at most 166M non-zeros.
- Machine: Intel Xeon E5-2690v3, 24 cores @2.60GHz, 193Go Memory

 Different accuracy targets 	 Different sets of precision formats 					
○ fp32	• 2 precisions: fp32, fp64					
○ fp48	$\circ~3$ precisions: bfloat16, fp32, fp64					
○ fp64	$\circ~7$ precisions: bfloat16, fp24, fp32, fp40, fp48					

Emulated formats							
Bits							
Format	Signif.(t)	Exponent	Range	$u = 2^{-t}$			
fp24	16	8	$10^{\pm 38}$	2×10^{-5}			
fp40	29	11	$10^{\pm 308}$	2×10^{-9}			
fp48	37	11	$10^{\pm 308}$	8×10^{-1}			
fp56	45	11	$10^{\pm 308}$	3×10^{-1}			

end for $h_{k+1,k} = \|y\|_2$ $q_{k+1} = y/h_{k+1,k}$ Solve $\min_{c_k} \|Hc_k - \beta e_1\|_2$ $x_k = x_0 + Q_k c_k$ end for

fp56, fp64

⇒ But how does the adaptive method affect the convergence?

For reasonable accuracy targets, adaptive SpMV does not affect the convergence scheme