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Abstract

This paper concerns preference elicitation and
learning of decision models in the context of multi-
criteria decision making. We propose an approach
to learn a compact representation of preferences
using a decomposable bi-polar Choquet integral.
Our aim is to show how we can successively learn
marginal utilities and then sparse representations
of capacities involved in the decision model from
preference data. We first present a preference elic-
itation method to learn spline representations of
marginal utilities on every point of view. Then we
propose a sparse learning approach for determining
a compact representation of capacities fitted to the
observed preferences. Finally, we present numer-
ical tests showing the advantages of our approach
compared to basic methods that do not seek spar-
sity or that force sparsity a priori by requiring k-
additivity. We also apply our approach in the con-
text of preferences over sets.

1 Introduction
Evaluation and decision making is often a matter of finding
the most appropriate tradeoff between multiple and possibly
conflicting points of views [Roy, 1996]. In the field of multi-
criteria decision making, various evaluation and aggregation
models have been proposed to evaluate and compare the alter-
natives of a decision problem [Grabisch et al., 2009]. These
models generally use and combine objective and subjective
information: on the one hand alternatives are described by
consequence vectors representing their outcomes with respect
to multiple points of views under consideration in the analy-
sis of preferences. On the other hand, in order to go beyond
straightforward preferences induced by Pareto dominance,
more subjective preference parameters are used to model the
value system of the Decision Maker (DM), e.g., the relative
importance of the various points of views and their possi-
ble interactions in the evaluation process. Thus, a body of
increasingly complex decision models is studied in decision
theory to encompass an ever more sophisticated set of de-
cision behaviors. This effort motivated by descriptive objec-
tives comes at the cost of an additional complexity, both at the

level of preference learning (fitting the parameters of the pref-
erence model to the DM value system to explain or predict
her preferences) and at the recommendation level (finding an
optimal alternative becomes computationally more difficult).
In this paper, we address the first challenge and propose a
methodology dedicated to the identification of utilities and
capacities in decision models involving Choquet integrals.

The Choquet integral is a well known aggregation func-
tion used in multicriteria decision making to assign an overall
score to any evaluation vector attached to an alternative [Gra-
bisch, 1996]. It performs a kind of sophisticated weighted
average where weights are defined for every subset of compo-
nents. The Choquet integral is also used in machine learning
to replace the linear function of variables which is commonly
used in standard regression methods [Gagolewski et al., 2019;
Beliakov and Divakov, 2020]. For example, logistic regres-
sion was extended to Choquistic regression [Tehrani et al.,
2011]. It is also used for learning to rank with the Choquet
integral [Tehrani et al., 2012] where the data are provided
with the labels which are preference degrees from an ordered
categorical scale.

The CIU model (Choquet Integral of Utilities) is a de-
cision model where the Choquet integral is used to aggre-
gate the utilities of alternatives with respect to n points of
views. It is based on two types of preference parameters:
utility functions defining the attractiveness of consequences
on every relevant point of view and a set function named ca-
pacity, monotonic with respect to set inclusion, assigning a
weight to every subset of points of views. The Choquet in-
tegral was initially introduced in the framework of decision
under uncertainty [Schmeidler, 1989]; it has been general-
ized to be applied in multicriteria analysis [Grabisch, 1996;
Grabisch and Labreuche, 2010] and some methods based on
regression have been proposed for capacity identification, as-
suming the utilities are known [Grabisch et al., 2008].

Here we consider also the bi-Choquet integral of utilities
(bi-CUI) which is an extension of CIU using two capacities
that cooperate in weighting criteria or subset of criteria; one
applies to the positive part of the evaluation vector whereas
the other applies to the negative part [Labreuche and Gra-
bisch, 2006]. This extension inspired by Kanheman and Tver-
sky’s cumulative prospect theory (CPT) [Tversky and Kah-
neman, 1979] allows the representation of decision behaviors
that may vary depending on whether positive or negative con-



sequences come into play. CPT was initially introduced in
the context of decision making under risk and assumes that
capacities are defined as monotone transformed of probabil-
ity measures. The bi-CIU model under consideration here is
more general than CPT by allowing any kind of (monotonic)
capacity to weight the subsets of points of views [Labreuche
and Grabisch, 2006]. It can be used in multicriteria optimiza-
tion when criteria scales and preferences are bipolar [Martin
and Perny, 2020]. The bi-CIU model can be further general-
ized using bi-capacities in Choquet integrals [Labreuche and
Grabisch, 2006] but this latter generalization is not consid-
ered here for the sake of simplicity.

Our focus on CIU and bi-CIU models is motivated by sev-
eral reasons: first CIU is acknowledged as one of the most
general monotone compromise aggregators since it includes
various simpler decision models as special cases (e.g., addi-
tive utilities, weighted sums, OWA and WOWA aggregators
[Yager, 1988; Torra, 1997]). Therefore CIU includes a rich
family of aggregation functions which provides a natural set-
ting to study how model complexity can be tuned to the pref-
erence system we want to describe or implement. Moreover
the use of possibly non-additive capacities in CIU may re-
quire the definition of 2n parameters in the worst case (one
for every subsets of points of view) where n is the number
of points of view under consideration. This perfectly illus-
trates how the gain of expressiveness comes with an increase
of model complexity and obviously raises the question of the
parsimonious learning of the parameters defining the capac-
ity. Then, considering bi-CIU is even more general and more
powerful than CIU from a descriptive viewpoint. The bipo-
lar version of the model being based on two capacities, it re-
quires 2n+1 weighting parameters, beside utility functions,
which raises even more crucially the need of methods to learn
sparse representations of capacities. It might indeed prevent
over-fitting of preference data and lead to more compact and
more explainable decision models.

For this reason, we study the potential of sparse learning to
determine compact representations of preferences from pref-
erence data with the CIU or bi-CIU model. This problem is
challenging due to the interplay of utilities and capacities in
the computation of CIU values, making the learning of these
two types of parameters interdependent. Another challenge
comes from the fact that utilities and capacities are not di-
rectly observable and must be derived from preference state-
ments over pairs of alternatives. We will propose an approach
to learn utility functions and capacities in two successive
steps: by properly selecting a first set of preference queries
we will learn a spline representation of the utility function on
every point of view and then we learn a sparse representation
of the capacities from a database of preference examples.

The paper is organized as follows: Section 2 introduces
the CIU and bi-CIU models and some related concepts. In
Section 3 we present an elicitation approach to learn marginal
utility functions defined on each point of view. In Section 4
we propose an approach to learn sparse capacities both for
positive and negative consequences. In Section 5, we present
numerical tests to compare the performances of our elicitation
approach compared to baseline methods. Finally, we present
in Section 6 an application to preference learning over sets.

2 Background on CIU and bi-CIU
We adopt the standard setting and notations for multiattribute
or multicriteria decision making. Let N = {1, . . . , n} be the
set of the n points of view to be considered in a decision prob-
lem. Let X = X1 × . . . ×Xn be the n-dimensional evalua-
tion space where Xi is a bounded set of consequences ordered
by relation ≻i. For any i ∈ N , for any pair (xi, yi) ∈ Xi,
xi ≻i yi (resp. xi ⪰i yi) means that xi is a better conse-
quence than yi (resp. better or equal). Within every set Xi

we distinguish three reference elements denoted −1i, 0i and
1i representing the bottom level, the neutral level and the top
level consequences respectively [Grabisch and Labreuche,
2010]. These levels must be obtained in close cooperation
with the DM. The alternatives to be compared are seen as el-
ements of X . Thus, every alternative x ∈ X is described
by its consequence vector (x1, . . . , xn) where xi ∈ Xi is the
consequence of x w.r.t. viewpoint i, for i = 1, . . . , n. In
this setting we consider n utility functions ui defined on Xi

and strictly increasing with preference ≻i for i = 1, . . . , n,
such that ui(−1i) = −1, ui(0i) = 0 and ui(1i) = 1. Util-
ities are used to quantify the attractiveness of consequences
on a common scale [-1, 1]. Consequences above the neutral
level receive a positive utility whereas consequences below
the neutral level receive a negative utility.

2.1 CIU and bi-CIU models
We recall here the definition of models CIU and bi-CIU that
use a Choquet integral to aggregate the utilities defined above.
Let v denote a capacity defined on 2N , i.e., a set function such
that v(∅) = 0, v(N) = 1 and v(A) ≤ v(B) for all A,B ⊆ N
such that A ⊆ B. The CIU model combines utilities ui, i =
1, . . . , n and the capacity v to define the value of any con-
sequence vector x = (x1, . . . , xn) by the discrete Choquet
integral of the utility vector u(x) = (u1(x1), . . . , un(xn)).
Formally, the CIU model reads as follows:

Cv(u(x)) =

n∑
i=1

[
v(X(i))− v(X(i+1))

]
u(i)(x(i)) (1)

=

n∑
i=1

[
u(i)(x(i))− u(i−1)(x(i−1))

]
v(X(i)) (2)

where (.) is any permutation of N such that u(i)(x(i)) ≤
u(i+1)(x(i+1)) and X(i) = {j ∈ N : u(j)(x(j)) ≥
u(i)(x(i))}, i ∈ N with u(0)(x(0)) = 0 and X(n+1) = ∅.

Example 1. If N = {1, 2, 3} and u2(x2) ≤ u1(x1) ≤
u3(x3) then Cv(u(x1, x2, x3)) = u2(x2)v({1, 2, 3}) +
[u1(x1) − u2(x2)]v({1, 3}) + [u3(x3) − u1(x1)]v({3}) by
Equation 2.

Then the preferences induced by CIU are obviously defined
as follows: for any solutions x, y ∈ X , x is at least as good
as y (denoted x ≿ y) if and only if Cv(u(x)) ≥ Cv(u(y)).
Similarly, x is indifferent to y (denoted x ∼ y) if and only
if Cv(u(x)) = Cv(u(y)). Let us recall that monotonicity of
v w.r.t. set inclusion and the monotonicity of ui w.r.t. ≻i

are assumed to make sure that Cv(u(x)) ≥ Cv(u(y)) when
xi ⪰i yi for all i ∈ N (monotonicity of preference w.r.t.
Pareto dominance).



Now, we consider the bi-CIU model that relies on the same
utility functions than CIU but uses two capacities:

fu
v,w(x) = Cv(u(x)

+) + Cw(−u(x)−) (3)

where u(x)+ (resp. u(x)−) is the utility vector u(x) (resp.
−u(x)) in which negative components are replaced by 0.
It is well known that Cw(z) = −Cw̄(−z) for any util-
ity vector z where w̄ is the dual capacity of w defined by
w̄(A) = 1− w(N \A) for all A ⊆ N . Therefore fu

v,w(x) =

Cv(u(x)
+) − Cw̄(u(x)

−). This latter formulation makes
more explicit the balance between positive and negative ar-
guments like in cumulative prospect theory. Moreover, if
v = w, fu

v,w(x) = Cv(u(x)
+) + Cv(−u(x)−) = Cv(u(x))

and therefore the bi-CIU model boils down to CIU.

Example 1 (continued) If u2(x2) ≤ 0 ≤ u1(x1) ≤ u3(x3)
then we have fu

v,w(x1, x2, x3) = Cv(u1(x1), 0, u3(x3)) +
Cw(0, u2(x2), 0). Equivalently fu

v,w(x1, x2, x3) also reads as
follows: Cv(u1(x1), 0, u3(x3))− Cw̄(0,−u2(x2), 0).

2.2 Möbius inverse and sparsity
An alternative representation of capacities and the Choquet
integral relies on the Möbius inverse of the capacity. The
Möbius inverse of v is another set function mv defined on N
by: mv(A) =

∑
B⊆A(−1)|A\B|v(B) for all A ⊆ N . The co-

efficients mv(A) are called Möbius masses, they completely
characterize v. We indeed have v(A) =

∑
B⊆A mv(B). The

values of mv can be positive or negative but add up to 1 since∑
B⊆N mv(B) = v(N) = 1.

Interestingly enough, the CIU model can be directly ex-
pressed from the Möbius inverse by:

Cv(u(x)) =
∑

B⊆N m(B)mini∈B{ui(xi)} (4)

This formulation suggests that Cv(u(x)) might admit a com-
pact representation when the Möbius inverse is sparse (i.e.,
when the Möbius masses include many zeros or values that
will not significantly impact the calculation). A frequent op-
tion used to obtain capacities having a sparse representation
is to require that Möbius masses vanish for all subsets of
states larger than a given k smaller than n. In this case, the
resulting capacity is said to be k-additive [Grabisch, 1997].
For instance, when the capacity is 1-additive then all Möbius
masses are null except for singletons where they are positive
due to monotonicity. In this case, Equation 4 shows that CIU
boils down to a simple additive utility function.

Considering only 2-additive capacities is a standard op-
tion to allow pairwise interactions while keeping a sparse
model. For example, some learning methods have been
proposed to simultaneously learn utilities and 2-additive ca-
pacities [Tehrani et al., 2014; Galand and Mayag, 2017;
Bresson et al., 2020]. One may also wish to relax 2-additivity
for k-additivity (k > 2) with the aim of finding a better trade-
off between sparsity and expressivity. However reasoning
about sparsity in terms of k-additivity is a drastic reduction
that may significantly impact our ability to fit preference data
with relevant CIU models. It may indeed happen that very
sparse but still n-additive capacities perfectly match prefer-
ence data as shown hereafter:

Example 2. Let us consider a DM adopting an egalitarist at-
titude in the aggregation (focusing on the worse consequence)
refined by an utilitarist criterion (using the sum of utilities to
break ties). Such a decision attitude can be obviously repre-
sented by the ϵ-min model fϵ(x) = (1− ϵ)mini∈N ui(xi) +
ϵ
n

∑n
i=1 ui(x) where ϵ is a positive quantity chosen arbitrar-

ily small. Clearly function f is an instance of CIU (see
Equation 4) obtained for a capacity v whose Möbius in-
verse mv is everywhere 0 excepted on singletons and on N
(mv({i}) = ϵ

n for all i ∈ N and mv(N) = 1 − ϵ). We
remark that due to the monotonicity w.r.t set inclusion, func-
tion v is non-null on every subset since Möbius masses are
positive and non-null on singletons. Despite the fact that v
is never null, it admits a very sparse representation in terms
of Möbius masses where only n+ 1 out of 2n coefficients are
non-null.

In the above Example, we remark that the most important
Möbius mass is put on N , which shows that preferences in-
duced by fϵ could not be properly described by any k-additive
capacity with k < n despite the fact that it can be closely
approximated by the min model involving a single non-null
Möbius mass (attached to N ). There is a need of new ap-
proaches to find sparse representations of capacities that best
fit observed preferences, regardless k-additivity. In this paper
we propose a more general approach to seek sparse Möbius
representations of capacities and use it to learn simple in-
stances of the CIU or bi-CUI model that best fit the prefer-
ence data. We first present the learning of utility functions ui

in Section 3. The learning of sparse representations of capac-
ities will be presented in Section 4.

3 Utility Elicitation
In order to elicit utility functions we use indifference state-
ments between carefully selected alternatives to obtain useful
constraints restricting the set of admissible utilities indepen-
dently of the capacity. More precisely our approach consists
in adapting the tradeoff method [Wakker and Deneffe, 1996;
Abdellaoui, 2000] initially introduced in the context of cumu-
lative prospect theory to the case of multicriteria evaluation
with bipolar scales to elicit utility functions ui, i = 1, . . . , n.
Let i be any element of N . We present below the elicitation
process to derive constraints on ui below the neutral level 0i

and then above the neutral level 0i. The preference queries
involve tradeoffs between i and another element j of N that
can be freely chosen.

3.1 Utility elicitation below the neutral level
Let rj , Rj ∈ Xj and xi ∈ Xi such that 0j ≺j rj ≺j Rj ,
i.e., 0 < uj(rj) < uj(Rj) and xi ≺j 0i i.e., ui(xi) < 0. We
consider the following query:
Q−

j (xi) : what is the consequence yi such that
(xi, rj ,0−ij) ∼ (yi, Rj ,0−ij)?

where (xi, rj ,0−ij) is a vector of neutral consequences
everywhere excepted on components i and j where values
are rj and xi. The existence of an answer yi ∈ Xi achieving
the exact indifference requires a certain richness in Xi (solv-
ability assumption). A case where the solvability assumption
is not met is considered in Section 6.



We couple the observed indifference with a second one as-
sociated to the answer zi to Q−

j (hi) for some hi element of
Xi \ {hi}. Assuming (−1i,0−i) ≺ 0, i.e., w(N \ {i}) < 1,
these indifferences imply the following equation as shown in
Subsection 8.1 in the appendix:ui(xi) − ui(yi) = ui(hi) −
ui(zi). By taking hi = yi, we can obtain the following sim-
plified equation:

ui(xi)− ui(yi) = ui(yi)− ui(zi) (5)

3.2 Utility elicitation above the neutral level
Let rj , Rj ∈ Xj and xi ∈ Xi such that rj ≺j Rj ≺j 0j , i.e.,
uj(rj) < uj(Rj) < 0 and xi ≻i 0i, i.e., ui(xi) > 0 . We
consider the following query:
Q+

j (xi) : what is the consequence yi such that
(xi, Rj ,0−ij) ∼ (yi, rj ,0−ij)?

Similarly to the elicitation under the neutral level, we couple
this observed indifference with a second one associated to
the answer zi to a question Q+

j (hi) for any hi element of
Xi \ {xi}. Assuming (1i,0−i) ≻ 0, i.e., v({i}) > 0, these
indifferences imply the following equation as shown in Sub-
section 8.2 in the appendix:ui(yi)−ui(xi) = ui(zi)−ui(hi).
By taking hi = yi, we can obtain the following simplified
equation:

ui(yi)− ui(xi) = ui(zi)− ui(yi) (6)

3.3 Construction of utility curves
In the original method Q+ queries are involved in a recursive
procedure known as standard sequence aiming at construct-
ing a sequence of points on the utility curve ui. The sequence
(s0, ..., sq) is constructed as follows: s0 = 0i and st+1 is the
answer to the query Q+

j (st). By construction this sequence
is such that st ≺i st+1 and this improving sequence stops
at step q when consequence 1i is reached. Then we have
ui(st+1)− ui(st) = ui(st)− ui(st−1) by Equation 6, yield-
ing the recursive equation:

ui(st+1) = 2ui(st)− ui(st−1) (7)

which completely determines the sequence, since ui(s0) = 0
and ui(sq) = 1. We indeed have ui(st) = t/q for t =
1, . . . , q. A symmetric sequence can be implemented to con-
struct points on the utility curve below the neutral level using
Q− queries.

Such a method is known to be extremely sensitive to errors
in the responses [Blavatskyy, 2006]. Indeed, if one consid-
ers that every answer is provided with some noise such that
ui(st+1) = 2ui(st) − ui(st−1) + ϵt for t = 1, . . . , q where
ϵt ∼ U([−ϵmax, ϵmax]) and ϵmax > 0, the estimation er-
ror on the points of the standard sequence can be large. In-
deed ui(st) = t

q +
∑t

k=1 ϵs −
t
q

∑q
k=1 ϵk for t = 1, . . . , q

and the expected squared estimation error on a point st is:
E[(ui(st)−t/q)2] = E[(

∑t
k=1 ϵk)

2]+t2/q2E[(
∑q

k=1 ϵk)
2]−

2t
q E[

∑t
k1=1

∑q
k2=1 ϵk1

ϵk2
] =

2ϵ2max

12 (t− t2

q ).
Then the maximum expected estimation error is reached on

the middle of the sequence and is proportional to the length q
of the sequence and to the squared noise intensity ϵ2max:

max
t

E[(uj(st)− t/q)2] = qϵ2max/36

Since the error increases with the length of the standard
sequence, we propose to consider multiple minimal length
(q = 2) standard sequences of type (s0, s1, s2). Multiplicity
is obtained by varying the initial location s0, the reference di-
mension j and the mesh (rj , Rj). Note that if s0 is below the
neutral level we use decreasing sequences generated by Q−

queries. The resulting triplets (sk0 , s
k
1 , s

k
2) yield a set of linear

constraints on ui given by Equation 6. Then we define ui as
a I-spline function that best fits the resulting set of equalities.

Spline functions are piecewise polynomial functions of
class Ck widely used for data interpolation or approxima-
tion due to their ability to smoothly approximate complex
shapes. Moreover they allow for a compact representation of
utilities. Indeed, a spline function can be expressed as a lin-
ear combination of basis functions and is thus characterized
by the coefficients of the combination. Since utility func-
tions are supposed increasing, we will use a basis (Il)Ll=1 of
monotonically increasing spline functions, known as I-spline
functions [Ramsay, 1988] weighted by positive coefficients
(adding up to 1 so as to have ui(1i) = 1). We use here cubic
I-splines (k = 3) because they have matching first and second
derivatives while preserving a local influence of every com-
ponents. Note that we use a translation of the basis functions
from [0; 1] to [−1; 1]. Formally, ui is defined by parameters
αi = (αi,1, . . . , αi,L) ∈ [0, 1]L such that:

∀xi ∈ [−1i,1i] , ui(xi) = 2
∑L

l=1 αi,lIl(x)− 1 (8)

Using Equation 8, the problem of finding the utility that
best fits the equalities can be formalized as a linear program
with relaxed constraints:

min
∑

k(ϵ
+
k + ϵ−k )

∑L
l=1 αi,l(2Il(s

k
0)− Il(s

k
1)− Il(s

k
2)) + ϵ+k − ϵ−k = 0

2
∑L

l=1 Il(1i)αl,j − 1 = 1

2
∑L

l=1 Il(−1i)αl,j − 1 = −1

2
∑L

l=1 Il(0i)αl,j − 1 = 0

ϵ+k ≥ 0, ϵ−k ≥ 0, αi,l ≥ 0.

4 Sparse learning of capacities
We present the learning of sparse representations of ca-
pacities directly on the bi-CIU model because it includes
the CIU model as special case. Let us reformulate bi-
CIU from the Möbius inverse of capacities v and w. We
obtain: fu

v,w(x) =
∑

B⊆N mv(B)mini∈N{ui(xi)
+} +∑

B⊆N mw(B)mini∈B{−ui(xi)
−}.

Given a set of preference statements P = {(xp, yp) ∈ X 2 :
xp ≿ yp, or xp ∼ yp = 1, . . . , N}, and a utility function u,
one wants to find the capacities v, w that match with the ob-
served preferences. We also want to obtain a sparse Möbius
representation of v and w through L1 penalization. How-
ever, because of the constraints v(N) =

∑
B mv(B) = 1 and

w(N) =
∑

B mw(B) = 1, the effect of the penalization term
on the L1 norm of the Möbius masses is cancelled at some
point, since ∥mv∥1 ≥

∑
B⊆N m(B) = 1 and ∥mw∥1 ≥∑

B⊆N m(B) = 1. As a solution, we use the following
representation of mv and mw : mv(B) = 1/n + cv(B),



mw(B) = 1/n+cw(B) when |B| = 1 and mv(B) = cv(B),
mw(B) = cw(B) otherwise. Then we penalize on ||cv||1 and
||cw||1 instead of ||mv||1 and ||mw||1. This leads to solve
the following sparse constraint-based regression (written in
its linearized form):

min
∑

p(ϵ
+
p + ϵ−p ) +

∑
p ϵp + λ

∑
B⊆N (av(B) + bv(B))

+ λ
∑
B⊆N

(aw(B) + bw(B))



if xp ∼ yp,∑
B⊆N mv(B)U+

p (B) +mw(B)U−
p (B) + ϵ+p − ϵ−p = 0

if xp ⪰ yp,∑
B⊆N mv(B)U+

p (B) +mw(B)U−
p (B) + ϵp ≥ 0

mv(B) = 1/n+ cv(B), ∀B ⊆ N : |B| = 1
mv(B) = cv(B), ∀B ⊆ N : |B| > 1
mw(B) = 1/n+ cw(B), ∀B ⊆ N : |B| = 1
mw(B) = cw(B), ∀B ⊆ N : |B| > 1
cv(B) = av(B)− bv(B), ∀B ⊆ N
cw(B) = aw(B)− bw(B), ∀B ⊆ N∑

A⊆B mv(A ∪ {i}) ≥ 0, ∀i ∈ N, ∀B ⊆ N\{i}∑
A⊆B mw(A ∪ {i}) ≥ 0, ∀i ∈ N, ∀B ⊆ N\{i}

ϵ+p ≥ 0, ϵ−p ≥ 0, ϵp ≥ 0, av(B) ≥ 0, bv(B) ≥ 0, aw(B) ≥ 0,

bw(B) ≥ 0,mv(B),mw(B), cv(B), cw(B) ∈ R

5 Experiments
In this section we show the results of numerical experiments
on synthetic data and we illustrate the advantage of our ap-
proach over the baseline methods.

5.1 Synthetic data
We generate the synthetic data as follows. First, random bipo-
lar sparse Choquet models fu

v,w are created through the gener-
ation of a n utility function ui. Second, we generate mv and
mw, two sparse Möbius representations of capacities. For
this, the degree of sparsity ds (percentage of null Möbius
masses) is fixed, and two capacities with ds-sparse Möbius
representations are generated randomly without requiring for
monotonicity. Then mv,mw are taken as the Möbius repre-
sentations of the closest (in the sense of the L1 norm) capac-
ities verifying the monotonicity property.

Third, for n given utility functions ui and capacities v, w,
we simulate Q-queries and their answers for the utility learn-
ing and preferences compatible with fu

v,w for the capacity
learning. Answers to Q-queries are provided with some ran-
dom uniform noise ϵ ∈ [−ϵmax, ϵmax]. For the capacity
learning, pairs (xp, yp) of objects taking values on n criteria
are drawn uniformly within [−1i,1i] , i = 1 . . . n. In order
to introduce noise, each example is associated with a prefer-
ence statement xp ⪯ yp or xp ⪰ yp if |(fu

v (x
p) + σx) −

(fu
v (y

p) + σy)| ≥ σ, and xp ∼ yp otherwise, where σx, σy

are noise values uniformly taken within an interval [−σ, σ].
Pairs with Pareto dominance are discarded. This process is
used to generate training sets of size N which we vary in our
experiments, and test sets of size 10000. In the following, the
generalizing performance of the models is evaluated as the
percentage of preference error in a test set (test error).

Figure 1: Learned utility function with our method (left: red dot-
ted line) and with standard sequences (right: green and blue points)
along with the ground truth (black plain line).

Figure 2: Average MAE w.r.t the number of questions for our
method (fushia) and standard sequences (grey) over 10 simulations
for ϵmax = 0.05 (left) and ϵmax = 0.1 (right)

5.2 Utility learning
We conduct numerical tests on utilities learning. First, we
generate a sparse model fu

v,w with sparsity degree ds = 0.95
and learn the utility function u1 with standard sequences and
then with our method. Answers to Q-queries are simulated
with a level of noise ϵmax = 0.05. Figure 1 displays the
estimated utility functions for both methods along with the
ground truth ui. On the left, the estimation provided by our
method perfectly matches the ground truth while on the right
the estimation of the standard sequence clearly suffers from
noise distortion. We conducted the same experiment on 10
random sparse models, and obtained an average mean abso-
lute error (MAE) of 0.084± 0.052 for the standard sequence
method and 0.022 ± 0.008. The MAE is the mean absolute
difference between the ground truth and the estimated values
on a fixed subdivision.

On Figure 2 we represent the accuracy of both methods
in terms of MAE as a function of the number of questions
asked, we show the average values for 10 random sparse mod-
els. Figure 2 shows the case ϵmax = 0.05 on the left and
ϵmax = 0.1 on the right. The test confirms that long stan-
dard sequences lead to very poor results. On the other hand,
one can see that regardless the level of noise, our approach
converges to a null MAE. This second method seems to be a
more robust approach.

5.3 Learning Möbius representations
We first illustrate the process of learning a sparse Möbius ca-
pacity representation in the specific case of Example 2, and
then we proceed to simulations to demonstrate the benefits of



Figure 3: Selection of the hyperparameter λ with cross validation:
mean percentage test error on the 5 tests folds (left) and L0-norm of
the learned models according λ (right).

our approach in the general case of arbitrarily sparse data.

Illustration on Example 2
We generate preference data according to the model of Ex-
ample 2 (ϵ-min model) with n = 8, N = 500 and σ = 0.03
(which corresponds to approximately 10% of preference er-
ror in the training set). We compare our method based on
sparse regression to some baselines, such as the unpenalized
regression and the use of unpenalized 2-additive models (2-
ADD). The hyper-parameter λ∗ for our approach is selected
by cross validation with a number of folds equal to 5. The
one-standard-error-rule is used, i.e., one selects λ∗ as the
highest value of λ that yields a mean error on the validation
folds lower than the minimum mean error over all λ plus the
standard error associated to this minimum. On the left of Fig-
ure 3 we show the average generalizing performance (mean
validation error) of the learned models over the 5 folds of the
training set for different λ; the selected one-standard-error-
rule λ∗ is highlighted. One can observe (Figure 3 on the right)
that the increase of λ increases the sparsity of the solution,
and λ∗ corresponds to the model with the highest compact-
ness for a still competitive generalizing performance. On Fig-
ure 4 we illustrate the learned Möbius masses for λ∗ (left), the
unpenalized regression (λ = 0) (middle) and 2-ADD (right)
along with the ground truth (ϵ-min model). It is clear that
the regression without any penalty term fails to recover the ϵ-
min model; it does not find any compact representation either.
It achieves, however, a reasonable generalizing performance
on the test set (test error of 14.33%). The 2-additive model,
while being compact, is far from the ground truth and does
not capture high interactions, leading to a poor generalizing
performance (test error of 39.67%). Our approach combines
both advantages of the baselines: compactness and optimal
generalizing performance (test error of 14.00%).

Comparative performance on arbitrarily sparse models
We observed that the 2-additive models can fail if the underly-
ing data structure contains richer interactions. In this section,
we extend our comparisons to the use of k-additive models
for k = 1, . . . , n − 1, and we search for an optimal k∗ (cho-
sen by cross-validation). We also compare the results of our
method to the unpenalized regression method.

For two degrees of sparsity (ds = 0.95 and ds = 0.90) we
generate 10 hidden arbitrarily sparse models with the same

||m||0 Model Test error ||m̂||0
Sparse reg. 12.1 ± 2.5% 78.6 ±34.1
Unp. reg. 12.8 ±2.1% 329.4 ±34.1

12.9 ±7.26 4-ADD 13.5 ±2.7% 235.9 ±56.6
(ds = 0.95) 2-ADD 20.7 ±5.0% 36. 2 ± 5.2

k∗-ADD 14.4 ±3.1% 159.2 ±115.8

Sparse reg. 15.1 ±2.5% 112.5 ±99.8
Unp. reg. 15.3 ±2.3% 402.0 ±48.3

30.5 ±11.08 4-ADD 15.8 ±0.7% 271.3 ±33.3
(ds = 0.90) 2-ADD 20.4 ±2.3% 41.2 ± 5.2

k∗-ADD 16.1 ±2.6% 167.4 ±113.9

Table 1: Generalizing performance and compactness of the proposed
approach and the baselines depending on the level of sparsity of the
hidden models. Results are averaged over 10 simulations.

parameters as in the previous experiment. The generaliz-
ing performance (test error) of our approach (sparse regres-
sion), the unpenalized regression (unp. reg.), 2-ADD, 4-ADD
and k∗-ADD (k-additive where k has been chosen by cross-
validation) are averaged and displayed in Table 1 along with
the average sparsity of the learned models (||m̂||0).

Our approach clearly outperforms the methods based on k-
additive models in terms of generalizing performance with a
competitive compactness of the obtained representations. In-
deed, with the 2-ADD method, our method seems to be the
only one that reaches a L0-norm close to the one of the hidden
models. Note that, while having a generalizing performance
close to optimal, the unpenalized regression (unp. reg.) is
unable to recover an underlying sparse model. On Figure 5
we show the evaluations for each method using both criteria:
test error and the number of non-null Möbius masses. The di-
amond curve corresponds to the results of the sparse regres-
sion for different values of λ (and λ∗), and the circle curve
to k-additive method for different values of k (and k∗). One
can see that the sparse regression allows to achieve a better
compromise between sparsity and accuracy compared to the
method based on k-additive models.

6 Application: preferences over teams
In this section we consider the problem of learning prefer-
ences over teams seen as subsets of elements (individuals),
each being assigned to a specific role (e.g., soccer team,
project group). We consider a reference set E of elements.
A team is characterized by a vector x = (x1, . . . , xn) where
xi ∈ E is the name of the element at position i. Preferences
over teams are modeled by a bi-CIU model fu

v,w. This model
defines the value of a team as a function of the value of its
elements (modelled by u) and the importance of interactions
between roles (modelled by v and w). This is a particular
case of the general setting of this paper where the X ′

is are
equal to E. The u′

is can be used to measure the values of the
elements acting at positions i in the team but for the sake of
simplicity they are assumed to be independent of i and de-
noted u. We assume that the relative value of elements is
known and represented by a weak-order ≿ on E but that the
utilities (monotonic w.r.t. ≿) are to be learned. Let 0 ∈ E



Figure 4: Learned models and hidden model (min model)

Figure 5: Compromise between generalizing performance and com-
pactness achieved by the sparse regression and K-ADD.

(resp. −1 and 1) denote any element of the indifference class
of medium-level elements (resp. bottom-level and top-level
elements). The elements of E are indexed in such a way that
ek ≾ ek+1, k = 1, . . . , |E| − 1. In this setting we apply
our learning approach to derive a value model for teams from
preference examples and to infer new preferences over new
pairs of teams. As E is a finite set, the solvability assump-
tion required the Q-queries might not hold and the elicitation
process must be adapted. We propose the following proce-
dure. For any i, j ∈ {1 . . . n}, inequalities constraints on u
are obtained by asking two queries:
Below the neutral level: Let i, j ∈ {1, ..., n}, xi, rj , Rj ∈ E
such that xi ≾ 0 and Rj ≻ rj ≿ 0.

LQ−
j (xi) : what is the element y+i of lowest index such that

(xi, rj ,0−ij) ≾ (y+i , Rj ,0−ij)?

HQ−
j (y

+
i ): what is the element h−

i of highest index such that
(y+i , rj ,0−ij) ≿ (h−

i , Rj ,0−ij)?

Assuming (−1i,0−i) ≺ 0, i.e., w(N \ {i}) < 1, we obtain
(see Subsection 8.3 in the appendix):

u(y+i )− u(h−
i ) ≥ u(xi)− u(y+i ) (9)

u(y+i )− u(h+
i ) > u(xi)− u(y−i ) (10)

where y+i = ek+1, y
−
i = ek and h+

i = ek′+1, h
−
i = ek′ for

some k, k′ ∈ {1, . . . , |E| − 1}.

Above the neutral level: Let xi, rj , Rj ∈ E such that xi ≿ 0
and rj ≺ Rj ≾ 0:

HQ+
j (xi) : what is the element y−i of highest index such that

(xi, Rj ,0−ij) ≿ (y−i , rj ,0−ij)?

LQ+
j (y

−
i ) : what is the element h+

i of lowest index such that

(y−i , Rj ,0−ij) ≾ (h+
i , rj ,0−ij)?

Assuming (1i,0−i) ≻ 0, i.e., v({i}) > 0, we obtain (see
Subsection 8.3 in the appendix):

u(y−i )− u(h+
i ) ≤ u(xi)− u(y−i ) (11)

u(y−i )− u(h−
i ) > u(xi)− u(y+i ) (12)

Then the elicitation of u presented in Section 3 is adapted
by replacing Equations 5 and 6 by Equations 9,10 and 11,
12. We obtain the following numerical result: for 10 random
sparse models fu

v,w (ds = 0.95, ϵmax = 0.05, n = 7, |E| =
200), we obtain a mean absolute error on u of 0.103± 0.057
(for 115.8±18.84 queries). This represents 5% of the range of
the utility scale. The error is higher than the average error on
u obtained in Subsection 5.2 for continuous attributes due to
the fact that inequations are less informative than equations.
The elicitation of v, w remains unchanged.

7 Conclusion
We proposed a new method to learn both utilities and sparse
representations of capacities in the context of multicriteria de-
cision making using a bipolar Choquet integral. It also ap-
plies to learn preference over sets. We first proposed a variant
of the tradeoff method to learn utility functions in CUI and
bi-CUI models which appears to be more robust than usual
elicitation methods based on standard sequences. Then we
presented a method to learn compact representations of ca-
pacities. The Lasso introduced by [Tibshirani, 1996] is a well
studied approach to control the model’s complexity. We are
aware of several attempts to obtain sparse solutions for the
non-additive integrals via the L1 penalty term. For exam-
ple, the sparsity inducing penalty was applied to the capacity
[Anderson et al., 2014; Adeyeba et al., 2015]; the penalised
sum of squared errors with Gini-Simpson index regularisa-
tion and the L0 norm on the Shapley values were considered
in [Pinar et al., 2017]. The L1 penalty was also applied to
capacities represented by interaction indices in [de Oliveira
et al., 2022]. We also explored the L1 penalty term to ob-
tain a sparse solution, however, we focused on learning sparse
Möbius representations, and we illustrate by our experiments
that the proposed method outperforms the baselines such as
an unregularised regression and k-additive models.
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bag. Neural representation and learning of hierarchical 2-
additive Choquet integrals. In IJCAI, pages 1984–1991,
2020.

[de Oliveira et al., 2022] Henrique Evangelista de Oliveira,
Leonardo Tomazeli Duarte, and João Marcos Travassos
Romano. Identification of the Choquet integral parame-
ters in the interaction index domain by means of sparse
modeling. Expert Systems with Applications, 187, 2022.

[Gagolewski et al., 2019] Marek Gagolewski, Simon James,
and Gleb Beliakov. Supervised learning to aggregate data
with the Sugeno integral. IEEE Transactions on Fuzzy Sys-
tems, 27(4):810 – 815, 2019.

[Galand and Mayag, 2017] Lucie Galand and Brice Mayag.
A heuristic approach to test the compatibility of a prefer-
ence information with a Choquet integral model. In ADT,
pages 65 – 80, 2017.

[Grabisch and Labreuche, 2010] Michel Grabisch and
Christophe Labreuche. A decade of application of the
Choquet and Sugeno integrals in multi-criteria decision
aid. Annals of Operations Research, 175(1):247–286,
2010.

[Grabisch et al., 2008] Michel Grabisch, Ivan Kojadinovic,
and Patrick Meyer. A review of methods for capacity iden-
tification in Choquet integral based multi-attribute utility
theory: Applications of the Kappalab R package. Eu-
ropean journal of operational research, 186(2):766–785,
2008.

[Grabisch et al., 2009] Michel Grabisch, Jean-Luc Marichal,
Radko Mesiar, and Endre Pap. Aggregation functions, vol-
ume 127. Cambridge University Press, 2009.

[Grabisch, 1996] Michel Grabisch. The application of fuzzy
integrals in multicriteria decision making. European jour-
nal of operational research, 89(3):445–456, 1996.

[Grabisch, 1997] Michel Grabisch. K-order additive discrete
fuzzy measures and their representation. Fuzzy sets and
systems, 92(2):167–189, 1997.

[Labreuche and Grabisch, 2006] Christophe Labreuche and
Michel Grabisch. Generalized choquet-like aggregation
functions for handling bipolar scales. European Journal
of Operational Research, 172(3):931–955, 2006.

[Martin and Perny, 2020] Hugo Martin and Patrice Perny.
New computational models for the choquet integral. In
ECAI 2020, pages 147–154. IOS Press, 2020.

[Pinar et al., 2017] Anthony J. Pinar, Derek T. Anderson,
Timothy C. Havens, Alina Zare, and Titilope Adeyeba.
Measures of the Shapley index for learning lower com-
plexity fuzzy integrals. Granul. Comput., 2:303 – 319,
2017.

[Ramsay, 1988] James O. Ramsay. Monotone regression
spline in action. Statistical Science, page 425–441, 1988.

[Roy, 1996] Bernard Roy. Multicriteria methodology for de-
cision aiding, volume 12. Springer Science & Business
Media, 1996.

[Schmeidler, 1989] David Schmeidler. Subjective probabil-
ity and expected utility without additivity. Econometrica,
57(3):571–587, 1989.

[Tehrani et al., 2011] Ali Fallah Tehrani, Weiwei Cheng, and
Eyke Hülermeier. Choquistic regression: generalizing lo-
gistic regression using the Choquet integral. In EUSFLAT,
2011.

[Tehrani et al., 2012] Ali Fallah Tehrani, Weiwei Cheng, and
Eyke Hülermeier. Preference learning using the Choquet
integral: the case of multipartite ranking. IEEE Transac-
tions on Fuzzy Systems, 20(6):1102 – 1113, 2012.

[Tehrani et al., 2014] Ali Fallah Tehrani, Christophe
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8 Appendix
In this appendix we explain how equations on utilities (Equa-
tions 5–6 and Equations 9–12) are derived from preference
and indiference statements.

8.1 Utility elicitation below the neutral level
Let rj , Rj ∈ Xj and xi ∈ Xi such that 0j ≺j rj ≺j Rj ,
i.e., 0 < uj(rj) < uj(Rj) and xi ≺j 0i i.e., ui(xi) < 0. We
consider the following query:
Q−

j (xi) : what is the consequence yi such that
(xi, rj ,0−ij) ∼ (yi, Rj ,0−ij)?

From this indifference we have: fu
v,w(xi, rj ,0−ij) =

fu
v,w(yi, Rj ,0−ij). Since rj ≺j Rj we have yi ≺i xi.

Moreover, since xi ⪯i 0i, i.e., ui(xi) ≤ 0, we have
ui(yi) < ui(xi) ≤ 0 ≤ uj(rj) < uj(Rj) and therefore
fu
v,w(xi, rj ,0−ij) = uj(rj)v({j})+ui(xi)(1−w(N \{i})).

Similarly fu
v ((yi, Rj ,0−ij)) = uj(Rj)v({j}) + ui(yi)(1 −

w(N \ {i})). Hence we have: (ui(xi)− ui(yi))(1− w(N \
{i})) = (uj(Rj)− uj(rj))v({j}) (a).

Similarly, for any hi element of Xi \ {xi} chosen such
that hi ≺i 0i, i.e., ui(hi) < 0, if zi is the answer to ques-
tion Q−

j (hi) we have: (ui(hi)− ui(zi))(1− w(N \ {i})) =
(uj(Rj)− uj(rj))v({j}) (b).

From Equations (a) and (b) we have (ui(xi)−ui(yi))(1−
w(N \{i})) = (ui(hi)−ui(zi))(1−w(N \{i})). Assuming
(−1i,0−i) ≺ 0, i.e., w(N \ {i}) < 1 we obtain:

ui(xi)− ui(yi) = ui(hi)− ui(zi) (13)
By taking hi = yi, we can obtained the following simplify
equation:

ui(xi)− ui(yi) = ui(yi)− ui(zi)

8.2 Utility elicitation above the neutral level
Let rj , Rj ∈ Xj and xi ∈ Xi such that rj ≺j Rj ≺j 0j , i.e.,
uj(rj) < uj(Rj) < 0 and xi ≻i 0i, i.e., ui(xi) > 0 . We
consider the following query:
Q+

j (xi) : what is the consequence yi such that
(xi, Rj ,0−ij) ∼ (yi, rj ,0−ij)?

From this indifference we have: fu
v,w(xi, Rj ,0−ij) =

fu
v,w(yi, rj ,0−ij). Since rj ≺j Rj we have xi ≺i yi.

Moreover, since xi ≻i 0i, i.e., ui(xi) ≥ 0, we
have uj(rj) < uj(Rj) ≤ 0 ≤ ui(xi) < ui(yi)
and therefore fu

v,w(xi, Rj ,0−ij) = ui(xi)v({i}) +
uj(Rj)(1 − w(N \ {j})). Similarly fu

v,w((yi, rj ,0−ij)) =
ui(yi)v({i}) + uj(rj)(1 − w(N \ {j})). Hence we have:
(ui(yi) − ui(xi))v({i}) = (uj(Rj) − uj(rj))(1 − w(N \
{j})) (c)

Similarly, for any hi element of Xi \ {xi} chosen such
that hi ≻i 0i, i.e., ui(hi) ≥ 0, if zi is the answer to ques-
tion Q+

j (hi) we have: (ui(zi)− ui(hi))v({i}) = (uj(Rj)−
uj(rj))(1− w(N \ {j})) (d)

From Equations (c) and (d) we have (ui(yi) −
ui(xi))v({i}) = (ui(zi) − ui(hi))v({i}). Assuming
(1i,0−i) ≻ 0, i.e., v({i}) > 0 we obtain:

ui(yi)− ui(xi) = ui(zi)− ui(hi)

By taking hi = yi, we can obtain the following simplified
equation:

ui(yi)− ui(xi) = ui(zi)− ui(yi)

8.3 Application to preference learning over sets
Recall that in the context of sets all Xi are discrete and equal
to the set of items E. Moreover all ui are identical and de-
noted u hereafter.

Utility elicitation below the neutral level
Let i, j ∈ {1, ..., n}, xi, rj , Rj ∈ E such that xi ≾ 0 and
Rj ≻ rj ≿ 0. We consider the following query:

LQ−
j (xi) : what is the element y+i of lowest index such that

(xi, rj ,0−ij) ≾ (y+i , Rj ,0−ij)?

From this preference we deduce that (xi, rj ,0−ij) ≻
(y−i , Rj ,0−ij) where y+i = ek+1, y

−
i = ek for some k ∈

{1, . . . , |E| − 1}. Hence we obtain the following inequa-
tions: (u(xi) − u(y+i ))(1 − w(N \ {i})) ≤ (u(Rj) −
u(rj))v({j}) and (u(xi) − u(y−i ))(1 − w(N \ {i})) >
(u(Rj)− u(rj))v({j}).

Similarly, for any hi element of E\{xi} chosen such that
hi ≾ 0, we ask the following question:

HQ−
j (hi): what is the element z−i of highest index such that

(hi, rj ,0−ij) ≿ (z−i , Rj ,0−ij)?

From this preference we deduce that (hi, rj ,0−ij) ≺
(z+i , Rj ,0−ij). Hence we obtain the following inequations:
(u(hi)−u(z−i )(1−w(N\{i})) ≥ (u(Rj)−u(rj))v({j}) and
(u(hi)−u(z+i ))(1−w(N \{i})) < (u(Rj)−u(rj))v({j}).

Hence we have (u(xi) − u(y+i ))(1 − w(N \ {i})) ≤
(u(Rj)−u(rj))v({j}) ≤ (u(hi)−u(z−i ))(1−w(N \{j})).
Moreover, (u(hi) − u(z+i )(1 − w(N \ {i})) > (u(R) −
u(r))v({j}) > (u(xi)− u(y−i )(1−w(N \ {i})). Assuming
(−1i,0−i) ≺ 0, i.e., w(N \ {i}) < 1, we obtain:

u(hi)− u(z−i ) ≥ u(xi)− u(y+i )

u(hi)− u(z+i ) > u(xi)− u(y−i )

By taking hi = y+i , we can obtain the following simplified
inequations:

u(y+i )− u(z−i ) ≥ u(xi)− u(y+i )

u(y+i )− u(z+i ) > u(xi)− u(y−i )

Utility elicitation above the neutral level
Let i, j ∈ {1, ..., n}, xi, rj , Rj ∈ E such that xi ≿ 0 and
rj ≺ Rj ≾ 0. We consider the following query:

HQ+
j (xi) : what is the element y−i of highest index such that

(xi, Rj ,0−ij) ≿ (y−i , rj ,0−ij)?

From this preference we deduce that (xi, Rj ,0−ij) ≺
(y+i , rj ,0−ij) where y+i = ek+1, y

−
i = ek for some k ∈

{1, . . . , |E|−1}. Hence we obtain the following inequations:
(u(xi)−u(y−i ))v({i}) ≥ (u(rj)−u(Rj))(1−w(N \ {j}))
and (u(xi) − u(y+i ))v({i}) < (u(rj) − u(Rj))(1 − w(N \
{j})).



Similarly, for any hi element of E\{xi} chosen such that
hi ≿ 0, we ask the following question:

LQ+
j (hi) : what is the element z+i of lowest index such that

(hi, Rj ,0−ij) ≾ (z+i , rj ,0−ij)?

From this preference we deduce that (hi, Rj ,0−ij) ≻
(z−i , rj ,0−ij) where z+i = ek+1, z

−
i = ek for some k ∈

{1, . . . , |E|−1}. Hence we obtain the following inequations:
(u(hi)−u(z+i ))v({i}) ≤ (u(rj)−u(Rj))(1−w(N \ {j}))
and (u(hi) − u(z−i ))v({i}) > (u(rj) − u(Rj))(1 − w(N \
{j})).

Hence we have (u(hi) − u(z+i ))v({i}) ≤ (u(Rj) −
u(rj))(1−w(N \{j})) ≤ (u(xi)−u(y−i ))v({i}). Moreover,
(u(xi)−u(y+i ))v({i}) < (u(Rj)−u(rj))(1−w(N\{j})) <
(u(hi) − u(z−i ))v({i}). Assuming (1i,0−i) ≻ 0, i.e.,
v({i}) > 0, we obtain:

u(hi)− u(z+i ) ≤ u(xi)− u(y−i )

u(hi)− u(z−i ) > u(xi)− u(y+i )

By taking hi = y−i , we can obtain the following simplified
inequations:

u(y−i )− u(z+i ) ≤ u(xi)− u(y−i )

u(y−i )− u(z−i ) > u(xi)− u(y+i )
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