
HAL Id: hal-03780482
https://hal.science/hal-03780482v2

Submitted on 29 Sep 2022 (v2), last revised 14 Apr 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Differentiable Collision Detection: a Randomized
Smoothing Approach

Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimír Petrík, Josef
Sivic, Justin Carpentier

To cite this version:
Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimír Petrík, Josef Sivic, et al.. Differentiable
Collision Detection: a Randomized Smoothing Approach. 2023 IEEE International Conference on
Robotics and Automation, May 2023, London, United Kingdom. �hal-03780482v2�

https://hal.science/hal-03780482v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Differentiable Collision Detection: a Randomized Smoothing Approach

Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef Sivic and Justin Carpentier

Abstract— Collision detection appears as a canonical opera-
tion in a large range of robotics applications from robot control
to simulation, including motion planning and estimation. While
the seminal works on the topic date back to the 80s, it
is only recently that the question of properly differentiating
collision detection has emerged as a central issue, thanks
notably to the ongoing and various efforts made by the scientific
community around the topic of differentiable physics. Yet, very
few solutions have been suggested so far, and only with a strong
assumption on the nature of the shapes involved. In this work,
we introduce a generic and efficient approach to compute the
derivatives of collision detection for any pair of convex shapes,
by notably leveraging randomized smoothing techniques which
have shown to be particularly adapted to capture the derivatives
of non-smooth problems. This approach is implemented in the
HPP-FCL and Pinocchio ecosystems, and evaluated on classic
datasets and problems of the robotics literature, demonstrating
few micro-second timings to compute informative derivatives
directly exploitable by many real robotic applications including
differentiable simulation.

I. INTRODUCTION

Collision detection is a crucial stage for many robotic ap-
plications including motion planning, trajectory optimization,
or simulation. It is also used in many other related domains,
such as computer graphics or computational geometry, just to
name a few. In particular for simulation, collision detection
is a central component of any physical simulator, allowing
to assess the collision between two geometries, to retrieve
the contact regions if any, or to compute the closest points
between the shapes (also known as witness points [1]). In
addition to the evaluation of collisions, many problems in
robotics also rely on the derivatives of geometric contact
information such as optimal shape design, grasp synthesis,
or differentiable simulation.

Over the past few years, differentiable simulation has
gained interest within the robotics and machine learning
communities thanks to the progress in gradient-based op-
timization techniques. Differentiable simulation consists in
evaluating the gradient (or sub-gradient in case of a non-
smooth contact interaction) of the simulation steps, which
can then be exploited by any gradient-based optimization al-
gorithm to efficiently solve various robotic problems involv-
ing contact interactions [2], [3], [4], [5], [6], [7]. However,
most of the existing works on the topic have only considered
the differentiation of the physical principles (Coulomb fric-
tion constraints, maximum dissipation principles, Signorini
conditions, etc.), without systematically considering the con-
tribution of collision detection in the derivatives, for example,
by limiting themselves to a specific type of shapes [4], [7].

To the best of our knowledge, no systematic procedure
to compute collision derivatives has been proposed in the

Fig. 1: Illustration of randomized smoothing approximation on
two meshes from the YCB dataset. 0th-order method, Gaussian
distribution, M = 25 samples. The witness points for each
perturbed relative pose are drawn on both objects. Randomized
smoothing allows to recover information regarding the curvature
of the underlying objects.

literature and it remains a challenging problem. In this
paper, we propose to address this issue by introducing a
generic approach to compute gradient information of colli-
sion detection instances in the context of convex shapes (not
necessarily strictly convex), without assuming any regularity
on the shapes. This includes not only the standard geometric
primitives (ellipsoid, sphere, cone, cube, cylinder, capsules,
etc.) but also meshes, which are the standard representation
of objects in many applications involving physics simulation
and a wide range of robotic applications. Our key contribu-
tions lie in leveraging randomized smoothing techniques [8]
to estimate the gradients of the collision detection procedure
through two proposed estimators:

• a 0th−order estimator (see Fig. 1), which does not make
any assumption on the nature of the collision algorithms
in use,

• a 1st−order estimator (see Fig. 2), which exploits the
optimality conditions of the underlying optimization
program inherent to collision detection with convex
shapes. Remarkably, this estimator is at the same time
more accurate and less expensive to derive than the 0th-
order estimator.

After stating the problem of collision detection in Sec. II,
we evaluate the efficiency of these two derivative estimators
introduced in Sec. III and IV on standard optimization
problems (Sec. V). We will release our code as open-
source within the Pinocchio [9] framework, so that it can
be easily disseminated into other existing robotic software
and applications.

II. PROBLEM STATEMENT

Collision detection is a very old topic within the robotics
community. It consists in determining whether a pair of



shapes are in collision or not, and in finding the contact point
locations [1], [10], [11], [12]. To lower the computational
burden, the shapes are often assumed to be convex or
decomposed as a collection of convex meshes [13]. Such
convexity assumptions have led to highly efficient, generic
and robust algorithms to solve collision detection problems,
most of which belong to the family of the Gilbert-Johnson-
Keerthi (GJK) algorithms [10], [11], [14], [12].

From an optimization perspective, the problem of colli-
sion detection can be generically formulated as a convex
minimization program of the form:

x∗
1,x

∗
2 = argmin

x1∈A1, x2∈A2

∥x1 − x2∥22 , (1)

where ∥·∥2 is the Euclidean norm, A1 and A2 are convex
shapes and x∗

1 and x∗
2 are the so-called witness points. The

GJK algorithm is typically used to solve (1). When the
objects are in collision, most physics simulations extend (1)
to also recover the penetration depth, in order, for instance,
to correct the interpenetration between rigid objects, inherent
to the discrete integration scheme used inside physical sim-
ulators. The penetration depth corresponds to the length of
the smallest translation which must be applied on the relative
configuration between A1 and A2 in order to separate them.
To compute this quantity, the Expanded Polytope Algorithm
(EPA) [1] is typically used and enables the computation of
witness points x∗

1 and x∗
2 in the case of penetration. In

both penetration and non-collision cases, the witness points
computed by GJK and EPA lie on the boundaries of the
objects considered. Finally, in the presence or absence of
collision, the signed distance between A1 and A2 is defined
as:

d(A1,A2) =

{
∥x∗

1 − x∗
2∥ if A1 ∩ A2 = ∅,

−∥x∗
1 − x∗

2∥ otherwise.
(2)

To parameterize the relative position and orientation of A1

and A2 in the 3D space, it is convenient to consider their
relative configuration, T (q) ∈ SE(3) which is parameterized
by a vector q ∈ R7 (3 coordinates for translation and
4 for rotation, encoded by a quaternion). From a mathe-
matical perspective, the main objective of this paper is to
retrieve the partial derivatives of (1) w.r.t q namely ∂x∗

1/∂q
and ∂x∗

2/∂q, in the two cases where the two geometries
are in collision or not. It is worth mentioning at this stage
that ∂x∗

1/∂q and ∂x∗
2/∂q are Jacobian matrices of dimen-

sion 3×6, with ∂q being an element of the tangent of SE(3)
in T (q) [15].

Finite differences and other existing methods are likely to
fail at capturing informative gradients in most cases. Indeed,
even if an object is originally smooth, its approximation as a
mesh may present some non smoothness properties (typically
localised around the vertices of the mesh), which are difficult
to handle for classic optimization-based techniques. More
precisely, because they are locally flat or non-smooth, the
resulting gradients tend to ”forget” the curvature of the orig-
inal surface they approximate [7], leading to uninformative
gradients. To overcome these issues, we introduce hereafter

Fig. 2: Soft-max weights of the Gumbel distribution for the 1st-
order gradient estimator, mesh from the YCB dataset. Different
colors represent neighbors of different levels. In yellow: the current-
witness point of the object. In purple: level 1 neighbors. In blue:
level 3 neighbors. In cyan: level 5 neighbors. The size of the
neighbors is proportional to the soft-max weight.

two approaches to retrieve a precise estimator of the par-
tial derivatives ∂x∗

1/∂q and ∂x∗
2/∂q which are extensively

cross-validated against finite differences in Sec. V.

III. 0TH-ORDER ESTIMATION OF COLLISION DETECTION
DERIVATIVES

In this section, we introduce a generic approach to com-
pute a 0th-order estimate of the collision detection derivatives
by leveraging randomized smoothing techniques which we
first review.

A. Background on randomized smoothing
Originally used in black-box optimization algorithms [16],

[17], randomized smoothing was recently introduced in the
machine learning community [18], [8] in order to integrate
discrete operations inside neural networks.

In more details, any function g can be approximated by
convolving it with a probability distribution µ:

gϵ(x) = EZ∼µ [g(x+ ϵZ)] , (3)

which corresponds to the randomly smoothed counterpart of
g and which can be estimated with a Monte-Carlo estimator
as follows:

gϵ(x) ≈
1

M

M∑
i=0

g(x+ ϵz(i)), (4)

where {z(1), . . . , z(M)} are i.i.d. samples and M is the
number of samples. The ϵ parameter controls the level of
noise injected in gϵ. Intuitively, the convolution makes gϵ
smoother than its original counterpart g and, thus, yields
better conditioned gradients [8].

Using an integration by part yields a 0th-order estimator
of the gradient:

∇(0)
x gϵ(x) =

1

M

M∑
j=0

−g(x+ ϵz(j))
∇ logµ(z(j))⊤

ϵ
. (5)

This 0th-order estimator can be used even when g is non-
differentiable to obtain first-order information, which can
then be exploited by any gradient-based optimization tech-
nique, as shown by applications in machine learning [8],
computer vision [19], [20] and robotics for the optimal
control of non-smooth dynamical systems [21], [22].



B. Direct application of randomized smoothing to collision
detection

Randomized smoothing can be applied to collision de-
tection by considering the witness points as functions of
the configuration vector, i.e., (x∗

1(q),x
∗
2(q)), regardless of

the method used to compute them. We choose to use the
combination of the two complementary and state-of-the-
art algorithms, the Gilbert, Johnson and Keerthi algorithm
(GJK) [10] and Expanding Polytope Algorithm (EPA) [11],
to handle collision detection including penetration. Given
two convex shapes A1 and A2 and a relative pose T (q),
both of these algorithms allow to compute a pair of witness
points (x∗

1(q),x
∗
2(q)).

To compute a 0th-order estimator of the gradients of (1),
we perturb M times the configuration vector by sampling
from a distribution µ:

∇(0)
q x∗

i,ϵ(q) =
1

M

M∑
j=0

−x∗
i (q+ϵz(j))

∇ logµ(z(j))⊤

ϵ
, (6)

for i = 1, 2. As a consequence, this 0th-order estimator
requires to run the GJK+EPA procedure M times. While
the choice of distribution may lead to different convolution
effects [19], [20], we found that the standard Gaussian dis-
tribution is well adapted to adequately sample over SE(3).
In Fig. 1, we give an intuition of the smoothing which
results from the 0th-order estimator. To keep the visualization
simple, we fix the pose of A1 (in green) and perturb the pose
of A2. The cloud of resulting witness-points captures the
local geometry of A2. Finally, note that finite differences
is a sub-case of randomized smoothing, which considers
a specific non-smooth distribution. By construction, finite
differences capture less of the underlying geometry, as it
deterministically defines the sampling directions and size
of the steps taken in such directions. These fundamental
differences are quantitatively illustrated in Table 5 of Sec. V.

IV. 1ST-ORDER ESTIMATION OF COLLISION DETECTION
DERIVATIVES

In this section, we exploit the optimality conditions of
the collision detection problem in order to introduce a
computationally efficient and generic approach to derive
a 1st-order estimate of the collision detection derivatives.
Similarly to the 0th-order approach developed in Sec. III,
we leverage randomized smoothing to compute the local
Hessian information around the witness points required in the
computation of specific gradient quantities. In the particular
case of meshes, we notably introduce a closed-form Hessian
expression which can be directly computed from the vertices
located in the neighborhood of the witness points.
The GJK paradigm for collision detection. To handle
the problem of collision detection, we put ourselves in
the paradigm of GJK [10], [12], to which EPA [11] also
belongs. In this paradigm, the focus is set on computing
the separation vector between A1 and A2. The separation
vector is defined as the smallest translation which must be
applied to the relative configuration between A1 and A2 in

order to (i) bring the shapes into collision if they are not in
collision, or (ii) separate the shapes if they are in collision.
Whether or not the shapes are in collision, the separation
vector always satisfies the following equation:

x∗ = x∗
1 − x∗

2, (7)

where x∗
1 and x∗

2 are the witness points, obtained as a by-
product of the GJK and EPA algorithms.

Although this change in paradigm seems anecdotal, the
problem of computing the separation vector x∗ between A1

and A2 is conveniently fully encapsulated in a minimization
problem over the Minkowski difference of the two shapes
D = A1 −A2 = {x = x1 − x2 | x1 ∈ A1,x2 ∈ A2}:

x∗ =argmin ∥x∥22
s.t. x ∈ δD,

(8)

where δD is the boundary of the Minkowski difference.
Remarkably, the shapes are in collision if and only if the
origin lies inside the Minkowski difference, i.e., 0 ∈ D, as
shown in the seminal work of [10] and revisited in [12]. In
summary, the separation vector is obtained by projecting the
origin onto the surface of the Minkowski difference.
Optimality conditions of collision detection. In order to
solve (8), GJK and EPA both solve a sequence of simple
linear programming sub-problems. Each sub-problem con-
sists in computing the so-called support function of D:

σD(x) = max
y∈D

⟨y,x⟩, (9)

where x ∈ R3, y ∈ D and ⟨·, ·⟩ is the Euclidian dot-product.
A support point s ∈ δD belongs to the support set ∂σD(x),
corresponding to the sub-gradient of σD(x), if and only
if, it is a maximizer of (9). Such a point always exists
and is always a point on the boundary of the Minkowski
difference.

Computing σD(x) corresponds to minimizing a lineariza-
tion of the objective function of (8) at point −x. Remarkably,
when it is not possible to find a point x ∈ D which further
decreases this linearization, both GJK and EPA have reached
the optimal solution x∗, as Pb. (8) is convex. This optimality
condition corresponds to the convergence criterion of both
GJK [10] and EPA [11] and can be stated as follows:{

x∗ ∈ ∂σD(−x∗) if 0 ̸∈ D,
x∗ ∈ ∂σD(x

∗) otherwise. (10)

Eq. (10) is directly linked to the Frank-Wolf duality-gap, a
convergence criteria which allows to measure the progress
towards an optimal solution. We refer to [12] for a complete
analysis. Eq. (10) is handy as it corresponds to the opti-
mality condition of (8) and characterizes x∗. Note that we
choose to compute x∗ using GJK and EPA but (10) is true
however x∗ is obtained. For the sake of simplicity, we will
assume 0 ̸∈ D but the rest of this section is applicable to the
case where 0 ∈ D.

For now, let us suppose first that D is smooth and strictly-
convex, which corresponds to the case where the shapes A1

and A2 are smooth and strictly-convex (i.e., ellipsoids or



spheres). The support set is reduced to a singleton for
any x: ∂σD(x) = ∇σD(x) where ∇σD is the gradient of
the support function, i.e., the only maximizer of (9). In such
a case, (10) reduces to an equality.

In practice, we use the support functions of the shapes
denoted σA1 and σA2 to compute σD, as σD = σA1 −
σA2 [10], [12]. Since we consider the relative pose T (q)
between A1 and A2, all vectors are classically expressed in
the frame of A1. By decomposing the terms in the support
function, we can show that for any x, if s1 ∈ ∂σA1

(x)
and s2 ∈ ∂σA1(−R(q)Tx), then:

s = s1 − s2 ∈ ∂σD(x), (11)

where R(q) is the rotation matrix associated to T (q).
In practice, evaluating and finding a maximizer of the

support function is simple and a computationally cheap
operation (this partly explains the large popularity of GJK
and related algorithms for collision detection [1]). Since this
is true also for x∗, we rewrite Eq. (10) to obtain:

x∗ −∇σA1(−x∗) + T (q)∇σA2(R(q)Tx∗) = 0. (12)

Remarkably, the witness points x∗
1 and x∗

2 appear in (12):{
x∗
1(x

∗) = ∇σA1
(−x∗)

x∗
2(x

∗, q) = T (q)∇σA2
(R(q)⊤x∗).

(13)

Implicit function differentiation. We define the func-
tion f : R3 × R7 → R3 as:

f(x, q) = x−∇σA1
(−x) + T (q)∇σA2

(R(q)Tx). (14)

From (12), the separation vector x∗(q), parameterized by q,
is thus implicitly described by the equation:

f(x∗, q) = 0. (15)

By expanding the 1st-order terms of f , we can relate the
sensitivity of x∗ to the relative configuration q between the
shapes:

∂f(x∗, q)

∂x∗ δx∗ +
∂f(x∗, q)

∂q
δq = 0, (16)

leading to the following relation:

∂f(x∗, q)

∂x∗
∂x∗

∂q
= −∂f(x∗, q)

∂q
, (17)

and finally to:

∂x∗

∂q
= −

[
∂f(x∗, q)

∂x∗

]−1
∂f(x∗, q)

∂q
, (18)

if the Jacobian of f w.r.t. x∗ is invertible, where:

∂f(x∗, q)

∂x∗ = I +
∂2σA1

(−x∗)

∂x∗2 +R(q)
∂2σA2

(y∗)

∂y∗2 R(q)⊤,

(19)
with y∗ = R(q)x∗. The terms in ∂f(x∗, q)/∂q are deriva-
tive terms involving elements of SE(3) and can be simply
obtained by following the derivations in [15].

To evaluate both derivative terms of f , it is necessary to
compute the Hessian of the support function ∂2σA(x)/∂x

2

at x∗ (or y∗) where A stands for either shape A1 or A2. The
Hessian of the support function encodes the local curvature
of the shape and it is easy to compute for basic smooth and
strictly-convex shapes such as spheres or ellipsoids.

Let us now focus on the general case where A1 or A2

might not be smooth or simply convex. We explain how we
can recover and compute the terms of (18). In the general
case, Eq. (12) becomes:

x∗ − x∗
1(x

∗) + T (q)x∗
2(x

∗, q) = 0, (20)

with: {
x∗
1(x

∗) ∈ ∂σA1
(−x∗),

x∗
2(x

∗, q) ∈ ∂σA2
(R(q)⊤x∗),

which are computed by the GJK+EPA procedure.
By casually writing ∇σA1

(−x∗) = x∗
1(x

∗)
and ∇σA2(R(q)Tx∗

2) = x∗
2(x

∗, q), we recover (12)
and ultimately (18).
Uninformative gradients: the case of meshes. When a
shape is non-smooth or non-strictly convex, the Hessian of
its support function may be null (e.g., a flat surface) or even
undefined (e.g., the Hessian at the vertex of a cube). Let
us consider the example of a mesh representing the convex-
hull of an arbitrary object to illustrate this phenomenon. A
mesh A is a list of Nv vertices {v1, ...vNv

} and therefore:

σA(x) = max
vi∈{v1,...,vNv}

⟨vi,x⟩,

∇σA(x) = vi∗ ,
(21)

for a certain i∗ ∈ [1, Nv]. We define the matrix V ∈ R3×Nv

and the vector z(x) ∈ RNv as:

V T = (v1 · · · vNv
)T ,

z(x) = V Tx.
(22)

This allows us to define the vector of argmax
weights a(z) ∈ RNv :

a(z) = argmax
∥w∥1≤1, 0≤w

zTw. (23)

Therefore, all components of a(z(x)) are null, except the
i∗th component which value is 1. As a consequence, we have:

∇σA(x) = vi∗ =
∑
i

aivi = V a(z(x)), (24)

and:
∂2σA(x)

∂x2
= V

∂a(z)

∂z
V ⊤ = 0, (25)

because ∂a(y)/∂y is null almost everywhere. As a conse-
quence, the gradients of x∗ w.r.t q obtained after solving (18)
fail to capture information regarding the curvature of the
underlying object which the mesh approximates.
Hessian estimation via randomized smoothing. To over-
come this issue, we use a randomized smoothing approach in
order to estimate ∂2σA(x)/∂x

2. We apply (5) to g = ∇σA
to obtain:

∂2σA(x)

∂x2
≈ 1

M

M∑
j=0

−∇σA(x+ ϵz(j))
∇ logµ(z(j))⊤

ϵ
.

(26)



(a) Finite differences. (b) 0th-order.

(c) 1st-order. Gumbel
and Gaussian.

Fig. 3: Convex hulls of YCB shapes, goal: find a relative
pose such that the yellow points are contact points. We display
the final pose each method converged to. Finite differences fail to
generate a satisfying pose. The 0th-order gradient estimator is better
than finite differences but is not as precise as the 1st-order gradient
estimator.

In practice, we choose µ to be a normalized Gaussian cen-
tered in 0. Although this procedure to evaluate the Hessian
of the support function requires to compute the support
function M times, it is in practice very efficient, as first the
computation of the support function is very cheap, second
it can be warm-started and third it is highly parallelisable.
Finally, this method to estimate the Hessian of a support
function is generic as it can be applied to any convex shape
with a computationally tractable support function.
Special case of meshes: the Gumbel distribution. In
the specific case of meshes, the structure of the support
function allows to replace the Gaussian distribution by the
Gumbel distribution [23], resulting in a closed form solution
to estimate the mean of ∂2σA(x)/∂x

2 and thus removing
the need of a Monte-Carlo estimator. Thus, using a Gumbel
distribution µ with zero mean and identity matrix variance
to sample the noise, we get a closed-form solution for (3)
when applied to g(z) = a(z) from Eq. (23):

aϵ(z) = EZ∼µ [a(z + ϵZ)]

=
1∑

j e
zj/ϵ

(
ez1/ϵ . . . ezNv/ϵ

)⊤
.

(27)

The smoothed aϵ is thus simply a soft-max, which is a
smooth and differentiable function of y [8]. The ϵ parameter
serves as a temperature parameter [23]. Due to the nature
of the soft-max operator, the ith weight in aϵ decreases
exponentially the further zi = ⟨vi,−x∗⟩ is from the max-
imum value σA(−x∗). This maximum value is attained by
the witness point of the considered shape A. We illustrate in
Fig. 2 the weighting of this soft-max operation on a mesh.
Remarkably, the further a vertex is from the current witness
point, the less it contributes to the soft-max. It is therefore
only necessary to keep the points of the mesh which belong
to a neighborhood around the witness point of shape A. This
fact renders the use of the Gumbel distribution very efficient
on meshes. By choosing the depth of neighboring vertices
around the witness point, which we denote by nl, we can
choose to limit or increase the number of neighbors involved

Fig. 4: Rough shapes, goal: find a relative pose such that the
yellow points are contact points. The current witness-points are
the blue points.

in the computation of (27). As an example, a depth of nl = 2
corresponds to keeping only the neighbors of the witness
points and the neighbors of neighbors.

Finally, by applying the chain rule we get the estimation
of ∂2σA(x)/∂x

2:

∂2σA(x)

∂x2
≈ ∂aϵ(z(x))

∂x
= V

∂aϵ(z)

∂z
V T , (28)

where ∂aϵ(z)/∂z is simply the derivative of the soft-max
function.
Derivatives of the witness points. In gen-
eral, x∗

1 = ∇σA1
(−x∗) so by applying the chain rule

we get:

∂x∗
1,2

∂q
= −∂∇σA1,2

(−x∗)

∂x∗
∂x∗

∂q
= −∂2σA1,2

(−x∗)

∂x∗2
∂x∗

∂q
.

(29)
To conclude this section, we have introduced a complete

approach to retrieve a 1st-order estimate of the variation of
the witness points lying on the two shapes, according to the
relative placements between these two. In particular, in the
case of meshes, we have proposed a closed-form formula
to compute a local approximation of the Hessian using the
neighborhood of the current witness points.

V. EXPERIMENTS

In this section, we evaluate whether the gradients obtained
with the two proposed estimators are meaningful and how
computationally efficient it is to compute them compared to
finite differences.
Contact-pose generation benchmark. To answer the first
question, we evaluate the 0th-order and 1st-order estimators
against finite differences on a synthetic benchmark of non-
trivial minimization problems. We generate 100 collision
pairs with random polyhedral ellipsoids, i.e., ellipsoids which
surfaces are represented by a 12-vertices convex mesh (see
Fig. 4). The resulting shapes are rough, i.e., the curvature
information of the original shape has been greatly truncated.
For each pair of convex shapes (A1,A2), we generate 100
random target points x1,des ∈ A1 and x2,des ∈ A2 on the
shapes’ surfaces. For each of the 10000 generated prob-
lems, the goal is to find a relative pose T (q) between A1

and A2 such that the shapes are in contact and their
witness points x∗

1(q) and x∗
2(q) satisfy x∗

1(q) = x1,des
and x∗

2(q) = x2,des. Mathematically, this corresponds to
solving the minimization problem:

min
q

1

2

∑
i=1,2

∥∥x∗
i (q)− x∗

i,des

∥∥2 + 1

2
∥x∗

1(q)− x∗
2(q)∥2 .

(30)



Finite
differences

0th-order
Gaussian

1st-order
Gaussian

1st-order
Gumbel

M = 12
ϵ = 10−6

M = 12
ϵ = 10−3

M = 50
ϵ = 10−2

M = 20
ϵ = 10−3

nl = 1
ϵ = 10−4

D1 2× 10−33 8× 10−33 4× 10−23 4× 10−16 6× 10−16

Q1 4× 10−32 7× 10−23 5× 10−20 1× 10−10 3× 10−10

Median 3× 10−3 4× 10−14 2× 10−13 4× 10−8 1× 10−8

Q3 4× 10−2 1× 10−2 2× 10−3 3× 10−7 7× 10−8

D9 8× 10−2 5× 10−2 5× 10−3 2× 10−6 2× 10−5

TABLE I: Rough shapes (see Fig. 4), value of C(q) after
50 iterations of Gauss-Newton with line search. Q3 and D9:
respectively 25% and 10% of problems have a terminal cost worse
(higher) than the reported value.
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Fig. 5: YCB shape, goal: find a relative pose such that the
yellow points are contact points. Finite difference typically gets
stuck around a limited precision (depending on the finite difference
increment). The 1st-order estimator converges rapidly towards a
solution with high precision unlike the 0th-order estimator.

To solve this minimization problem, we use the Gauss-
Newton algorithm with backtracking line search [24] and
run it for 50 iterations. To compute the Jacobian of the cost,
we evaluate the terms ∂x∗

1,2/∂q, with finite differences, and
the 0th and 1st-order estimators proposed in this work. Fi-
nally, to compute x∗

1(q) and x∗
2(q), we use the combination

of the GJK and EPA algorithms implemented in the HPP-
FCL library [25], [26], a fork of the FCL library [27].

We report as quantiles in Table I the value of the terminal
cost C(q). The lower this quantity, the better the quality
of the solution found. We are particularly interested in the
quantiles Q3 and D9 of Table I: respectively 25% and 10%
of problems have a terminal cost worse (higher) than the
reported value. The higher this value is, the less reliable the
method is. We observe that finite differences have a high
value for Q3 and D9 whereas the two proposed estimators are
at least one order of magnitude better. Remarkably, the 1st-
order estimators, whether the underlying distribution used is
Gaussian or Gumbel, is extremely accurate and reliable, with
a value of Q3 and D9 at least 3 orders of magnitude better
than finite differences.

As an additional qualitative example, Fig. 3 and Fig. 5
show a typical example of failure of finite differences on a
collision pair of the YCB dataset - a dataset which contains
high-resolution meshes of real-world household objects [28].
Finally, Fig. 6 shows the typical impact of the noise and
number of samples on the 1st-order estimator using the Gum-
bel distribution for the same YCB problem. The same kind
of behavior is obtained when using a Gaussian distribution.
Overall, the higher the number of samples, the better the
quality of the estimator; the higher the noise, the faster the
convergence at the price of reduced accuracy.
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Fig. 6: Goal: find a relative pose such that the yellow points are
contact points. With more noise, the faster the convergence is at
first, but the estimator ends up being less precise, hence converges
to a less optimal solution.

Method Parameters Timings (in µs)
Collision No collision

Finite
differences M = 12 78± 48 11.0± 7.3

0th-order
Gaussian

M = 10 65± 36 9± 6
M = 20 122± 130 17± 10
M = 50 338± 391 47± 30
M = 100 613± 402 86± 45

1st-order
Gaussian

M = 10 4.8± 1.4 3.1± 0.3
M = 20 8.9± 2.8 5.8± 0.5
M = 50 22± 8 15± 3
M = 100 42± 13 27± 3

1st-order
Gumbel

nl = 1 1.7± 0.5 1.6± 0.5
nl = 3 4.1± 1.8 3.9± 1.4
nl = 5 9.6± 7.8 9.7± 8.1

TABLE II: Timings for computing collision detection deriva-
tives, for collision pairs of the YCB dataset. The parameters were
selected in the ranges which would typically be used in practice.

YCB timings benchmarks. To evaluate the computational
efficiency of the proposed estimators, we generate 10000
collision detection problems (1) using meshes from the YCB
real-world objects dataset [28] and measure the time taken to
compute the derivatives of witness points for each estimator.
For the finite differences and 0th-order, GJK+EPA are warm
started at each sample q + ϵz to enhance the computational
efficiency. The results, reported in Table II show that al-
though the 0th-order estimator is often prohibitive compared
to finite differences, the 1st-order estimators using Gaussian
and Gumbel distributions can be obtained extremely effi-
ciently, on the order of the micro-seconds and from 10 to 70
times faster than finite differences.

VI. CONCLUSION

In this paper, we propose a generic approach for com-
puting 0th and 1th−order derivatives of collision detection
for any convex shapes by leveraging randomized smoothing
techniques. While being robust and easy to implement,
our approach exhibits strong benefits in terms of speed
and accuracy, taking only few micro-seconds to compute
informative derivatives of complex shapes, such as meshes
with hundred vertices, involved in real robotic applications.
Remarkably, the 1th−order estimators are also both more
accurate and less expensive to compute than the 0th-order
estimator. All these gradient estimation methods have been
implemented in the HPP-FCL and Pinocchio ecosystems. We
plan to extend our contributions by applying these methods
for differentiable simulation, optimal grasp synthesis and
trajectory optimization.
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