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1 Summary Points 21 

1. Phenology models for plants and ectotherms share several characteristics in their 22 

structure and mathematical functions representing responses of organisms to 23 

environmental factors because of the many similarities in the environmental control of 24 

their developmental cycles. 25 

2. Divergences in phenology modelling for plants and animals are mostly due to 26 

specificities of the questions addressed. Many animal models tackle issues at the 27 

population level and take explicit account of individual variability, whereas plant models 28 

focus on physiological issues and are often concerned with the average plant at the 29 

species or variety level. 30 

3. Phenology models for plants and ectotherms share the same shortcomings: they do not 31 

take into account the geographical variability in model parameters due to local adaptation 32 

to climate; they do not take into account the potential acclimation of developmental 33 

responses to temporally variable environmental factors; they are defective in modelling 34 

accurately the resting stage and the effects of photoperiod. 35 

4. Process-based phenology model parameters are difficult to estimate and accurate 36 

estimation requires a combination of statistical and experimental inference. 37 

5. Plant and animal phenology modelling have not cross-fertilized so far. Respective 38 

research communities could learn from each other to advance our understanding of the 39 

mechanisms of developmental timing.  40 
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Abstract 41 

Phenology is a key aspect of plant and animal life strategies that determines the ability to 42 

capture seasonally variable resources. It defines the season and duration of growth and 43 

reproduction, and paces ecological interactions and ecosystem functions. Phenology models 44 

have become a key component of models in agronomy, forestry, ecology, and biogeosciences. 45 

Plant and animal process-based phenology models have taken different paths that have so far 46 

not crossed. Yet, they share many features because plant and animal annual cycles also share 47 

many characteristics, from their step-wise progression including a resting period, to their 48 

dependence on similar environmental factors. We review the strengths and shortcomings of 49 

these models and the divergences in modelling approaches for plants and animals, which are 50 

mostly due to specificities of the questions they tackle. Finally we discuss the most promising 51 

avenues and the challenges phenology modelling needs to address in the upcoming years. 52 

  53 
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2 Introduction 54 

2.1 Why are phenology models important?  55 

Appropriate seasonal timing is a basic ecological requisite for all organisms as their life-56 

cycle must be keyed to the appropriate seasonal cycles of climate or resources. The phenology 57 

of plants is a key regulator of ecosystem processes and biosphere feedbacks to the climate 58 

system (Richardson et al. 2013). It regulates ecosystem productivity (Richardson et al. 2012), 59 

and more broadly ecosystem carbon cycling (Delpierre et al. 2009b), water (Hogg et al. 2000), 60 

nutrient cycling processes (Cooke & Weih 2005) and energy balance (Wilson & Baldocchi 61 

2000). At the community level, food webs largely depend on developmental timing of the 62 

interacting species. For example, the fitness of insect herbivores feeding on plants often 63 

depends on the timing of appearance of young palatable leaves (Pureswaran et al. 2015) with 64 

consequences all the way up the food web (Godfray et al. 1994; Visser & Holleman 2001; Stoks 65 

et al. 2005). Phenology is also one of the most important phenotypes considered in varietal 66 

selection in agronomy as it determines the yield and the organoleptic quality of the harvest 67 

(Nissanka et al. 2015; Alderman & Stanfill 2017). 68 

Growing evidence of the key importance of seasonal timing for growth, performance, and 69 

fitness has inspired research in agronomy, ecology and environmental sciences to elucidate and 70 

model environmental controls on phenology and predict how it will respond to ongoing climate 71 

change. The timing of developmental stages is indeed largely dependent on environmental cues. 72 

Phenology models have thus become a key component in models of crops (Nissanka et al. 73 

2015), Earth systems (Dahlin et al. 2015), population dynamics (Anderson et al. 2013; Maino 74 

et al. 2016), species distribution (Chuine 2010; Régnière et al. 2012a), and evolutionary 75 

dynamics (Asbury & Angiletta 2010; Donohue et al. 2015; Duputié et al. 2015). A detailed 76 

description of why phenology models are an important component of these different models is 77 

presented in Supplemental Materials Section S1.  78 
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 79 

2.2 Comparison of plant and animal seasonal biology 80 

Plants and insects share several features of their developmental cycle. Figure 1 provides 81 

a comparative overview of the most common annual cycles of insects and plants, which 82 

especially highlights the convergence between insects and perennial plant cycles where, for 83 

example, diapause is equivalent to endodormancy, and quiescence to ecodormancy (Considine 84 

& Considine 2016). In most animals, reproduction occurs in the last (adult) life stage, separated 85 

in time from growth and other functions. In annual or biennial plants, reproduction also takes 86 

place when growth stops and leads to death, while the two functions can take place 87 

simultaneously in perennials, especially woody plants. For example, in many temperate and 88 

boreal tree species, flowering and fruiting take place at the same period as leaf unfolding and 89 

growth, and secondary growth respectively. Species with obligate diapause or estivation usually 90 

exhibit discrete (distinct, non-overlapping) generations, as a result of the strong life-cycle 91 

synchronization imposed by the resting period occurring in a specific life stage. However, in 92 

the absence of such strong synchronization, multiple generations can coexist, posing particular 93 

ecological problems such as inter-generational competition or mate finding (Yamanaka et al. 94 

2012).  95 

Most ectotherms and extratropical plant species have the ability to enter a resting stage 96 

during seasons unfavorable to growth, resource acquisition or reproduction. This period is a 97 

key adaptation to seasonal climates. It is called diapause in animals (Hand et al. 2016) and 98 

endodormancy for buds or dormancy for seed in plants (Lang et al. 1987). It takes place in 99 

winter in temperate climates and for most species in Mediterranean climates, and in summer in 100 

arid subtropical climates. In many cases, animal and plant species have evolved an inflexible 101 

“synchronizing” mechanism through obligatory rest. Diapause controls voltinism in many 102 

insects. Species that do not have a clear diapause exhibit complex life cycles (Powell & Logan 103 
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2005). But many animal species display optional diapause or estivation in one or more life 104 

stages as a more flexible life-history strategy to avoiding unfavorable periods such as dry season 105 

or winter. In most organisms, this rest period is broken by the cumulative action over time of 106 

cold temperatures, dry weather, drought-breaking rainfall (Speybroek et al. 2006) or simply 107 

time passed (Delisle et al. 2009). Similarly, many plant species display cyclical dormancy of 108 

buds or seeds, controlled by seasonal environmental cues.  However, in contrast with insects, 109 

which show sequential and unique resting life stages at the whole-organism level, plants are 110 

modular organisms showing some degree of independence of their different organs (leaf, wood, 111 

root, flower, fruit) that can each have their own developmental cycle (Delpierre et al. 2016). 112 

 113 

2.3 Comparative overview of environmental cues in plant and animal phenology 114 

Another common feature of plant and insect phenology is the environmental control of 115 

their developmental rates. In both types of organisms, temperature, photoperiod, water and 116 

nutrient availability, in order of importance, either alone or in interaction with each other, are 117 

used as cues at different stages of development (Photoperiod: Hand et al. 2016; Zohner et al. 118 

2016; temperature and photoperiod: Fantinou et al. 2004; Caffarra et al. 2011a; food: Murillo-119 

Rincón et al. 2017; photoperiod and food: Ridsdill-Smith et al. 2005; moisture: Stoks et al. 120 

2005; Misson et al. 2011; temperature and humidity: Jaworski & Hilszczanski 2013).  121 

Temperature is the strongest determinant of plant and insect phenology whatever the 122 

species. Warmer temperatures accelerate the rate of cell elongation in plants, as well as 123 

metabolic, developmental and reproductive rates in insects. Cooler temperatures have a dual 124 

effect in plants depending on the cycle’s period, which can generate errors of interpretation in 125 

experiments. On one hand, cool temperatures activate the stress response pathway in plants and 126 

thereby the induction of endodormancy, and leaf senescence (Cooke et al. 2012).  On the other 127 

hand, accumulation of cool temperatures during endodormancy or vernalisation respectively 128 
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releases dormancy or promotes flowering (Cooke et al. 2012). A period at cool temperature, or 129 

simply the passage of time, is also required to end diapause in animals. 130 

Photoperiod plays a less universal role. It does not affect all developmental transitions, 131 

and species differ in their sensitivity to this cue. Zohner et al. (2016) found that about one third 132 

of extratropical tree species were sensitive to photoperiod but the magnitude of the effect on 133 

leaf out phenology was generally minor in 95% of species. In plants, photoperiod plays a role 134 

in growth cessation, bud set, dormancy induction, and leaf senescence (chlorophyll net 135 

production). In many animals, it is the diapause trigger. In both plants and animals, photoperiod 136 

can also interact with temperature and alter the development rate or cell elongation rate. In 137 

environments where day length varies little, such as the tropics, animals use a variety of other 138 

diapause-induction cues such as temperature, precipitation, food quality, even population 139 

density (Hand et al. 2016).  140 

In both animals and plants, nutrition and water availability have less important effects 141 

on phenology, except under extreme conditions (Misson et al. 2011; Jaworski & Hilszczanski 142 

2013). However, nutrition seems more important in the growth and development of animals, as 143 

it can slow or accelerate development rates, and even induce summer diapause (Ridsdill-Smith 144 

et al. 2005; Stoks et al. 2005; Murillo-Rincón et al. 2017), while water availability seems more 145 

important in the growth of plants as cell elongation necessitates a minimal turgor pressure and 146 

water availability also affects nutrients uptake. Finally, both in plants and animals, living 147 

circumstances can alter the developmental pathways in fundamental ways. In frogs, 148 

intraspecific competition (so-called priority effects) can alter compensatory developmental 149 

acceleration responses to delayed hatch, and may help explain the maintenance of synchronous 150 

life histories (such as explosive breeding) in seasonal environments (Murillo-Rincón et al. 151 

2017). Compensatory developmental and growth responses have been found in a damselfly, 152 
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associated with photoperiod, food resources and predation pressure (Stoks et al. 2005). In 153 

plants, herbivory is also known to affect phenology (Palacio et al. 2013). 154 

This short comparative overview shows that insect phenology is more temperature-155 

driven, and less photoperiod- or water-driven than it is in plants. It may also be somewhat less 156 

dependent on cool winter temperatures. As a result, global warming may affect their respective 157 

phenology differently. However, because herbivore fitness is very much dependent on 158 

synchrony with their host plants, and because many have short generation times, we might also 159 

expect that life cycle asynchrony induced by global warming could lead to rapid herbivore 160 

adaptation through natural selection. 161 

 162 

2.4 Scope of the review 163 

In this review we focus on process-based phenology models (not on analytical or statistical 164 

phenology models) that describe known or hypothetical cause-effect relationships between 165 

physiological processes and some driving factors in the organism’s environment to predict the 166 

precise occurrence in time of various phenological events. We provide an overview of process-167 

based phenology models used for plants and animals, focusing on their similarities and 168 

differences. We discuss their shortcomings and the main challenges for future research. We 169 

have restricted our review to extra-tropical regions for space reasons. Examples used in this 170 

review are biased towards insects for animals and trees for plants, but most of the rationale, 171 

methods and models we describe are applicable to all plants and ectotherms.  172 

 173 

3 History of phenology models 174 

3.1 From degree days to non-linear models 175 

Phenology modelling has a long history starting in 1735 with a publication by de Reaumur 176 

(1735) introducing the concept of degree-day sum. He proposed that plant development is 177 
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proportional to the sum of temperature over time rather than to temperature during the 178 

phenological event itself. This is still the most important assumption in plant and animal 179 

phenology modelling. Interest in phenology modelling was rekindled in the late 20th century 180 

because of the revolution in computer science, the advent of integrated pest management and 181 

growing concern about global climate change. Since 1980 the number of articles dealing with 182 

phenology modelling has increased almost exponentially (from 50 in 1991 to over 500 in 2016), 183 

and most of them have been dedicated to proposing and validating new models, or comparing 184 

models.  185 

The overwhelming influence of temperature on the performance of plants and ectotherms 186 

has led to the development of the Metabolic Theory of Ecology (MTE; Brown et al. 2004; 187 

Schramski et al. 2015), that we detail in Supplemental Materials Section S2. Central to the MTE 188 

is its description of the Universal Temperature Dependence (UTD) of ecological processes, 189 

from metabolism to ecological interactions, based on the Boltzmann factor, a simple 190 

exponential function of temperature borrowed from the theory of statistical mechanics of gases 191 

(equation [S1] Supplemental Materials Section S2). Many authors have suggested that the UTD 192 

could be made more realistic if the Boltzmann factor was replaced by a unimodal response 193 

function covering the entire range of temperatures that organisms are exposed to in nature 194 

(Knies & Kingsolver 2010). An appropriate UTD function must display characteristic optimum 195 

(Topt) and critical minimum (CTmin) and maximum (CTmax) temperatures (Pörtner et al. 2006; 196 

Deutsch et al. 2008; Kingsolver 2009; Asbury & Angiletta 2010). The critical temperatures 197 

result from the inactivation (reversible denaturation) of enzymes at extreme temperatures, and 198 

reduce the efficiency of metabolic reactions (equation [S3]; Fig. S1).  199 

 200 
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3.2 From event prediction to individual-based models 201 

Modelling plant and animal phenology took two separate pathways that have not crossed 202 

so far. Yet, they share several common features. In both cases, models started to be developed 203 

in the 1950s, and at first focused on specific phenological stages: leafing and flowering in plants 204 

(Weinberger 1950) and primarily in cultivated plants until the 1980s (Chuine et al. 2013); or 205 

appearance of target life stages for monitoring or control under the integrated pest management 206 

paradigm in animals, mostly insects (Kogan 1998). While plant phenology models covering the 207 

whole annual cycle have been developed for crops (e.g. Nissanka et al. 2015; Alderman & 208 

Stanfill 2017), such models for wild plants are still rare (but see e.g. Burghardt et al. 2015 for 209 

Arabidopsis; Chuine & Beaubien 2001 for tree species). This is because autumn phenophases 210 

such as leaf senescence and fruit maturation have received much less attention than spring 211 

phenophases so that observations and experimental results available to define, calibrate and 212 

validate models are still scarce, and either concern forest trees for leaf senescence (Delpierre et 213 

al. 2016) or crops for fruit maturation (e.g., Soltani et al. 2006; but see Mutke et al. 2003). 214 

Moreover, very few studies so far have attempted to model the phenology of wood (Takahashi 215 

& Koike 2014) ), and no model incorporates the phenology of fine roots and more broadly the 216 

phenology of nutrient, water, carbon and energy fluxes in a single scheme.  217 

Models of insect phenology are increasingly concerned with the succession of life stages 218 

throughout their entire life cycle from egg to adult, including reproduction and survival, in 219 

response to climate (Logan et al. 2003; Régnière et al. 2012a; Sporleder et al. 2013). This 220 

holistic view of life-cycle modelling has triggered increasing attention on the realistic 221 

incorporation of individual and microclimatic variability and methods to describe and simulate 222 

them in models. Early attempts at doing this used a variety of techniques such continuation 223 

ratios using degree-day accumulation (Candy 1991). The majority of insect phenology models 224 
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rely on a “cohort” approach, where accounting of development is done for distinct cohorts based 225 

on the variability of development times (Logan 1988).  226 

Increasingly however, individual-based models are being developed to accommodate 227 

the complexity of animal life histories (DeAngelis & Grimm 2014). They facilitate the 228 

introduction of developmental pathway bifurcations such as facultative entry into diapause, the 229 

co-existence of multiple, single and partial generations per year, and the variation of 230 

developmental responses between individuals (de Jong & van de Have 2009; Régnière et al. 231 

2015). Simulation of individual variation is discussed in more detail in Supplemental Materials 232 

Section S2. While individual-based models have the burden of high memory and computing 233 

power, they offer many advantages in terms of mathematical simplicity and flexibility 234 

(Régnière et al. 2015). They also constitute a ready platform for modelling natural selection 235 

processes in animals (Moustakas & Evans 2013; Redaubo et al. 2013) as well as in plants 236 

(Warren & Topping 2001). 237 

 238 

4 A comparative overview of plants and animals process-based phenology models  239 

Several recent papers compare phenology models, for either plants (Hänninen & Kramer 240 

2007; Chuine et al. 2013; Olsson et al. 2013; Basler 2016) or animals (Niehaus et al. 2012; 241 

Colinet et al. 2015). Here we present a comparative overview of both plant and animal 242 

phenology models, but do not present an exhaustive list of models that can be found in these 243 

papers. We made here the choice of highlighting similarities and differences between plant and 244 

animal phenology models.  245 

 246 

4.1 Philosophy and structure of the models 247 

Process-based phenology models formally describe known or hypothetical cause-effect 248 

relationships between physiological processes involved in the developmental cycle of 249 
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organisms and some driving factors in the plant’s environment. The structure of process-based 250 

models is usually based on systems theory rather than statistical inference (Hänninen & Kramer 251 

2007). New relationships are allowed in such models only if information on their impacts on 252 

the modeled processes is available. It is important to note that parameters of mechanistic models 253 

have physical dimensions that can, in principle, be measured directly instead of being 254 

statistically inferred. However, this is not always possible, especially for some particular phases 255 

such as endodormancy induction and termination in plants because this state of development is 256 

particularly difficult to assess. This is why so little modelling of diapause itself has been 257 

attempted in ectotherms (Hodek 1996). Process-based phenology model structure and 258 

hypotheses are thus built on experimental results on the environmental control of particular 259 

development phases obtained under controlled conditions. 260 

Process-based plant phenology models have taken a new turn due to the recent availability 261 

of high-throughput phenotyping techniques (Nagano et al. 2012; Satake et al. 2013; Kudoh 262 

2016). Recent advances in molecular biology, cell biology and metabolomics have shed a new 263 

light on the molecular basis of temperature and photoperiod responses of cell activity in model 264 

organisms such as Arabidopsis and Poplar (Bratzel & Turck 2015; Singh et al. 2016). Similar 265 

progress is being made concerning the processes of diapause in insects (Xiongbing et al. 2015; 266 

Hand et al. 2016; Kang et al. 2016). However, very few studies have incorporated this 267 

knowledge into predictive models so far.  268 

Phenology models for the entire annual cycle of a plant or an animal can be seen as 269 

metamodels composed of several sub-models describing each a component of the cycle, i.e. a 270 

phenophase such as flowering in plants, or a life stage such as a larval instar in insects (Fig. 2). 271 

Development is represented by a state variable, S for development Stage, which is the 272 

summation of development over time (in steps of days, hours or minutes) from a start date t0, 273 

as a function of environmental cues. If the cycle comprises n+1 development phases (Fig. 2), 274 
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by definition S0 = 0 in the initial stage (e.g. seed germination, egg hatch), and Sn reaches some 275 

maximum value ( ) at the end of the last stage (often defining an annual cycle). Each 276 

phenophase (or life stage) k starts at tk and ends at time tk+1 when Sk reaches a value , which 277 

is specific to the model. Each phenophase is described by a sub-model determining its reaction 278 

norms f to various cues (T: temperature, P: photoperiod, W: water, L: light, N: nutrient, B: 279 

stressful biotic interaction). Response functions combine by addition (+), multiplication (×) or 280 

composition (○). Phases are either sequential (follow each other in time) or overlap (one phase 281 

can start before the end of the previous phase). The general structure of process-based 282 

phenology models is thus: 283 

 tk such that   [1] 284 

Virtually any phenology model can fit into this framework. Models essentially differ in 285 

the number of phases n they distinguish and in the functions describing each phase’s 286 

development rate R(Z) (Figs. S2, S3). For example, a single-phase Growing Degree Day model, 287 

the simplest phenology model with only three parameters, can be written as:  288 

 t1 such that where   [2] 289 

where Tt is daily mean temperature, t0 is the starting date of the phenophase, Tb is the threshold 290 

temperature and S* is the degree-day sum required to complete the phenophase (at t1). 291 

In annual plants and univoltine animals, phenophases are sequential so that sub-models 292 

do not interact with each other except for their start date that corresponds to the end date of the 293 

previous phase. Many insect models have the distinction of representing the development of a 294 

population of individuals (or cohorts of individuals), whereas most plant models (see 295 

hydrothermal models for seedbanks) represent the development of the average individual of a 296 

population/variety. In many models, an individual advances by one life stage when S reaches 297 
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an integer value (e.g., hatch, molt, metamorphosis), each individual having its own specific 298 

development rate. The developmental progression of a population is a compilation of a large 299 

number of individuals. In cohort-based models, it is the value of  at which a cohort changes 300 

life stage that is subject to a distribution. Plant models usually do not simulate the phenology 301 

of a population of plants (except for seed), but they simulate the phenology of the different 302 

organs of the plant, using one phenology model for each event such as bud dormancy, leaf 303 

unfolding, flowering, fruit growth and maturation, leaf senescence (e.g. Chuine & Beaubien 304 

2001; Nissanka et al. 2015; Alderman & Stanfill 2017). The variability of developmental timing 305 

among similar organs (e.g. leaves, flowers) within a plant is a level of complexity that has never 306 

been incorporated into the models so far, but would probably increase their accuracy especially 307 

in the case of tree models. 308 

Some animals, such as mites and most adelgids, can have very complex life cycles with 309 

different morphs in the adult stage. In tree species, model structure can be more complex 310 

because of the specific phenology of the different organs that can overlap. Moreover, some 311 

phenophases such as leaf unfolding or flowering can even be decomposed into several sub-312 

phases such as endodormancy (inability of cells to elongate despite favorable environmental 313 

conditions) and ecodormancy (ability of cells to elongate if environmental conditions are 314 

favorable to growth) that might also overlap. Some studies indeed suggest that endodormancy 315 

is a dynamic process and that ecodormancy can start before endodormancy has been fully 316 

released (Cooke et al. 2012). In view of this, an important concept for tree phenology models 317 

is the growth competency function introduced by Hänninen (1990), which represents the level 318 

of endodormancy and regulates the ability to grow when environmental conditions are favorable 319 

(Olsson et al. 2013). Similar cases can be found in the diapause of many insects, a fact that 320 

prompted Hodek (1996) to use the phrase “diapause is never over” to illustrate that the 321 

*

kS
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completion of diapause and return to normal thermal response can be gradual. This is taken into 322 

account in some insect phenology models (Régnière et al. 2012a). 323 

Rates of development are in most cases solely calculated as a function of temperature. 324 

However, lately, new models for trees have tried to incorporate new insights on the 325 

physiological basis of cell activity, modulating the development rate by other cues such as 326 

photoperiod (Caffarra et al. 2011b) or coming back to transition state theory by modelling the 327 

dynamics of a growth promotor/inhibitor system (Schaber & Badeck 2003). 328 

 Other environmental variables such as light spectral quality, water availability, 329 

nutrients; and biotic variables, such as pathogen or herbivore attacks are also known to alter 330 

the developmental cycle but have not been taken into account in models so far. 331 

 332 

4.2 Response functions to environmental cues 333 

The focus of phenology modelling efforts has been to relate temperature to phenological 334 

events, so most response functions describe the effect of temperature. In animals as in plants, 335 

many phenology models are based on the degree-day linear approximation. To account for 336 

population-level variability, many have used the continuation-ratio approach of Candy (1991) 337 

in insect models. While many authors still describe plant and insect developmental responses 338 

to temperature using linear regression (under the degree-day paradigm), the nonlinearity and 339 

unimodality of thermal responses seem ubiquitous when they are measured over the whole 340 

range of temperatures that life is exposed to in nature (see Supplementary Materials Section 341 

S3).  342 

The complexity of the Schoolfield et al. (1981) equation [S3], describing an asymmetrical 343 

unimodal response to temperature, spurred an ever-increasing suite of approximations designed 344 

to achieve the same unimodal behavior with fewer, easier to guess, parameters. Many of those 345 

functions were presented together elsewhere (Régnière et al. 2012b; Chuine et al. 2013), and 346 
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the most widely used functions are illustrated in Figures S2 and S3. An exhaustive library of 347 

these functions for plants can also be found in the PMP freeware at: 348 

www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform. The Gaussian 349 

distribution has been used to model development in some species (e.g. Jia et al. 2016) or to 350 

discuss issues of adaptation (Ashbury & Angiletta 2010), mainly because of its familiarity and 351 

its two intuitively simple parameters: mode (mean) and spread (variance). Other symmetrical 352 

unimodal functions have been used for plants (Chuine et al. 2013). However, symmetrical 353 

functions and functions that are non-zero over the entire range of temperature, do not describe 354 

actual thermal responses very well. Other functions, with increasing numbers of parameters, 355 

approximate the shape of equation [S3] with varying degrees of success, many making use of 356 

upper and lower critical temperatures as thresholds below and above which a biological process 357 

ceases completely (see Régnière et al. 2012b for animals; Chuine et al. 2013 for plants). The 358 

actual existence of such thresholds is questionable, because they are very difficult to measure 359 

due to excessive mortality when organisms are kept at those temperatures for long periods. In 360 

the context of degree-day calculations, they are essentially statistical features needed for 361 

calculation. In the context of non-linear development summation, their precise values are less 362 

critical, and they are used mostly as convenient cut-points for calculation. Nevertheless, the 363 

upper threshold has been discussed as a characteristic maximum critical temperature (CTmax) in 364 

papers on adaptation to climate change (Deutsch et al. 2008).  365 

More recently, response functions to other cues have been introduced in phenology models 366 

for plants, especially for photoperiod (Schaber & Badeck 2003; Caffarra et al. 2011b), but 367 

response functions used are similar to some already used for temperature. However, cues can 368 

sometimes interact in complex ways. For example, in the model of Caffarra et al. (2011b), 369 

photoperiod compensates for a lack of chilling temperature during endodormancy and the mid-370 

response photoperiod of the sigmoid response function varies with the amount of chilling 371 

http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform
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received. Similar modifying influences of photoperiod on insect development have been 372 

modelled successfully (Ridstill-Smith et al. 2005; Jia et al. 2016). 373 

 374 

4.3 Parameter estimation 375 

The major problem faced with process-based phenology models so far was that the basic 376 

biochemistry and biophysics of certain phases was incompletely understood, and estimation of 377 

response function parameters in experimental controlled conditions is very time consuming and 378 

cannot be achieved for all species. When direct measurements of model parameters cannot be 379 

made, two estimation approaches are used: the experimental approach, that analyzes the 380 

temperature response of growth and development under controlled conditions; and the 381 

statistical approach, that uses statistical inference techniques.  382 

Phenological observations used to develop, parameterize and validate phenology 383 

models have thus two main origins: historical observations in the field for cultivated species, 384 

and experimental results under controlled conditions in greenhouses, growth chambers or 385 

incubators. The accompanying meteorological data consequently often comes from different 386 

sources as well. Phenological observations in gardens or in experiments are usually 387 

accompanied by on-site meteorological observations. But phenological observations on wild 388 

populations are most often linked to off-site weather stations that can be relatively distant. In 389 

addition, many insects are exposed to microclimates that are determined by their habitat. 390 

Information on temperature in those habitats is usually lacking, and some form of microclimatic 391 

modelling is required to estimate temperature in the soil (Parton and Logan 1981), under the 392 

bark (Tran et al. 2007) or in growing shoots (Régnière et al. 2012a).  393 

 394 
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4.3.1 Experimental approach 395 

The experimental approach consists of experiments carried out under controlled 396 

conditions to analyze the underlying mechanisms of phenological responses, one mechanism at 397 

a time. This method has been very useful in animal phenology modelling, less so in plants, 398 

especially in trees, probably because of the logistical difficulty of conducting controlled 399 

experiments on such large organisms. 400 

For insects and other small organisms, the experimental approach has been extensively 401 

used to determine the developmental, reproductive and survival responses to temperature (see 402 

Régnière et al. 2012b for statistical methods, and Seehausen et al. 2017 for a recent example), 403 

photoperiod in interaction with circadian clocks (Saunders 2014), and moisture (Jaworski & 404 

Hilszczanski 2013). 405 

For plants, the experimental approach is primarily used to decipher the environmental 406 

factors affecting development. Pioneering work has been conducted by Sarvas (1972) on trees, 407 

and later on by Hänninen (1990), who tested experimentally several hypotheses concerning the 408 

environmental control of endodormancy release, and especially on its progressive nature 409 

(sequential vs overlapping phases leading to the Sequential vs Parallel models). Later on, the 410 

complex action of photoperiod on bud break was also revealed by experimental results (Caffarra 411 

et al. 2011a; Zohner et al. 2016). The experimental approach also allows estimating the 412 

parameters of the response functions to the environmental variables. One of the most easily 413 

measured responses is the temperature response of development rate during ecodormancy or 414 

quiescence, which corresponds to the response function of cell growth to temperature in plants 415 

(Sarvas 1972). We know that this function increases with temperature in a sigmoid fashion up 416 

to 25-30°C, and would probably show an optimum had higher temperatures been tested. By 417 

varying the temperature conditions experimentally over a wide range, the shape of the function 418 

can be determined precisely for different species, varieties, and genotypes. Other experiments 419 
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on plants are also used to measure indirectly the progress of endodormancy release using 420 

regrowth tests where seedlings are incubated at growth-promoting temperatures following a 421 

period of chilling, with both the chilling duration and temperatures are varied systematically. 422 

The pioneering work of Sarvas (1972) led for example to the triangular temperature response 423 

(peaking at 3.5°C) proposed for the rate of dormancy release (Fig. S3).  424 

 425 

4.3.2 Statistical inference  426 

When the experimental approach is not feasible, either because the organism cannot be 427 

reared or cultivated under controlled conditions, or because the physiological state cannot be 428 

determined precisely (e.g. endodormancy or diapause), one can use field or experimental 429 

observations together with meteorological data gathered at the same location to infer model 430 

parameters statistically. Most phenology models have been developed this way. 431 

The easiest method consists in fixing all but one parameter to a given value, and finding 432 

the value of the free parameter that minimizes the sum of squared residuals. All parameters are 433 

varied this way one after the other. This technique has several limits, most importantly (i) it is 434 

time consuming, (ii) a finite number of parameter values can be tested, (iii) parameter values 435 

are estimated independently from each other although they are usually not independent, (iv) the 436 

least squares function may have several local optima and it is almost impossible to find the 437 

global optimum without a more thorough search (especially when several parameters are cross-438 

correlated). Despite the availability of more efficient methods, it seems that in practice 439 

phenology parameters are still estimated with this method, especially in agronomy (Nissanka 440 

et al. 2015), probably because is it quite complex to couple a dynamic crop model to statistical 441 

optimization software.  442 

More efficient methods consist in estimating all parameters simultaneously using 443 

optimization algorithms. Traditional optimization algorithms such as downhill simplex or 444 
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Newton methods (Press et al. 1989) rarely converge towards the global optimum because of the 445 

strong interdependency of phenology model parameters (Kramer 1994). The simulated 446 

annealing method is more effective in this respect (Chuine et al. 1999) because it is especially 447 

designed for functions with multiple optima. More recently, other optimization algorithms have 448 

been used to calibrate phenology models such as the Uniform Covering by Probabilistic Region 449 

(UCPR) (Román-Paoli et al. 2000), and  complex maximum likelihood approaches in models 450 

of processes with “hidden states” in arthropods (e.g. Gray et al. 2001; Speybroeck et al. 2006). 451 

Bayesian approaches have also been used to parameterize phenology models, and when coupled 452 

with experimental approaches that provide prior information on the distribution of model 453 

parameters, they have proved powerful (Thorsen & Höglind 2010; Fu et al. 2012) 454 

 455 

4.4 Model validation 456 

As phenology models must predict future phenology, whether over the coming year (e.g., 457 

for crop and pest management) or over the next century (e.g., for global warming impact 458 

assessment), accurate parameter estimation is not sufficient, prediction accuracy is also critical. 459 

Cross-validation is an adequate testing method (Chatfield 1988) by which the model is tested 460 

by comparing its predictions to observations not used in model fitting. However, this method is 461 

data-hungry and it is not always possible to split the dataset into two parts, one to fit the model, 462 

the other to test its prediction accuracy. In such case, one can resort to “leave one out” (or 463 

jackknife) cross-validation (Stone 1977). 464 

5 Shortcomings of process-based phenology models  465 

5.1 Parameter estimation: lessons from the statistical approach  466 

As explained earlier, model parameters cannot always be measured under controlled 467 

condition, and statistical inference may be the only way to estimate them. Besides, statistical 468 
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inference probably appears very appealing as it is quick and it makes good use of long time 469 

series of phenological observations in various countries and therefore climatic conditions. 470 

However, this approach has some shortcomings that should be known. First, some parameters 471 

can be strongly correlated (e.g. base temperature of a GDD and the critical sum to reach S*) 472 

which can lead to several statistically equivalent sets of parameters as a whole with however 473 

very different parameter estimates when compared individually. Second, parameter estimation 474 

is dependent on the data used to fit the parameters which represent only a subset of the climatic 475 

conditions encountered by the species/variety across its range (phenological data rarely cover 476 

the entire geographic range of species) and/or its life (long term data series rarely exceed 20 477 

years which is very short compared to the life expectancy of a tree). This can lead to biased 478 

parameter estimates that can become especially problematic when using the models to provide 479 

forecast under future climatic conditions (Lobo 2016).  480 

 Because of these shortcomings, it is highly recommended not to rely solely on goodness 481 

of fit statistics to choose parameter sets, but also on the shape of the response functions 482 

obtained, as some might be completely unrealistic. Information on the realism of function’s 483 

shape comes from the experimental approach. However, recent studies have compared the 484 

phenology of plants and animals under controlled conditions and in natura, and found 485 

sometimes substantial differences (Nagano et al. 2012; but see Satake et al. 2013), so that 486 

models parameterized with the experimental approach might perform worse in nature and vice 487 

versa. This suggests that either the effect of some factors or interactions between factors or the 488 

daily variation of these factors in nature might be poorly represented under controlled 489 

conditions, and that epigenetic or acclimation effects might interfere. Therefore, a combination 490 

of both the experimental approach and the statistical approach is probably the best solution to 491 

obtain accurate and realistic models. In applying models derived from controlled-condition 492 

experiments, it is often useful to calibrate model output by comparison with a subset of field 493 
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observations, modifying the values of one or a few key parameters before validation (e.g. 494 

Régnière et al. 2012a). 495 

5.2 Estimating uncertainties 496 

Several sources of uncertainty can arise in predictions of phenological events occurrence: 497 

uncertainty on (i) the hypotheses mathematically formalized in the model (model structure 498 

uncertainty), (ii) the parameter estimates, (iii) model error and of course (iv) weather inputs. 499 

Some studies have used the differences between models as an indication of the model structure 500 

uncertainty (Nissanka et al. 2015, Wallach et al. 2017). Very few studies tried to estimate 501 

parameter estimate uncertainty (Forkel 2014; Alderman & Stanfill 2017). One reason for that 502 

is that statistical methods used so far to estimate parameters did not provide an easy way to 503 

calculate confidence intervals. However, there are various ways to estimate parameter 504 

uncertainty of phenology models. When parameters are estimated by least squares, the variance-505 

covariance matrix of the parameter estimators can be approximated using second derivatives of 506 

the model with respect to the parameters (Wallach et al. 2016). When a Bayesian approach is 507 

used, the posterior distribution of the estimated parameter vector is a direct result of the 508 

estimation method. Some authors have also proposed to simplify and linearize models 509 

whenever possible in order to use standard R packages (nlme) for parameter estimation and 510 

parameter variance estimation (Nissanka et al. 2015). Finally, model error is usually estimated 511 

by hindcasting or cross-validation. 512 

5.3 The current Achilles’ heel of process-based phenology models 513 

Geographic variation in parameters 514 

Because process-based phenology models describe how environmental factors affect 515 

adaptive physiological processes, their parameters are supposed to vary among individuals, 516 

among populations/varieties and among species. As phenological traits are highly adaptive 517 

(Chuine 2010; Donohue et al. 2015; Seebacher et al. 2015), we know that local adaptation does 518 
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exist for these traits (O’Brien et al. 2011; Alberto et al. 2013). Therefore, phenology models 519 

deployed at the scale of a species range should use differentiated parameter estimates across 520 

the range. Very few studies have considered this issue so far (but see Chuine & Beaubien 2001) 521 

as it requires large scale phenology databases to obtain parameter estimates for different 522 

populations. Moreover, combination of different parameter sets to obtain spatially continuous 523 

projections is not straightforward as no one knows either the grain of local adaptation, or how 524 

genetic differentiation varies spatially across a species’ range. Data comparing thermal 525 

responses or their genetic correlates across latitudinal gradients would be most useful (e.g. 526 

Bentz et al. 2001).  527 

 528 

Acclimation and plasticity 529 

In animal phenology, there is a growing body of literature focusing on the distinction 530 

between acute and acclimated thermal responses. Most experiments are performed under 531 

constant temperature regimes, where the physiology of the organisms may optimize 532 

development at the temperature they are kept at, through a process called “acclimation” 533 

(Stillman 2003), where the responses to temperature fluctuations differ depending on the 534 

average living conditions of the organism. In general, development times under variable 535 

temperature conditions are shorter than expected from models derived from data collected at 536 

constant temperature, even taking into full account the non-linearity of thermal responses 537 

(Niehaus et al. 2012). This reduction in sensitivity to temperature through physiological 538 

acclimation is expected to reduce the impact of climate change on the performance of species, 539 

especially those living near their upper physiological critical temperature (Seebacher et al. 540 

2015). Surprisingly, few studies on plants have addressed this issue. Most have dealt with the 541 

acclimation of photosynthesis to light (Walters 2005) and temperature (Hikosaka et al. 2006), 542 

but none has addressed the acclimation of developmental rate to temperature or light per se. 543 
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However, a few studies investigated the effect of daytime vs nighttime temperature on bud 544 

developmental rate (e.g. Rossi & Isabel 2016), which is probably related to the growing body 545 

of evidence of the interplay between photoperiod and temperature in regulating transcriptomic 546 

factors of cell elongation (Sidaway-Lee et al. 2010).  547 

The impact of acclimation seems to be more important in aquatic systems and in 548 

environments where natural temperature variability is lower (at lower latitudes), and less in 549 

some taxa (such as arthropods) than in others (such as molluscs) (Seebacher et al. 2015). In a 550 

study specific to the Drosophila genus (Insecta: Muscidae), Sorensen et al. (2016) concluded 551 

that plasticity of upper thermal limits was slight, slow to evolve, and that acclimation is weakly 552 

correlated with latitude and thermal variability of the environment. One element of this 553 

discussion seems central however: the precision with which the critical thermal minimum and 554 

maximum are measured (as defined in Stillman 2003). Measuring those thermal thresholds 555 

poses problems because of excessive mortality and inability of organisms to complete critical 556 

developmental steps (such as hatch of molts). More accurate values can be obtained by using 557 

variable temperature regimes coupled with appropriate statistical analysis methods (Régnière 558 

et al. 2012b). 559 

 560 

Modelling rest  561 

Rest is the ultimate synchronizer of seasonality in species that live in extratropical 562 

climates. Understanding the environmental control of rest is crucial to the development of 563 

phenology models in a large number of species, as it represents an adaptation to the cold (or 564 

dry) season (Kozlowski & Pallardy 2002; Hand et al. 2016).  565 

Diapause in animals and endodormancy in perennial plants are very complex processes 566 

that have mostly been treated as a black-box or often eluded in modelling (Hodek 1996; Chuine 567 

et al. 2013), mainly because it is difficult to find a good biological indicator of 568 
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diapause/endodormancy termination on which to base models (e.g. Speybroeck et al. 2006; 569 

Chuine et al. 2016). In many species, the end of diapause/endodormancy and the start of 570 

quiescence/ecodormancy overlap so that “diapause/endodormancy never ends” and the 571 

transition between diapause/endodormancy and quiescence/ecodormancy is gradual (Hänninen 572 

1990; Hodek 1996). So far, a molecular or physiological marker of diapause/endodormancy 573 

break is lacking (Cooke et al. 2012). However, the molecular and genetic mechanisms involved 574 

in diapause/endodormancy induction, maintenance and termination are under intense 575 

investigation and our understanding of this complex process is rapidly evolving (van der Schoot 576 

& Rinne 2011; Xiongbing et al. 2015; Hand et al. 2016; Kang et al. 2016). We foresee the use 577 

of molecular or physiological markers of developmental transitions such as endodormancy for 578 

high throughput phenotyping in the near future, methods that would be most useful for tracking 579 

these dynamic processes during experiments under controlled or natural conditions (Kudoh 580 

2016). 581 

The best example of modelling the dynamics of diapause is the work of Gray et al. (2001), 582 

which has allowed simulation of its seasonality over vast landscapes (Régnière et al. 2009). Jia 583 

et al. (2016) use diapause induction by photoperiod and temperature as a critical factor in their 584 

successful seasonal dynamics model of the Asian tiger mosquito Aedes albopictus (Skuse) 585 

(Insecta: Diptera; Culicidae). Some models take diapause into direct account in predicting 586 

seasonality (Ridsdill-Smith et al. 2005) model the induction of summer diapause in the 587 

redlegged earth mite Halotydeus destructor (Tucker) (Arthropoda: Acari; Penthaleidae) 588 

through a combination of photoperiod and duration of the long-term plant growth season. 589 

Photoperiodic induction of diapause is often mediated by temperature (Saunders 2014).  590 

Process-based models of bud endodormancy have so far relied on very little information 591 

about its exact environmental control and have not changed substantially since the pioneering 592 

work of Sarvas (1972), with however the important concept of growth competency introduced 593 
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by Hänninen (1990). Endodormancy is supposed to be broken after a certain period of exposure 594 

to chilling temperature and response functions to temperature classically show an optimum 595 

between -5°C and 15°C and are either symmetrical or asymmetrical. However, recent advances 596 

in molecular and cell biology, especially regarding the role of 1,3 β glucan in downregulating 597 

cell activity, could provide new insights for modelling endodormancy (van der Schoot & Rinne 598 

2011; Singh et al. 2016). 599 

In plants, another important rest period, especially for annuals, is seed dormancy. It is a 600 

complex process with several stages (primary dormancy gradually disappears over time and is 601 

followed by secondary dormancy after a period of low dormancy) with cues and responses to 602 

these cues varying largely among species. Process-based models of germination and seedling 603 

emergence of plants do exist since the 1990s (see review by Forcella et al. 2000), but most have 604 

been developed for weeds (Burghardt et al. 2015, but see MidMore et al. 2015). Simpler 605 

versions of these models rely solely on the hydrothermal time concept, i.e. cumulated time 606 

exposure to soil temperature and soil water potential above specific thresholds. The major 607 

challenge therefore lies in the ability to accurately simulate soil temperature and water potential 608 

(Bullied et al. 2014). To achieve more complex dormancy models, one would also need to take 609 

into account the impact of seed burial depth, oxygen deficiency, light quality, chilling, diurnal 610 

soil temperature fluctuations and maternal environment (epigenetic effects) (Forcella et al. 611 

2000).  612 

 613 

Modelling photoperiod sensitivity  614 

Plant and animal phenology is dependent on photoperiod, although sensitivity to this cue 615 

varies greatly among species. The photoperiodic cue is linked to the physiology of the circadian 616 

clock (Petterle et al. 2013; Meuti & Denlinger 2013). Photoperiod can interact in a complex 617 

manner with temperature, for example altering the critical photophase, the incidence of 618 
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diapause, the time of reproduction in insects (Fantinou et al. 2004); and leaf senescence 619 

(Fracheboud et al. 2009), dormancy release (Considine & Considine 2016) and cell elongation 620 

rate in plants (Caffarra et al. 2011a).  621 

Regulation of development time by photoperiod has been incorporated in phenology 622 

models long ago, noticeably through the use of a fixed calendar date as a starting point for post 623 

diapause or bud ontogenesis (Chuine et al. 2013), or simple but unsubstantiated relationships 624 

(Kramer 1994). More realistic representations of its effect in models is very recent (Schaber & 625 

Badeck 2003; Caffarra et al. 2011b), and further efforts are needed to incorporate the recent 626 

advances in molecular and cell biology on the regulation of cell activity by photoperiod in 627 

phenology models (Singh et al. 2016). 628 

6 Promising avenues and future challenges 629 

6.1 Gene expression phenology modelling 630 

There is increasing potential to incorporate recent advances in our understanding of 631 

molecular-genetic pathways of environmental regulation of development into phenology 632 

models. Research on model organisms such as Arabidopsis or annual crops such as rice have 633 

taken a new turn with the study of environment-dependent gene expression thanks to high-634 

throughput phenotyping techniques that can be deployed in the field (Nagano et al. 2012; Satake 635 

et al. 2013; Kudoh 2016). Phenology models of gene expression level can now be developed. 636 

For example Nagano et al. (2012) built models of the transcriptional response of rice grown in 637 

the field using climate, developmental age, and genotype as input to a simple linear model to 638 

predict the genome-wide transcriptional response. They also tested the models on plants grown 639 

the following year, in which the environment became substantially warmer, and found that the 640 

models were nonetheless highly predictive for the expression of the majority of the genome. 641 

When the relationship between genes expression levels and key developmental processes is 642 



27 

 

known, more complex models can be developed. For example, Satake et al. (2013) developed 643 

the first model of regulatory dynamics of key flowering-time genes in perennial life cycles. 644 

Such models lie perfectly in the lineage of process-based phenology models and could be seen 645 

as their accomplishment. They are indeed parameterized using controlled laboratory 646 

experiments that measure the temporal dynamics of regulatory transcription factors of cell 647 

activity as they change with environmental conditions. These models describe the system at a 648 

higher level of complexity than classical models that simulate the developmental response 649 

resulting from these conditions. The tour de force in the Satake et al. (2013) study lies in the 650 

fact that their model accurately reproduces the seasonal changes in gene expression, the 651 

corresponding timing of floral initiation and return to vegetative growth after a period of 652 

flowering in complex natural environmental conditions while parameterized under finely 653 

controlled experimental conditions. 654 

 However, although these models are desirable from a process-based knowledge 655 

acquisition perspective, their development and validation requires a large amount of 656 

experimental information that is so far either unavailable or difficult to gather for most species. 657 

The complexity of such models is thus associated with over-parameterization and the reliance 658 

on large and complicated input data sets. Nevertheless, they represent one of the most promising 659 

avenues to improve the realism, and hopefully the reliability, of phenology models in the 660 

upcoming years. 661 

Phenology modelling is probably at a turning point thanks to the advances in high-662 

throughput phenotypic techniques and in molecular and cellular biology that recently brought 663 

several new insights into the regulation of cell activity and more widely on organism 664 

development. Classical phenology models that simulate developmental processes at the 665 

organism level should be confronted, and probably should incorporate recent models focusing 666 

on events at the molecular, cellular, and tissue levels (Pörtner et al. 2006; Chew et al. 2014). A 667 
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future challenge thus probably lies in combining various modelling techniques (molecular-668 

level, system-level and biophysical models), which requires a greater coordination between 669 

modellers and biologists and more knowledge transfer between them. 670 

6.2 Merging models from different trophic levels: towards community dynamics 671 

The shifts in the phenology of plants and animals worldwide due to global climate change 672 

lead to alterations in phenological synchrony that can have important ecological consequences 673 

at the scale of populations, communities, ecosystems and food webs. For example, the timing 674 

of early spring development plays a key role in plant–herbivore interactions in extratropical 675 

regions and can influence insect performance, outbreak dynamics and plant damage 676 

(Pureswaran et al. 2015). The alteration of the synchrony of leaf unfolding of dominant vs 677 

understory trees can change the competitive balance between them. The alteration of the 678 

synchrony of the flowering and emergence of pollinators alter the reproductive success of plants 679 

and the survival of pollinators. While we are aware of the massive desynchronization of annual 680 

cycles of interacting species because of global climate change (Johansson et al. 2015), there has 681 

so far been very little effort put into modelling multi-species phenology. Pioneer studies in this 682 

field have concerned predator-prey systems (Godfray et al. 1994). Ongoing research also 683 

concerns plant-fungal pathogen synchronization (Marcais & Desprez-Loustau 2014). Other 684 

ongoing research is aimed at modelling the phenology of multispecies systems, either within or 685 

between trophic levels. We can thus foresee that the deficiency of studies in this field will soon 686 

be filled, which will also open new perspectives to study the eco-evolutionary consequences of 687 

phenological asynchrony (Johansson et al. 2015; Pureswaran et al. 2015). 688 

6.3 Other future challenges for plant and animal phenology models 689 

One of the greatest challenges for both plant and animal phenology relates to the 690 

geographic variation of thermal response parameters within species, how these patterns develop 691 
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(Asbury & Angiletta 2010), and how fast they can respond to climate change (de Jong & van 692 

der Have 2009; Donohue et al. 2015).  693 

Assessing and taking into account the phenomenon of acclimation in dampening the 694 

effect of changing environmental conditions is also of central importance in plant and animal 695 

phenology modelling (Stillman 2003).  696 

We identified two additional future challenges specific to plant phenology models. First, 697 

the vast majority of studies on plants have dealt with leaf unfolding and flowering phenology 698 

(spring events), while leaf senescence and fruit maturation phenology (autumn events) have 699 

been largely neglected despite their ecological importance (Gallinat et al. 2015). A large effort 700 

is now needed to develop reliable phenology models for autumn events (but see Delpierre et al. 701 

2009a). One of the difficulties lies in the lower quality of autumn phenology data, as classical 702 

observation techniques rely on color changes which are very difficult to assess for the human 703 

eye. This difficulty can be partly solved by using new instrumental techniques such as cameras 704 

or radiation sensors allowing an automated detection of color change (Yang et al. 2014). 705 

However, progress in this direction will also involve experimental efforts to identify the 706 

environmental determinants of autumn phenology and its regulation pathways. Here again, 707 

advances in molecular and cellular biology on the regulation of cell activity will be of major 708 

help. 709 

Second, we would like to highlight that plant models, used either in agronomy, forestry, 710 

or biogeosciences would certainly gain in realism and accuracy by modelling not only leaf 711 

phenology, but also flower/fruit, cambium, root phenology, and more generally better represent 712 

the timing of the carbon, water and energy fluxes (Richardson et al. 2012; Delpierre et al. 2016). 713 

Timing of these fluxes probably plays an important role in understanding carbon allocation, 714 

growth patterns, seed production and mortality events.  715 
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7 Conclusion 716 

In this paper, we review considerable evidence of strong convergence in the annual 717 

cycles of plants and ectotherms of extratropical regions, and in their environmental control. 718 

This strong convergence probably depicts common biophysical constraints to life in these 719 

regions, and common adaptation strategies to these constraints. Yet, there has so far been little 720 

cross-fertilisation of plant and animal phenology modelling approaches Plant phenology 721 

modellers could learn greatly from animal phenology modellers to take into account 722 

microclimate variation as well as individual variation in their simulations. Animal phenology 723 

models could also definitely profit from the increasing knowledge of gene expression in 724 

simulating complex processes such as dormancy. Finally, both research communities could 725 

certainly learn from each other to advance our understanding of the mechanisms of 726 

developmental timing, especially regarding rest induction, release and depth.  727 
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Definitions 1058 

Ectotherm 1059 

Cold-blooded animal, more precisely one whose body temperature is dependent on 1060 

external heat, usually from their environment. 1061 

Phenophase 1062 

An observable stage or phase in the annual life cycle of a plant or animal that can be 1063 

defined by a start and end point. 1064 

Endodormancy/Diapause 1065 

Physiological state during which general development and metabolism are inhibited by 1066 

internal factors. 1067 

Ecodormancy/Quiescence 1068 

Physiological state during which general development and metabolism are inhibited by 1069 

external factors (e.g. temperature, photoperiod, water). 1070 

Process-based model 1071 

A model formally describing known or hypothetical cause-effect relationships between 1072 

physiological processes and some driving factors in the environment. 1073 

Boltzmann factor 1074 

The Boltzmann factor, e-E/kT, is the probability of a state of energy E relative to the 1075 

probability of a state of zero energy. It is used to describe the influence of temperature in a 1076 

wide variety of physical processes. 1077 

Voltinism 1078 

The number of generations an animal goes through in a calendar year. Univoltine species 1079 

have exactly one generation per year. Multivoltine species go through more than one 1080 

generation per year, and semivoltines one generation every two years.  1081 

Circle maps 1082 

A mapping of the date of occurrence of a specific event in an animal’s life cycle (e.g. egg 1083 

stage) from one year to the next. These “maps” can be the object of stability analysis, used 1084 

to determine the resilience of a life history strategy to climatic perturbations caused by 1085 

year to year temperature fluctuations.   1086 

  1087 
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Side bar 1 1088 

Relationship between resting stage and frost hardiness 1089 

Rest plays a key role in resistance to frost which is dynamic along the developmental 1090 

cycle and can be induced only if the rest period has been initiated. In insects, the “diapause 1091 

syndrome” involves the elimination of ice-nucleating agents in the body (such as food in the 1092 

gut and large proteins in the hemolymph and tissues), the accumulation cryoprotectants such 1093 

glycol and glycerol using glycogen as a source, and antifreeze proteins, along with elimination 1094 

of water (Duman 2001). The development of cold tolerance through these mechanisms requires 1095 

an interruption of normal developmental physiology. In plants, phenological processes are 1096 

particularly important for frost avoidance either in spring or autumn. Endodormancy induction 1097 

and release, as well as ecodormancy control the exposure of vulnerable organs to frost as they 1098 

determine cold acclimation and deacclimation (Charrier et al. 2015). Plants have different 1099 

strategies to resist ice formation in the tissues among which the production of anti-freeze 1100 

proteins, ice barriers, increased intracellular osmotic potential through the use of low molecular 1101 

weight molecules such as mono- and oligo-saccharides, polyols, amino acids, lipids, and 1102 

macromolecules such as dehydrins. Like in animals, the deployment of these strategies requires 1103 

an interruption of normal developmental physiology. 1104 

 1105 

  1106 
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Side bar 2 1107 

Life cycles of plants and animals 1108 

In annual plants and univoltine animals (with a single generation per year), the life cycle 1109 

can be represented as a circle, or a series of concentric circles (Fig. 1). The circular nature of 1110 

animal life cycles has been the subject of interesting mathematical analysis around the theory 1111 

of circle maps (Powell & Logan 2005; Régnière & Powell 2013). Other animal species are 1112 

multivoltine (complete more than life cycle per year). In plants, most tropical annuals and 1113 

perennials belong to this category. Still other animal species require two or more years to 1114 

complete their life cycle. Bi-annual plants belong to this group. The 17-year cicada is perhaps 1115 

the most notorious extreme example among insects, in this case perhaps as an evolutionary 1116 

strategy to avoid heavy predation by birds (Koenig & Liebhold 2013).  1117 

 1118 

  1119 
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Future Issues 1120 

 1121 

1. Incorporating recent models focusing on events at the molecular, cellular, and tissue 1122 

levels into classical phenology models simulating developmental processes at the 1123 

organismal level  1124 

2. Merging phenology models from different trophic levels to advance towards models of 1125 

population dynamics and community interactions 1126 

3. Assessing and taking into account geographic variation in developmental parameters 1127 

within species, and how these patterns will be altered by climate change  1128 

4. Assessing and taking into account the phenomenon of acclimation in dampening the 1129 

effect of changing environmental conditions 1130 

5. Improving autumn phenology models for plants 1131 

6. Developing integrated phenology models for plants taking into account the phenology of 1132 

all organs (leaves, flowers/fruits, wood, root) 1133 
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 1135 

 1136 

Figure 1. Animal and plant life cycles are circle maps, in their simplest expression repeating 1137 

events on an annual basis more or less at the same calendar dates thus constituting circle maps 1138 

(sensu Powell and Logan 2005). To development, other stage-specific processes such as 1139 

foraging, feeding, predation, reproduction and dispersal, can be linked. (a) univoltine insect 1140 

(here, the spruce budworm); (b) tree, (c) summer annual plant, (d) winter annual plant. 1141 
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 1143 

Figure 2. General overview of a generic process-based phenology model. A model can be seen 1144 

as a metamodel comprising several submodels, each describing a component of the cycle (a 1145 

development phase). Development is represented by a state variable, S for development stage, 1146 

which is the summation of development over time (t, in steps of days, hours, or minutes) from 1147 

a start date, as a function of environmental cues. If the cycle comprises n + 1 development 1148 

phases (Figure 2), by definition S0 = 0 at t0 in the initial stage (e.g., seed germination, egg hatch) 1149 

and Sn reaches some maximum value ( *

nS ) at the end of the last stage (often defining an annual 1150 

cycle). Each development phase k starts at time tk and ends at time tk + 1, defined by the time 1151 

when Sk reaches the value *

kS , which is specific to the model. Each development phase is 1152 

described by a submodel determining its reaction norms f to various cues (T, temperature; P, 1153 

photoperiod; W, water; L, light; N, nutrient; B, stressful biotic interaction). Response functions 1154 

combine by addition (+), multiplication (×), or composition (○). Phases either are sequential 1155 

(follow each other in time) or overlap (one phase can start before the end of the previous phase).  1156 

Grey boxes represent the development phases. Open ovals represent the response functions to 1157 

environmental cues. Grey squares represent the modes of phase interaction. Overlapping 1158 

interaction involves other functions, not represented in the scheme, describing the relationships 1159 

between either state of development  or rate of development between phases. Open diamonds 1160 

represent the interaction modes between response functions (addition, multiplication, 1161 

composition).   1162 
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S1. Importance of phenology models in environmental sciences modelling 1188 

The timing of developmental stages is important in agronomy as it determines the yield 1189 

and the organoleptic quality of the harvest. This is why phenological traits are among the most 1190 

important phenotypes considered in varietal selection. One of the most important differences 1191 

between cultivars is in the times required for accomplishing the various development stages. 1192 

Because many of the major physiological processes depend on development stages, predictions 1193 

of crop models are very sensitive to the accuracy of crop phenology models (Van Oort et al. 1194 

2011), and obtaining acceptable error margins in phenology is critical in crop modelling (Mall 1195 

& Aggarwal, 2002). 1196 

The biosphere plays a prominent role in the Earth’s climate dynamics. It has thus 1197 

become essential that Terrestrial Biosphere Models, imbedded into Earth System Models and 1198 

simulating the temporal dynamics of biological processes on land, have an accurate 1199 

representation of vegetation phenology. Yet, to date, existing models are unlikely to predict 1200 

future phenological responses to climate change accurately and will misrepresent the 1201 

seasonality and interannual variability of key biosphere–atmosphere feedbacks and interactions 1202 

(Richardson et al. 2012).  1203 

The inclusion of phenology models into population dynamics models dates back to the 1204 

1980s, and concerned mostly the management of insect herbivores. Issues of synchronized 1205 

phenology across trophic levels have more recently become central to understanding the impact 1206 

of climate change on ecosystem functions (Godfray et al. 1994; Pureswaran et al. 2015). 1207 

Phenology and thermal response modelling have widened to cover a variety of systems, 1208 

including aquatic ecosystems (Anderson et al. 2013). Phenology models predict physiological 1209 

responses to multiple dynamic environmental factors. By linking models across successive life 1210 

stages, they predict life cycles and generation times, and form the framework of many 1211 

demographic models.  1212 
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The key role of the timing of phenological events for reproductive success and survival 1213 

of most multicellular organisms, led phenology models to play a central role in process-based 1214 

distribution models designed either for plants or animals (Chuine et al. 2001; Kearney et al. 1215 

2010; Régnière et al. 2012a). In comparison to correlative species distribution models, process-1216 

based models offer the possibility to understand the fundamental reasons for the presence or 1217 

absence of a species under particular environmental conditions. They describe the biological 1218 

processes that determine whether a particular organism can or cannot perform adequately under 1219 

on those conditions, altering survival and reproductive success, and ultimately fitness and the 1220 

likelihood of presence.  1221 

Because the timing of development is a key component of fitness, phenology models 1222 

can also be used to analyze various processes in evolutionary ecology. It is becoming clear that 1223 

taxonomic variability and strong phylogenetic relationships exist in the strength of thermal 1224 

responses (Irlich et al. 2009; Dell et al. 2011; Huey & Kingsolver 2011). The ability of process 1225 

models to address this variability and evolutionary processes is probably one the most 1226 

promising avenues for further development of ecological niche theory and the metabolic theory 1227 

of ecology (Brown et al. 2004). Yet very few studies have addressed such questions so far 1228 

(Donohue et al. 2015; Duputié et al. 2015; Kearney et al. 2009; Seebacher et al. 2015). But we 1229 

predict that they will become more numerous every year, especially as there is also now 1230 

increasing potential to incorporate information on molecular-genetic pathways of 1231 

environmental regulation of development into these models (Satake et al. 2013). 1232 

  1233 
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S2. Universal Temperature Dependence of the Metabolic theory of Ecology 1234 

The Metabolic Theory of Ecology (MTE) posits that relationships between body mass (M), 1235 

temperature (T, in °K) and rates of biological processes (R, development, metabolism, 1236 

population growth, ecological interactions at the scale of ecosystems) are simple allometric 1237 

scaling relationships of the type  1238 

 
 

0

E
kTR R M e 

   [S1] 1239 

where R0 is a proportionality constant,   is an exponent, expected to be a multiple of 1/4, and 1240 

the term  exp /E kT  is the Boltzmann factor, expected to represent the universal temperature 1241 

dependence (UTD) of chemical as well as biological processes. Within this term, E is reaction 1242 

activation energy and k is Boltzmann’s constant and T is absolute temperature in °K. The MTE 1243 

further suggests that the activation energy should be relatively constant, within the range E = 1244 

0.6-0.7 eV.  1245 

While the MTE constitutes a highly valuable framework for unifying ecology and 1246 

physiology through fundamental processes, there has been considerable discussion in the 1247 

literature about its details. Several favourable tests of the MTE have been conducted (Bailly et 1248 

al. 2014). But the use of the Boltzmann factor as a valid UTD has been hotly debated (Clarke 1249 

2006; O’Connor et al. 2007; Knies and Kingsolver 2010). The MTE’s assertion of a near-1250 

constant value of activation energy 0.65 eVE  across taxa is also controversial. Irlich et al. 1251 

(2009), Dell et al. (2011) and Huey & Kingsolver (2011) found considerably more variation in 1252 

the value of E than expected from the MTE, much of which was linked to phylogenetic 1253 

relationships and environmental living conditions (mean and variance). 1254 

A replacement of the Boltzmann factor can be based on the Eyring equation, at the base 1255 

of transition state theory: 1256 
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where r is the rate of a physiological process, K is a proportionality constant, k is Boltzmann’s 1258 

constant, h is Plank’s constant, T is temperature (°K), AS  and AH are the reaction’s entropy 1259 

and enthalpy of activation, and R is the gas constant (which is Boltzmann’s constant divided 1260 

by Avogadro’s number). The expression can be simplified by defining the constant 1261 

 /K k h  . Equation [S2] has three parameters ( , AS  and AH ) that determine the rate of 1262 

any specific process at temperature T.  1263 

But the Eyring equation still does not account for the unimodal nature of thermal 1264 

responses. This led to the formulation of the Sharpe & DeMichele (1977) equation, a 1265 

modification of Eyring’s equation [S2] that introduced four additional parameters relating 1266 

temperature to the proportion of the rate-limiting enzyme that is active: LS , HS , LH , and HH1267 

that are changes in entropy (S) and enthalpy (H) associated with low (index L) and high (index 1268 

H) temperatures, respectively. The complexity of this equation and the difficulty of obtaining 1269 

sufficient data to estimate its parameters prompted Schoolfield et al. (1981) to simplify it, and 1270 

to offer graphical methods for initial parameter estimation. Their modified equation, with its 6 1271 

parameters, has been widely used since in modelling animal responses to temperature: 1272 
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 [S3] 1273 

where T is temperature (in °K). The 6 estimable parameters are: 25 , the rate at which a 1274 

process proceeds at 25°C (298°K), AH , the reaction’s enthalpy of activation, LH and TL, and 1275 

HH and TH that are changes in enthalpy and 50% deactivation temperatures associated with 1276 

low (index L) and high (index H) temperatures. Statistical estimation of those parameters 1277 

requires at least 7 measurements made at different temperatures, including measurements near 1278 

the denaturation temperatures TL and TH where survival is often an issue. Similar equations 1279 
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have been proposed by Fishmann (1987) and Erez (1988) for plant responses to temperature 1280 

during endodormancy.  1281 

Régnière et al. (2012b) developed an empirical function from previous work to better 1282 

describe thermal responses near lower and upper critical temperatures: 1283 

    ( ) ( )/ ( ) ( )/
( ) b b b m b m mT T T T T T T Tm b

m b m b

T T T T

T T T T
r T e e e

           

 

    
      

    
 [S4] 1284 

valid over the range Tb ≤ T ≤ Tm where T is temperature (°C) (r(T) = 0 otherwise). 1285 

Equation [S4] also has 6 estimable parameters, each analogous to a corresponding parameter in 1286 

equation [S3]:   is a proportionality constant (analogous to 25 );   is analogous to HA; Tb 1287 

and Tm are the lower and upper critical temperature thresholds (analogous TL and TH); and b  1288 

and m  are the range of temperatures over which lower and upper thresholds influence the 1289 

response function (analogous to HL and HH). Equations [S3] and [S4] overlap over most of the 1290 

temperature range that leads to development, but differ considerably around the critical 1291 

temperatures (Fig. S1).  1292 

The variation of developmental responses between individuals probably stems from 1293 

variation in all parameters of thermal response models (de Jong & van de Have 2009). Régnière 1294 

& Powell (2013) have shown that incorporating all of this variation into a term with log-normal 1295 

distribution and mean 1 as a multiplier of the proportionality constant 25  in equation [S3] or 1296 

  in equation [S4] was a very good approximation of observed variability (Fig. S2).  1297 

 1298 



57 

 

 1299 

Figure S1. Thermal response typical of animal ectotherms, displaying the 1300 

Eyring-type exponential response in the median range (10-25°C), the 1301 

optimal temperature (Topt) as well as decreasing responses near minimum 1302 

and maximum critical temperature thresholds (Tb, b , Tm and m ). Solid 1303 

line is equation [S3] (Schoolfield et al. 1981), dotted line is equation [S4] 1304 

(Régnière et al. 2012b). 1305 

 1306 

 1307 

Figure S2. Distribution of the individual variation in development rate, 1308 

relative to the median rate, when all parameters of equations [S3] or [S4] 1309 

vary between individuals. Solid line: log-normal distribution (after 1310 

Régnière and Powell 2013). 1311 

 1312 

S3. Responses functions to environmental cues 1313 
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Figure S3 illustrates the different types of response functions that have been used to describe 1314 

the developmental response to temperature and photoperiod in plants and animals. Although 1315 

we know from experimental evidence that response functions of cell elongation and growth rate 1316 

are unimodal and asymmetrical (Fig. S3b, d), simpler functions have been used successfully: 1317 

symmetrical unimodal functions (Fig. S3c), linear or non-linear monotonic functions, with 1318 

positive and negative slopes (Fig. S3a). The Utah function and its smoothed variant have been 1319 

used as a response function to temperature during endodormancy of peach flower buds and has 1320 

the particularity to take into account negative effects of warm temperatures on endodormancy 1321 

release, as also does the Dynamic model proposed by Fishman et al. (1987) and Erez et al. 1322 

(1988) but with a different formulation. Monotonic functions have been widely used to describe 1323 

the response to temperature of cell elongation (during ecodormancy of buds and the first phase 1324 

of fruit growth) in plants, while unimodal functions have rather been used to describe the 1325 

response to temperature during endodormancy and the fruit maturation phase in plants as well 1326 

as development rate in insects. 1327 

 1328 
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 1329 

Figure S3. Main types of function used to represent the action of temperature (and other cues) 1330 

in phenology models. (a) monotonic function (either linear or not, here with positive slope, but 1331 

negative slopes are also used); (b) Utah function and its smoothed version, used initially for 1332 

peach phenology, has the particularity to represent negative effect (i.e. reversible effect) of 1333 

temperature at high temperature range; (c) symmetrical unimodal functions; (d) asymmetrical 1334 

unimodal functions. Functions are illustrated here as functions of temperature, ranging from 0 1335 

to 40°C, but they have also been used with other variables, e.g. photoperiod. 1336 

 1337 
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