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Abstract

For the parabolic and the transport equations whose coefficient of the first term, denoted by
b, can be in a negative Besov space, we provide a control of the solution in the Hölder space Cγ ,
γ ∈ (0, 1), regardless of b and matching with the source functions regularity. We define some kind
of solutions which do not require b to be Lipschitz continuous.

For a “very weak” solution, called in the paper mild vanishing viscous, in Cγ , there is no regularity
constraint on b.

If b lies in a γ̃-Hölder space, γ̃ > 1 − γ, we establish that there is a weak solution in a γ-Hölder
space.

If b is supposed to be divergence free, we obtain the same result for b having a negative regularity
in space, precisely in L∞(B−β

∞,∞) for β < γ.

Finally, if γ̃ > 1
1+γ with a vanishing viscous condition, then the selected solution is unique. In this

case, there is somehow a regularisation by turbulence (corresponding to the Reynolds number going
to +∞); the vanishing viscosity overwhelms the potential blowing up of the rough coefficients.

Importantly, as a by-product of our analysis, we are able to give a meaning of a product of
distributions. For b lying in a Cγ , we obtain the same condition as for the usual Bony’s para-
product; but in a weaker solution framework, the product is defined beyond the para-product
condition and even with no constraint at all in the mild vanishing viscous context. We also obtain
that the time averaging of the distributions product is γ-Hölder continuous. These new results
happens because, in the considered product, one of the distribution is the gradient of a solution
of a Partial Differential Equation.

Thanks to our analysis, we also get a Hölder control of a solution of the inviscid Burgers’
equation. Under some regularity and vanishing viscous constraint, the solution is a weak solution
and is unique in a certain sense. The vanishing viscous procedure allows to avoid the well-known
critical time of the solution built by characteristics.

Keywords: Regularisation by turbulence, Transport equations, Parabolic equations, Besov spaces, Prod-

uct of distributions, Para-product, Inviscid Burgers’ equation.
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1 Introduction

1.1 Statement of the problem

For a given d ∈ N, we consider the following d-dimensional Cauchy problem:{
∂tu(t, x) + ⟨b(t, x),∇u(t, x)⟩ = f(t, x), (t, x) ∈ R+ × Rd,

u(0, x) = g(x), x ∈ Rd.
(1.1)

For a finite β ∈ R, we suppose that the transport coefficient, b(t, ·), for any t ∈ R+, lies in the

non-homogeneous Besov Hölder space B−β
∞,∞; when β > 0, this can be regarded as a Hölder space

with negative regularity.
We first establish in this article that there is a solution u which is Hölder continuous. To give

a meaning of the product ⟨b(t, x),∇u(t, x)⟩, we introduce a kind of vanishing viscosity solution. We
indeed consider the usual second order parabolic equations whose second order term ν, called viscosity,
goes to 0,{

∂tu
m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,
(1.2)

the function bm is a mollified version of the distributional valued b, also gm and fm stand respectively
for a mollified version of g and f . The uniform control in L∞ is direct by a probabilistic representation
of the solution, see [Hon22], or by maximum principle, this result can also be regarded as a by-product
of our analysis.

We write the solution as a perturbation of a PDE with constant components. These constants
correspond to the first order term bm taking at a freezing point throw the corresponding flow, as
done in [CDRHM18]. However, to estimate the Hölder norm, we have to distinguish two regimes, as
usual in a parabolic context, the diagonal and the off-diagonal ones. In each regime, the choice of
freezing points changes in order to get a negligible first order contribution when ν → 0, or with a
time decomposition trick.

In our analysis, some singularities are overwhelmed by a small ν, we call this phenomenon a
regularisation by turbulence. As for the fluid mechanics, we are able define an associated Reynolds
number which goes to +∞ when ν → 0, corresponding to a turbulence regime, see for instance
[FMRT01].

One of the crucial consequences of our analysis is that, we obtain a first general meaning of a
classical product of distributions. Indeed, we succeed in giving a meaning of ⟨b(t, x),∇u(t, x)⟩ where
b and ∇u have negative regularity. This is written as a weak limit of a sub-sequence of a smooth
parabolic approximation. The price to pay in this representation is that we do not have usual unique-
ness of the limit in this rough case.

Thanks the techniques developed for the transport equation (1.1), we succeed to extend our
analysis to parabolic equation{

∂tu
m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,
(1.3)

where the condition on the vanishing viscosity is enhanced by a time cutting trick.
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Importantly, this point of view allows us to establish uniqueness for the solution of transport
equation (1.1), this is somehow due to the regularisation by turbulence.

Because the a priori estimates are independent on b, we are able to use a fixed-point argument
to handle with the inviscid Burgers’ equation{

∂tu(t, x) + u(t, x)∂xu(t, x) = f(t, x), (t, x) ∈ (0, T ]× Rd,

u(0, x) = g(x), x ∈ Rd,
(1.4)

in dimension 1, see e.g. [BK21]. Importantly, again thanks by regularisation by turbulence, we deduce
some kind of uniqueness of the solution u of (1.4). Precisely, on the one hand there is uniqueness of
selection whatever the way to mollify, and on the other hand there is uniqueness whatever the choice
of vanishing viscosity; nevertheless we do not succeed to get both uniquenesses for the same solution
(which should imply usual uniqueness).

1.2 Existing results

1.2.1 On the transport equation

The Lipschitz framework is classical via the characteristic method. Indeed if b ∈ L∞([0, T ];C1(Rd,Rd)),
considering the ODE Ẋt = b(t,Xt), thanks to the Cauchy–Lipschitz theorem, there is a unique so-
lution u ∈ L∞([0, T ];C1(Rd,R)) of the transport equation (1.1). Out of this regular context, the
analysis has to be more involved.

For instance, a meaning of the equation (1.1), when the coefficients are in a suitable Sobolev
space, can be given by a renormalisation procedure developed by DiPerna and Lions [DPL89]. If b ∈
L1([0, T ];W 1,1

loc (R
d,R)) and div(b) ∈ L1([0, T ];L∞(Rd,R)), they establish that the Cauchy problem

(1.1) is well-posed in L∞. When, b is only supposed to have bounded variations in space, Ambrosio
[Amb04] extends this result for b ∈ L1([0, T ];BVloc(Rd,R)), div(b)− ∈ L1([0, T ];L∞(Rd,R)).

For other references on transport equation in the non Lipschitz case, see for instance to [MS18],
[Xia19].

If b is only Hölder continuous then the Cauchy problem (1.1) is not well-posed any-longer, see the
well-known counter-example

b(x) =
1

1− γ
sign(x)(|x| ∧R)γ , γ ∈ (0, 1). (1.5)

With a multiplicative noise, Flandoli Gubinelli and Priola [FGP10], see also [FGP12] and [MO17],
establish that the following Stochastic Partial Differential Equation{

dtu+ ⟨b,∇u⟩dt+∇u ◦ dWt = 0,

u(0, ·) = u0(·),
(1.6)

with b ∈ L∞([0, T ], Cα
b ) and div(b) ∈ Lp is well-posed. Here, the symbol ◦ corresponds to the

stochastic Stratonovich integral. This is a typical consequence of the regularisation by the noise, see
also [FF13], [AF11], [Cat16].

This stochastic approach seems to be hopeless to get uniqueness by zero limit noise selection,
indeed from [AF09] : if b is defined as in (1.5), then the following equation

∂tu
ε + b · ∂xuε = ε∇uε ◦ dWt,

has a weak convergence of the corresponding probability P ε towards
δu1+δu2

2 , when ε → 0, where u1
and u2 are two different solutions of the associated transport equation. Other counter-examples are
stated in [Dep03].
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In [CCS20], the authors show that there is b ∈ Lp
loc, p ∈ [1, 43 ], such that

∂tu
m + bm · ∇um = 0,

where bm is a regularisation of b, for d = 3, and s.t. there is no uniqueness of bounded distribu-
tional solutions when m → +∞. In [DLG22], the conclusion is the same for a compactly supported
divergence-free vector field b ∈ L∞. To put it another way, there is no smooth selection principle by
regularisation.

Finally, let us mention [CCS22], where the authors exhibit a first order coefficients b Hölder
continuous such that the vanishing viscosity procedure from a parabolic approximation yields to
several different solutions, uniqueness fails to be true in L2. In spite of this counter-example, there is
no contradiction with our uniqueness result, stated in Theorem 3, as we only consider uniqueness in
a Hölder space, defined further. The non-uniqueness seems to occur only in non-smooth functional
spaces. Then we are able to affirm that there is a selection principle by vanishing viscosity, which is
a positive answer to the question (Q3) in [CCS20].

We propose in this article a new approach to handle with the determinist transport equation
(1.1). We consider vanishing viscous solution, see e.g. [Eva98], which is different to the viscous
solution introduced by Crandall and Lions [CL83] for the Hamilton-Jacobi equation. We do not
consider upper or lower solution, but a smooth well-posed parabolic equation and we take the limit,
up to sub-sequence selection, of the mollification parameter and of the viscosity.

For the best author’s knowledge, the notion of vanishing viscosity has been already used for several
classes of evolution PDEs, e.g. hyperbolic ones in [BB05], but it was not developed to establish the
regularity control of the solution of a general transport equation. Finally, with this method, we also
deduce existence and uniqueness of a Hölder continuous solution of the inviscid Burgers’ equation.

1.2.2 On the parabolic equation

Historically, the first Schauder estimates associated with the parabolic equation (1.2) with Hölder
and bounded coefficients was proved by Friedman thanks to a parametrix approach, [Fri64]. Let us
mention also the major reference of the parabolic equation studies by Ladyzenskaja, Solonnikov and
Ural’ceva [LSU68]. Some equivalent results can be found in a wide literature, see for instance Krylov
[Kry96] and Lieberman [Lie96].

The first article handle with unbounded coefficient in (1.2) is due to Krylov and Priola [KP10].
In parabolic and elliptic framework, they show the parabolic bootstrap through Schauder estimates.
Let us also mention [KKL75], for a first partial result in a unbounded context; when coefficients are
“merely” measurable in time is handled in [Lor11].

In a degenerate framework, with some Hörmander conditions, Lunardi establishes, in her work
[Lun97], Schauder estimates for a linear b. For a fully non-linear Hölder continuous drift, b, Chaudru
de Raynal et al. [CDRHM18] get the corresponding controls, see also [Pri09]. To extend our result
to a degenerate chain, the principal points would be to control the regularity gain of the flow θ
associated with b through the chain which is not direct when the non-degenerate components of the
drift are distributional valued. This regularity control is crucial as the proxy density does depend on
this flow.

When b is a tempered distribution, in particular when b ∈ B−β
∞,∞ with β < 2

3 some controls of the
solution of (1.2) are established in [DD16] and [CC18], in order to build a “polymer measure”, an
important object to study some stochastic partial differential equations such as the Kardar-Parisi-
Zhang equation.
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In [Dan07] and [BCD11], when b lies in a more general Besov space, B−β
p,q , p, q ̸= +∞, some a priori

estimates in Besov space is established for the solution of some parabolic equations. In particular,
these controls are crucial in some approach to handle with the Navier-Stokes equation.

Considering more general Besov or Triebel-Lizorkin spaces would allow us to deal with other usual
spaces in the analysis of PDEs. Let us recall some correspondences with some “common” functional
spaces: the Lebesgue space is identified by a Triebel-Lizorkin space Lp = F 0

p,2, 1 < p < +∞,
also we can write the functional space equality for the Sobolev space and Bessel potential space
W k,p = Lp

k = F k
p,2, 1 < p < +∞, k ∈ N, and for the Morrey-Campanato space, see the theorem page

50 in [Tri83], it is known that Cα
p = Fα

p,∞, 0 < p ≤ +∞, α > d(1p − 1)+. These extensions require
to carefully introduce estimates of some new integrals, instead of point-wise controls furnished in our
analysis.

1.3 Some a priori attempts

1.3.1 Peano’s heuristic

The Peano counter-example yields a heuristic of the expected minimum regularity of b. The threshold
comes from a regularisation by noise argument, for other explanation see [Fla11], and [CdRM17] in
degenerate framework. Similarly to (1.5), let us consider b(x) = sign(x)(|x| ∧ R)γ ,, γ ∈ R, and the
associated flow,

dXt

dt
= sign(Xt)|Xt|α, X0 = 0. (1.7)

There are infinite solutions written, for any t∗ ∈ [0, T ], by :

Xt = ±cα(t− t∗)
1

1−α1[t∗,T ](t). (1.8)

The associated stochastic problem is

dX̃t = sign(X̃t)|X̃t|αdt+ νdWt,

where (Wt)t≥0 is a Brownian motion. Parabolic equation (1.2) is the determinist counterpart of this
SDE, where the solution is given by a stochastic representation, the Feynman-Kac formula.

There is critical time when the noise overwhelms the singular drift, see [DF14], after this time the
SDE solution fluctuates around a solution of the ODE (1.7).

As a consequence, we aim to compare the time scaling between the Brownian motion, i.e. t
1
2 (the

variance being equal to t), with a solution of the ODE given in (1.8), i.e. t
1

1−α .
To take advantage of the regularisation by noise before the critical point, the condition is

t
1

1−α < t
1
2 ,

which yields for a small time,
1

1− α
>

1

2
⇔ α > −1.

In other words, for β = α = −1 + γ̃, γ̃ > 0, the expected minimum regularity of the drift is
b(t, ·) ∈ B−1+γ̃

∞,∞ = C−1+γ̃ .
There are numerous articles dealing with SDE and the associated parabolic equation with very

rough drift, but in all of them there is a “macro” distance with the above Peano heuristic.
The case γ̃ > 1/3 is dealt in [DD16] in dimension 1 and [CC18] for the multidimensional version;

the authors thoroughly use rough path and para-control to build a polymer measure which allows to
consider a solution to the KPZ equation.

Another notion of solution of SDE, called virtual, is introduced in [FIR17], where the constraint is
γ̃ > 1/2. Let us notice that under this constraint, γ̃ < 1/2, there is no hope to obtain strong solution
of the SDE, see for instance the counter-examples presented in [BC01], [Bar82].
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1.3.2 On the limitation of the para-product

The last constraint, γ̃ > 1
2 , appears naturally with a priori computations with usual tools. Indeed,

from Duhamel formula the solution of the parabolic equation (1.3) writes

um,ν(t, x) = P̃ gm(x) + G̃fm(t, x) +

∫ t

0
ds

∫
Rd

p̃(s, t, x, y)⟨bm(y),∇um,ν(s, y)⟩dy,

where

p̃(s, t, x, y) :=
1

(4πν(t− s))
d
2

exp

(
− |x− y|2

4ν(t− s)

)
, (1.9)

stands for the the standard heat kernel, also

∀(t, x) ∈ (0, T ]× Rd, G̃fm(t, x) :=

∫ t

0

∫
Rd

p̃(s, t, x, y)fm(s, y) dy ds, (1.10)

is the corresponding Green operator, and

P̃ gm(t, x) :=

∫
Rd

p̃(0, t, x, y)gm(y)dy, (1.11)

the associated semi-group.

Let us suppose that ∇um,ν(s, ·) ∈ Cδ, δ ≥ 0, therefore from the above Duhamel’s formula, we
should have:

x 7→ ∇
∫ T

t
ds

∫
Rd

p̃(t, s, x, y)⟨bm(s, y),∇um,ν(s, y)⟩dy ∈ Cδ.

However, from the para-product result, derived by Bony’s microlocal analysis [Bon81], see also
[GIP15], if∇um,ν(s, ·) ∈ Cδ and bm(s, ·) ∈ C−β, such that δ−β > 0 ⇔ β < δ then ⟨bm(·),∇um,ν(s, ·)⟩ ∈
C−β. Hence, with some common computation of the heat kernel, we obtain that

∇
∫ T

t
ds

∫
Rd

p̃(t, s, x, y)⟨bm(y),∇um,ν(s, y)⟩dy ≈ (T − t)
1−β
2 .

Also, thanks the typical equivalence of the space-time with a parabolic scaling in the analysis of the
parabolic bootstrap, see for instance [CDRHM18], where (T − t)2 ≈ |x− x′|, we deduce

x 7→ ∇
∫ T

t
ds

∫
Rd

p̃(t, s, x, y)⟨bm(y),∇um,ν(s, y)⟩dy ∈ C1−β.

Then we readily derive that β ≤ 1−δ, namely δ ≤ 1−β. Combining with the para-product constraint
β < δ yields β ≤ 1− β and so β < 1/2 which is exactly the same regularity constraint of [FIR17].

This heuristic shows up the difficulty to use the usual para-product in such a rough framework.
To handle with regularity β > 1/2, we then have to capitalise on other techniques. Specifically,
we thoroughly exploit the fact that um,ν is solution of the parabolic equation (1.3), which allows to
consider cases out of the Bony’s para-product scope.

The paper is organised as following. The notations and the definitions used are gathered in Section
2. We bestow a User’s guide in Section 3, where we exhibit the highlights of the article. A first result
about the transport equation is stated in Section 4. We provide a discussion on the consequence in
term of distributions product in Section 4.2. The complete analysis is detailed in Section 5. Our
theorem on the parabolic equation and as well as the complete proof, are featured in Section 6. We
adapt this second result to the transport equation in Section 7, which is a substantial improvement of

7



the first result on the transport equation. We provide the statement and the proof of the regularity
of a solution to the inviscid Burgers’ equation in Section 8.

We gather in Appendix some results about regularity controls on the solution of linear parabolic
of second order in Sections A, B and C; a control for the non-linear Burgers’ case is proved in Section
D. Also some property of the Besov spaces are developed in Sections E-G. Precisely, in Section E, we
establish that the space C∞

b functions are dense in the space of multi-differentiated Hölder continuous
functions. Some inequalities over the norm of Besov-Hölder distributions with their derivative are
established in Section F. Eventually, in Section G, we detail why the limit of regularised distribution
in Besov-Hölder space does not depend on the choice of mollification procedure.

2 Notations and Definitions

From now on, we denote by C > 0 and c > 1 generic constants that may change from line to line but
only depends on known parameters such as γ, d. Importantly, these constants do not depend on β.

We also write, for ε, ε̃ > 0, the usual notation of asymptotic domination:

ε≪ ε̃, if
ε

ε̃
−→ 0. (2.1)

We also write
(2.1)−−−−−−−→

(ε,ε̃)→(0,0)
0, the limit, up to some subsequence selection, under the condition (2.1).

2.1 Tensor and Differential notations

For any z ∈ Rd, we use the decomposition z = z1e1+ . . . zded, where (e1, . . . , ed) is the canonical base
of Rd.

We usually use the notation ∂t for the derivative in time t ∈ [0, T ] also ∂zk , k ∈ N, is the derivative
in the variable zk.

The gradient in space is denoted by ∇, in other words ∇ = ∂z1e1 + . . .+ ∂zded.

The divergence write ∇· = div and is defined for any R-function f : Rd 7→ R by ∇·f =
∑d

k=1 ∂zkf .
From now on, the symbol “·” between two tensors is the usual tensor contraction. For example,

if M ∈ Rd ⊗ Rd ⊗ Rd and N ∈ Rd then M · N is a d × d matrix. If the two considered tensors are
vectors then “·” matches with the scalar product which is also denoted by ⟨·, ·⟩.

For any Rd 7→ R, we define the Hessian matrix D2
zf =

(
∂zi∂zjf

)
1≤i,j≤d

, and the usual Laplacian

operator ∆f =
∑

1≤i≤d ∂
2
zif .

More generally, for any k ∈ N, Dk
zf denotes the order k tensor (∂zi1 . . . ∂zik f)(i1,...,ik)∈[[1,d]]k . For

any multi-index α = (α1, . . . , αd) ∈ Nd
0, we write Dα

z f = ∂α1
z1 . . . ∂

αk
zk
f , in particular if, for i ∈ [[1, d]],

αi = 0, there is no derivative in zi in the expression of Dα
z f .

We also denote for any α = (α1, · · · , αm) ∈ Nm, the order of this multi-index by |α| =
∑m

i=1 αi.

2.2 Associated Hölder, Besov spaces

In this section, we provide some useful notations and functional spaces.

2.2.1 Hölder spaces

For any, β ∈ (0, 1), ∥·∥Cδ(Rm,Rℓ), m ∈ {1, d}, ℓ ∈ {1, d, d⊗d}∗ is the usual homogeneous Hölder norm,

see e.g. Lunardi [Lun95] or Krylov [Kry96]. Precisely, for all ψ ∈ Cδ(Rm,Rℓ), we set the semi-norm:

∥ψ∥Cδ = [ψ]δ := sup
(x,y)∈(Rm)2,x ̸=y

|ψ(x)− ψ(y)|
|x− y|δ

, (2.2)

∗we write Rd⊗d for Rd ⊗ Rd the space of square matrices of size d.
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the notation | · | is the Euclidean norm on the considered space. We denote by:

Cδ
b (Rm,Rℓ) := {ψ ∈ Cδ(Rm,Rℓ) : ∥ψ∥L∞(Rm,Rℓ) < +∞},

the associated subspace with bounded elements (non-homogeneous Hölder space). The corresponding
Hölder norm is defined by:

∥ψ∥Cδ
b (Rm,Rℓ) := ∥ψ∥Cδ(Rm,Rℓ) + ∥ψ∥L∞(Rm,Rℓ). (2.3)

For the sake of notational simplicity, from now on we write:

∥ψ∥L∞ := ∥ψ∥L∞(Rd,Rℓ), ∥ψ∥Cδ := ∥ψ∥Cδ(Rd,Rℓ), ∥ψ∥Cδ
b
:= ∥ψ∥Cδ

b (Rd,Rℓ).

For time dependent functions, φ1 ∈ L∞([0, T ], Cδ
b (Rm,Rℓ)

)
and φ2 ∈ L∞([0, T ], Cδ(Rm,Rℓ)

)
, we

define the norms:

∥φ1∥L∞(Cδ
b )

:= sup
t∈[0,T ]

∥φ1(t, ·)∥Cδ
b (Rm,Rℓ),

∥φ2∥L∞(Cδ) := sup
t∈[0,T ]

∥φ2(t, ·)∥Cδ(Rm,Rℓ),

∥φ2∥L∞ := sup
t∈[0,T ]

∥φ2(t, ·)∥L∞(Rm,Rℓ).

The test functions for some weak formulations of different solutions will be in C∞
0 (Rd,R), which

corresponds to the space of smooth functions infinitely differentiable with bounded derivatives and
with a compact support.

2.2.2 Thermic characterization of the Besov space

We define the Besov spaces thanks to a thermic characteristic, see Triebel [Tri83] Section 2.6.4. For
all α ∈ R, q ∈ (0,+∞], p ∈ (0,∞],

∥f∥Bα
p,q

:= ∥φ(D)f∥Lp(Rd) + ∥f∥B̈α
p,q
, with ∥f∥B̈α

p,q
:=
(∫ 1

0

dv

v
v(m−α

2
)q∥∂mv hv ⋆ f∥

q
Lp(Rd)

) 1
q
, (2.4)

where we define the heat kernel

hv(z) :=
1

(2πv)d/2
exp

(
−|z|2

2v

)
, (2.5)

and φ(D)f := (φf̂)∨ with φ ∈ C∞
0 (Rd) such that φ(0) ̸= 0, f̂ and (φf̂)∨ respectively denote the

Fourier transform of f and the inverse Fourier transform of φf̂ . Note that, when α > d(1p − 1)+ =

dmax(0, 1p − 1) then in (2.4), it possible to replace ∥φ(D)f∥Lp(Rd) by ∥f∥Lp(Rd).
When p = q = +∞, we naturally write:

∥f∥B̈α
p,q

= sup
v∈[0,1]

vm−α
2 ∥∂mv hv ⋆ f∥L∞(Rd),

and if α > d(1p − 1)+,

∥f∥Bα
p,q

= ∥f∥L∞ + sup
v∈[0,1]

vm−α
2 ∥∂mv hv ⋆ f∥L∞(Rd).

We carefully point out that the homogeneous term ∥f∥B̈α
p,q

does not define a norm associated to a

Banach space. To consider the whole homogeneous Besov space we have to consider v ∈ R+ in the
definition (2.4), for α < 0, see e.g. Theorem 2.34 in [BCD11]. Somehow, for the inhomogeneous
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norm defined in (2.4), the contribution of the heat kernel convolution for v > 1 is “hidden” in the
inhomogeneous term ∥φ(D)f∥Lp(Rd).

For α > 0, the homogeneous and respectively inhomogeneous Hölder spaces match with Besov
space, namely Cα = Ḃα

∞,∞ and Cα
b = Bα

∞,∞, see [Tri83] for details.
Our analysis tackles with inhomogeneous Besov spaces, in order to extend our analysis to the

homogeneous ones some sophisticated changes should be performed as the homogeneous Besov spaces
are a priori not Banach spaces; and we should consider the realisation of the space of homogeneous
Besov spaces as a space of distributions defined quotiented by polynomials, see e.g. Proposition 3.8
in [LR02] to make it a Banach space.

If α < 0 then it is known that Ḃα
p,q ⊂ Bα

p,q, i.e. there is a constant C > 0 such that, for any α < 0,

∥ · ∥Bα
p,q

≤ −C
α
∥ · ∥Ḃα

p,q
. (2.6)

We also introduce the distributions that can be approached by a mollification procedure. We put
a tilde in order to mean that we consider the closure of C∞

b in the considered space†. Namely, for
any (α, p, q) ∈ R× (1,+∞]× (1,+∞] we define:

B̃α
p,q := clBα

p,q
(C∞

b ), ˜̇Bα
p,q := clḂα

p,q
(C∞

b ). (2.7)

Remark 1. If there is ψ ∈ Cγ, γ ∈ (0, 1), such that b = Dαψ, α ∈ Nd
0, so b ∈ Ḃ−β

∞,∞ with β = −|α|+γ,

and in Appendix Section E, we show that b ∈ ˜̇B
−β

∞,∞.
The last constraint on b, being the derivative of a Hölder function, is quiet natural when we

consider the structure theorem of the tempered distributions S ′, see Theorem 8.3.1 in [Fri98]. We
recall indeed that any b ∈ S ′ writes b = Dαψ where α ∈ Nd

0 and ψ is a continuous function with
polynomial growth.

Out of the Besov-Hölder space, namely if 1 ≤ p, q < +∞, then B̃α
p,q = Bα

p,q and ˜̇Bα
p,q = Ḃα

p,q,
see Theorem 4.1.3 in [AH96], Proposition 2.27 and Proposition 2.74 in [BCD11]. For more Besov
properties, we also mention [Pee76] and [Jaw77].

We might consider the non-homogeneous low-frequency cut-off in the Littlewood-Paley character-
isation instead of usual mollification by convolution, as performed in the current paper, and adapt
Lemma 2.73 in [BCD11] for the space B−β

∞,∞.

2.2.3 Besov duality

In our analysis, we thoroughly use the Besov duality. The full proof of the duality of Besov spaces is
established for example in Proposition 3.6 in [LR02] thanks to a Littlewood-Paley decomposition.

Proposition 1. For all 1 ≤ p, q ≤ +∞ and α ∈ R, we have for all φ,ψ ∈ S ′:∣∣∣ ∫
Rd

φ(y)ψ(y)dy
∣∣∣ ≤ Cd,p,q,α∥φ∥Bα

p,q
∥ψ∥B−α

p′,q′
,

with 1 ≤ p′, q′ ≤ +∞ such that 1
p + 1

p′ = 1 and 1
q +

1
q′ = 1.

Sketch of the proof. Let us suppose that w.l.o.g. that 1 < p, q < +∞ (the analysis is identical if
we suppose that 1 < p′, q′ < +∞). It is known that Bα

p,q(Rd,R) and B−α
p′,q′(R

d,R) are in duality

(Proposition 3.6 in [LR02]). Precisely, Bα
p,q is the dual of the closure of the Schwartz class S in B−α

p′,q′ .
But S is dense in Bα

p,q (see for instance 4.1.3. in [AH96]).

The homogeneous counterpart of this result requires additional assumptions on the considered
distributions, see for instance Proposition 2.29 in [BCD11].

†As in Proposition 3.6 in [LR02] for the closure Schwartz space, but we do not need the mollified versions of the
considered distributions to be rapidly decreasing functions.
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2.2.4 Usual tools for the Gaussian function

One of the reason to use the thermic representation of the Besov space comes from a well-known and
important result about the Gaussian function: for any δ > 0, there is Cδ = Cδ(δ) > 1 such that:

∀x ∈ Rd, |x|δe−|x|2 ≤ Cδe
−C−1

δ |x|2 . (2.8)

Furthermore, we often use the cancellation principle: for all f ∈ Cγ , γ ∈ (0, 1), x ∈ Rd and σ > 0

∇x

∫
Rd

e−
|x−y|2

2σ f(y)dy =

∫
Rd

∇xe
− |x−y|2

2σ [f(y)− f(x)]dy, (2.9)

as the Gaussian function, up to a renormalisation by a multiplicative constant, is a probabilistic

distribution, hence ∇x

∫
Rd e

− |x−y|2
2σ dy = 0. Hence, we obtain,

(2πσ)
d
2

∣∣∣∇x

∫
Rd

e−
|x−y|2

2σ f(y)dy
∣∣∣ ≤ (2πσ)

d
2 [f ]γ

∫
Rd

e−
|x−y|2

2σ
|y − x|
σ

|y − x|γdy

≤ Cγ(2πσ)
d
2 [f ]γσ

γ−1
2

∫
Rd

e−C−1
γ

|x−y|2
2σ dy

= Cγ [f ]γσ
γ−1
2 .

The penultimate identity comes from the absorbing property (2.8).

2.3 Different definitions of solution to the transport equation problem

As said in the introduction, we need to carefully defined the suitable notion of solution, no strong
solution can be in a negative Besov space or even in a Hölder space implying a product of distributions
which is obviously not point-wisely defined.

Definition 1 (mild vanishing viscous). A function u is said to be a mild vanishing viscous solution
in L∞([0, T ];Cγ

b (R
d,R)

)
of equation (1.1) if for a sequence (bm)m∈N in L∞([0, T ];C∞

b (Rd,Rd)) such
that there is β ∈ R,

∀ε > 0, lim
m→+∞

∥bm − b∥
L∞([0,T ];B−β−ε

∞,∞ (Rd,Rd))
= 0, (2.10)

for any t ∈ [0, T ], there exists a sub-sequence of (um,ν(t, ·))(m,ν)∈R2
+

lying in Cγ
b (R

d,R) converging

in the space Cγ−ε̃
b (K,R), 0 < ε̃ < γ, for any compact subset K ⊂ Rd, when ν → 0 and m → +∞

towards u(t, ·) ∈ Cγ
b (K,R) and satisfying, for all m ∈ N and ν ∈ R+,{

∂tu
m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,
(2.11)

where (fm, gm) −→
m→+∞

(f, g) in L∞([0, T ];Cγ(Rd,R)).

We point out that such a sequence (bm)m≥0 exists if b ∈ L∞([0, T ]; B̃−β
∞,∞(Rd,Rd)); or in particular

if b is the derivative of a bounded Hölder continuous function but in this former case the limit result
(2.10) has to be in the homogeneous space L∞([0, T ]; ˜̇B−β

∞,∞(Rd,Rd)), see Appendix Section E, and
identity (2.10) is implied by (2.6).

Moreover, it is important to notice that the choice of sub-sequence may depend on the current
time t. We do not succeed in getting uniform continuity in time t (only boundedness in L∞), thus the
impossibility to apply a suitable compact argument, we need to consider the problem at a fixed time.
Nevertheless, for the sake of simplicity we write for the sub-sequence um,ν(t, ·) instead of a notation
of the kind umt,νt(t, ·).
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Remark 2. We could consider another formulation of mild vanishing viscous solution, where the
considered function is

wm,ν(t, x) =

∫ t

0
um,ν(s, x)ds. (2.12)

From estimates stated in Theorem 1 below, we have that (t, x) 7→ wm,ν(t, x) lies, uniformly in (m, ν),
in C1

b ([0, T ];C
γ
b (R

d,R)), by the Arzelà-Ascoli theorem, we obtain a convergence in all compacts [0, T ]×
K of [0, T ]× Rd towards a function w ∈ C1

b ([0, T ];C
γ
b (K,R)).

Let us define an alternative form of solution which is a mixed version between mild and weak
solution.

Definition 2 (mild-weak solution). A function u is a mild-weak solution in L∞([0, T ];Cγ
b (R

d,R))
of equation (1.1) if u is a mild vanishing viscous solution, i.e. there is a smooth function sequence
(bm)m∈R+ ∈ L∞([0, T ];C∞

b (Rd,Rd)) such that there is β ∈ R,

∀ε > 0, lim
m→+∞

∥bm − b∥
L∞([0,T ];B−β−ε

∞,∞ (Rd,Rd))
= 0, (2.13)

there exists a sub-sequence of (um,ν)(m,ν)∈R2
+
in L∞([0, T ];Cγ

b (R
d,R)) strong solution of (2.11) con-

verging, for any compact K ⊂ Rd, in L∞([0, T ];Cγ−ε̃
b (Rd,R)), 0 < ε̃ < γ, towards the Hölder contin-

uous u ∈ L∞([0, T ];Cγ
b (R

d,R)) and such that for any function φ ∈ C∞
0 ([0, T ] × Rd,R), we have, up

to a sub-sequence selection, for any t ∈ [0, T ],

lim
m→∞,ν→0

∫
Rd

{
φ(t, y)um,ν(t, y) +

∫ t

0

{
− ∂tφ(s, y)u

m,ν(s, y) + ⟨bm(s, y),∇um,ν(s, y)⟩φ(s, y)
}
ds
}
dy

=

∫
Rd

φ(0, y)g(y)dy +

∫
Rd

∫ t

0
φ(s, y)f(s, y)ds dy.

(2.14)

The distributional formulation allows to give a sense to the potential irregularities of b and of
∇uν,m when ν → 0, m→ +∞, and to consider the whole space [0, T ]×Rd, the cut-off of Rd required
to use the Arzelà-Ascoli theorem is included in the test function φ.

We define now the usual weak solution.

Definition 3 (weak solution). A function u is a weak solution in L∞([0, T ];Cγ
b (R

d,R)
)
of equation

(1.1) if u is a mild vanishing viscous solution and for any function φ ∈ C∞
0 ([0, T ]× Rd,R):∫

Rd

{
φ(t, y)u(t, y) +

∫ t

0

{
− ∂tφ(s, y)u(s, y) + ⟨b(s, y),∇u(s, y)⟩φ(s, y)

}
ds
}
dy

=

∫
Rd

φ(0, y)g(y)dy +

∫
Rd

∫ t

0
φ(s, y)f(s, y)ds dy. (2.15)

Remark 3. We cannot hope to define classical solution in our irregular context. Indeed, even if
roughly speaking ∂tu + ⟨b,∇u⟩ is supposed to lie in L∞(Cγ

b ), we cannot a priori define point-wisely
the classic scalar product between b and ∇u. If b has a blow up at a point x0 ∈ Rd then, as u is
solution of (2.11), limx→x0

∫ t
0 ⟨b(s, x),∇u(s, x)⟩ds is necessary finite for any t ∈ [0, T ] but we cannot

give a meaning of ⟨b(t, x0),∇u(t, x0)⟩ in a point-wise sense. Roughly speaking, to handle distributional
drift we have to stay in a distributional formulation of the solution.
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3 User’s guide

3.1 A first approach for the transport equation

In Section 4, we introduce a linear proxy of parabolic equation (1.2),{
∂tv

m,ν(t, x) + ⟨bm(t, θt,τ (ξ)),∇vm,ν(t, x)⟩ − ν∆vm,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

vm,ν(0, x) = gm(x), x ∈ Rd,
(3.16)

where (τ, ξ) ∈ [0, T ]×Rd are the freezing parameters, and θmt,τ is the flow associated with bm, namely,

θ̇mt,τ (ξ) = −bm(t, θmt,τ (ξ)), θ
m
τ,τ (ξ) = ξ.

From these notations, we readily write the associated Duhamel formula,

vm,ν(t, x) = P̂ τ,ξgm(t, x) + Ĝτ,ξfm(t, x), (3.17)

where P̂ τ,ξ and Ĝτ,ξ stand respectively for the semi-group and the Green operator associated with
(3.16), the kernel being a perturbed heat kernel and detail in Section 5.1.3 below.

Obviously, v does depend on the parameters (τ, ξ); but this is not the case of the initial PDE
(1.2), where we use the above Duhamel identity, based on (3.17):

um,ν(t, x) = P̂ τ,ξgm(t, x) + Ĝτ,ξfm(t, x) + Ĝτ,ξ
(
bm∆ [τ, ξ] · ∇um,ν

)
(t, x). (3.18)

The core of the first analysis for the transport equation is to make negligible the remainder term
Ĝτ,ξ

(
bm∆ [τ, ξ] · ∇um,ν

)
(t, x) thanks to the vanishing viscosity ν. This aim is quiet easy for the L∞

norm, by choosing the parameters (τ, ξ) = (t, x); nevertheless for the Hölder estimates the analysis is
much more involved. Indeed, to handles with um,ν(t, x) − um,ν(t, x′), we need to consider two pairs
of parameters (τ, ξ) and (τ ′, ξ′), whose suitable choice depends on the current considered regime:
-diagonal when x and x′ are close w.r.t. the current time integral‡ -off-diagonal when x and x′ are
fare from each other. Like for the cut locus trick (inspired in Riemannian manifold when there are
multiple minimizing geodesics) introduced in [CDRHM18].

This regime separation implies to handle with extra contributions, see Sections 5.3.1, 5.3.3 and
5.3.5, which are treated in Sections 5.3.2 and 5.3.4.

At the end of the day, we derive a cumbersome upper-bound

∥um,ν(t, ·)∥Cγ

≤ t∥f∥L∞(Cγ) + [g]γ + C∥b∥
L∞(B−β

∞,∞)
m2+βOm(2t)

(
ν

1−γ2

4 t
1+(1−γ) 2+γ

2γ + ν
γ(1−γ)

4 t
1
2
+ 4−γ2

2γ

)
+
m1+β

1 + γ
Cν

γ(1−γ)
4 ∥b∥

L∞(B−β
∞,∞)

∥um,ν∥L∞(Cγ)

+
ν

1−γ2

4 t
(1−γ)(2+γ)

2γ
+2

2
m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)

+ν
1−γ2

4 t
(1−γ)(2+γ)

2γ
+1
m1+βOm(t)∥b∥

L∞(B−β
∞,∞)

exp
(
∥bm∥L∞(C1)t

)
, (3.19)

with for any t ∈ (0, T ],

Om(t) :=
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cm1+βt∥b∥

L∞(B−β
∞,∞)

)
,

see Lemma 2 further.

‡Again see Section 5.1.3 further for the full details
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Thus the Hölder control, uniformly in (β,m, ν), as soon as ν goes to 0 exponentially faster than
m→ +∞, and γ < 1.

The drawback of this approach, only based on a regularisation by turbulence, is that this vanishing
viscosity constraint prevents us to get any balance with m, in order to deduce any uniqueness; also
there is no possibility to obtain Hölder controls for the parabolic equation with non-negligible viscosity
ν.

3.2 A new method for the parabolic equation

That is why we develop, in Section 6, an extension of this vanishing viscosity analysis. Indeed, instead
of taking advantage of the negligible contributions of ν, we look at small time interval sizes whose
machinery is similar. To be more specific, we decompose the Cauchy problem in small time intervals
∪k∈[[0,n−1]][τk, τk+1] = [0, T ], with τk = kT

n , n ∈ N.
For k ∈ [[0, n− 1]], and for any [τk, τk+1], we define uk+1(t, ·) = u(t, ·), which satisfies the following

Cauchy problem.

If k ∈ [[1, n− 1]]{
∂tu

m,ν
k+1(t, x) + ⟨bm,∇um,ν

k+1⟩(t, x) = ν∆um,ν
k+1(t, x) + fm(t, x), t ∈ (τk, τk+1]

um,ν
k+1(τk, x) = um,ν

k (τk, x)(= um,ν(τk, x)),

if k = 0 {
∂tu

m,ν
1 (t, x) + ⟨bm,∇um,ν

1 ⟩(t, x) = ν∆um,ν
1 (t, x) + fm(t, x), t ∈ (0, τ1),

um,ν
1 (0, x) = gm(x)(= um,ν(0, x)).

By mimicking the first computations done for the transport equation, we again obtain a heavy control

∥um,ν
k+1(t, ·)∥Cγ

≤ [um,ν
k (τk, ·)]γ +

∫ t

τk

∥f(s, ·)∥Cγds

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ t

τk

ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
(t− τk) exp

(
∥bm∥L∞(C1)t

)
(3.20)

+Cν
1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
(t− τk)

(1−γ)
2

+1

∫ t

τk

ds,

with

O(2)
m (t) := ∥∇2um,ν(t, ·)∥L∞ ≤ Cm2−γ

(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

),

see Lemma 2. The upper-bound in (3.20) above does not match with (3.19), because we have to
change the considered diagonal/off-diagonal regimes (due to the new paradigm of small time interval
size instead of small ν).

Hence, iterating this inequality yields

∥um,ν(t, ·)∥Cγ

≤ ∥g∥Cγ +

∫ t

0
∥f(s, ·)∥Cγds

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ t

0
ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
t exp

(
∥bm∥L∞(C1)t

)
+Cν

1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)(T
n

) (1−γ)
2

+1
∫ t

0
ds.
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Because, the solution um,ν does not depend on the number of time decomposition, we are able to pass
to the limit n→ +∞, and the control meet the Hölder estimates for transport equation of Theorem
1 below, without any vanishing viscosity.

With this time decomposition, we also derive the same control as for the upper-bound derive from
the probabilistic Feynman-Kac formula or from the classic maximum principle, see Section 6.6.

3.3 A second approach for the transport equation

Thanks to this new time trick, we are able to enhance our first result on the transport equation,
i.e. we obtain the same controls without the exponential convergence constraint on ν, see Theorem
3 stated in Section 7. This alleviation of assumption allows to handle with uniqueness, in a positive
regularity framework, see Section 7.2. The above time cutting trick combined with the phenomenon
of regularisation by turbulence yields uniqueness.

3.4 Application to the inviscid Burgers’ equation

Eventually, by a fixed-point argument and by the previous analysis, we deduce existence and unique-
ness of a Hölder continuous solution of the Burger’s equation in Theorem 4 in Section 8. We carefully
detail therein the proof of uniqueness, which is little bit more fussy than for the transport equation
because of the regularised first order term b, which matches with the regularised solution itself um,ν

m ,
is not a priori supposed to converge towards a unique limit u.

4 A first result on the transport equation

Our first statement is based on a cut locus trick combined with vanishing viscous properties which
allows to get a first result about the transport equation (1.1). In order to get rid of this vanishing
viscous case, namely to consider a parabolic equation (1.2) and to pass to the limit of the mollification
parameter m, we need an other refinement based on a time decomposition specified in Section 6.3
further.

4.1 Statement

When b lies in a Hölder-Besov space, we succeed in obtaining the same regularity of the solution as
for f and g. The type of solution strongly depends on the regularity of b.

Theorem 1 (Existence of solution to rough transport equation). For γ ∈ (0, 1), β ∈ R∗ be given.

For all b ∈ L∞([0, T ], B̃−β
∞,∞(Rd,Rd)), f ∈ L∞([0, T ];Cγ

b (R
d,R)) and g ∈ Cγ

b (R
d,R), there is a mild

vanishing viscosity solution u ∈ L∞([0, T ];Cγ
b (R

d,R)) of (1.1) satisfying

∥u∥L∞(Cγ) ≤ T∥f∥L∞(Cγ) + [g]γ ,

∥u∥L∞ ≤ T∥f∥L∞ + ∥g∥L∞ , (4.1)

if the conditions on the vanishing viscosity 0 < ν < T−1, for a given constant C > 0 depending only
on (γ, d),

ν ≪ (m2+β−γT
(1−γ)(2+γ)

2γ
+2∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
)
− 4

1−γ2 exp
(
− C

m1+β∥b∥
L∞(B−β

∞,∞)
T

1− γ2
)
,

ν ≪

(
Cm2+β∥b∥

L∞(B−β
∞,∞)

T
2−γ2+γ

2γ (m1−γ(T∥f∥L∞(Cγ) + [g]γ))(1 + ∥f∥L∞(Cγ))

)− 4
γ(1−γ)

× exp
(
−

8m1+βT∥b∥
L∞(B−β

∞,∞)

γ(1− γ)

)
, (4.2)

are satisfied. Moreover, with additional conditions on b, we have:
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i) Incompressibility. If β < γ and ∇ · b = 0 then the solution u is also a mild-weak and a weak
solution.

ii) Positive regularity. If β < −1 + γ, namely if b ∈ L∞([0, T ];C γ̃
b (R

d,Rd)), γ̃ > 1 − γ, then the
solution u is also a mild-weak and a weak solution, moreover if

ν∥∇2gm∥L∞ + ν
γ
2m1−γ̃ ≪ 1, (4.3)

then, for any t ∈ (0, T ], ∂tu(t, ·) ∈ B−1+γ
∞,∞ (Rd,R).

Remark 4. For the mild vanishing viscous solution there is no restriction on b, roughly speaking
there is an “infinite regularisation by turbulence” over the coefficients.

While for the usual weak solution, there is no more such infinite regularisation effect. The In-
compressibility framework, i.e. ∇ · b = 0, allows to still consider a negative regularity of b. Such
divergence free condition for non-smooth distributions already exists for instance for Leray’s solution
of Navier-Stokes equation [Ler34].

In the last case, i.e. Positive regularity, the considered drift b is supposed to be Hölder continu-
ous in space, in particular lying in L∞([0, T ];Cα

b (Rd,Rd)), α > 1−γ which is the Bony’s para-product
assumption, see Section 4.2 below for more details.

Importantly, the above controls (4.1) do not depend on the drift b. This is crucial to consider
very rough coefficients as well as non-linear equation such as the inviscid Burgers’ equation studied
in Section 8. This seems to be paradoxical with the usual gradient control of the transport equation
by characteristic method, we carefully explain the reasons in Section 5.3.7 further.

Remark 5. The exponential criterion in (4.2) relies on an a priori control by ∥um,ν∥L∞, see Section
5.2.7 for more details. This condition prevents us to hope any balance between m and ν required to
get usual uniqueness. Indeed, when we expand the computations, we see only polynomial dependency
on (m, ν) in the upper-bounds. But the contribution on ν goes in the wrong way, and cannot be
overwhelmed by polynomial converging terms in m, because at the best m ∼ | ln(ν)| from (4.2).

Even for b lying in a Hölder space, namely with a positive regularity, we cannot avoid an expo-
nential criterion like in (4.2) by the current analysis, see again Section 5.2.7.

We fail to obtain a uniqueness of a viscous selection principle with this first analysis. Indeed in
the a priori controls of (2.11) we have to suppose that ν goes to 0 much faster than m towards +∞.
This constraint prevents us to take advantage of the convergence of bm towards b to balance the blow
up in the viscosity ν occurring in the computation to get uniqueness.

4.2 On the product of distributions

The sense of some particular products of distributions is very challenging, and is related with many
long-standing problems. For instance, Hairer in [Hai14] introduce a regularity structure theory which
after some renormalisation allows to handle with products of distribution, and to give a meaning
of stochastic partial differential equation such as KPZ [Hai13]. However, such renormalisation leads
to blowing-up constants which is not the case in Theorem 1; the price that we have to pay is the
potential non-uniqueness of the limit.

From the different formulations above, we define different meanings of the product ⟨b,∇u⟩. First
of all, let us remark that by rough a priori controls, see Lemma 2 below,

[∆um,ν(t, ·)]γ ≤ 21−γ∥∇2um,ν(t, ·)∥1−γ
L∞ ∥∇3um,ν(t, ·)∥γL∞

≤ Cm2+γ
(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

).

Hence, if ν ≪ Cm−(2+γ)
(
t∥f∥L∞(Cγ) + [g]γ

)−1
exp(−Ctm1+β∥b∥

L∞(B−β
∞,∞)

), implied by (4.2), then,

up to subsequence choice, ν∆um,ν(t, ·) −→
(m,ν)→(+∞,0)

0 in Cγ
b (R

d,R).
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Also, for a given t ∈ [0, T ], we see from the definition of mild vanishing viscous solution, up to
subsequence choice according to the condition (4.2), that

lim
(m,ν)→(+∞,0)

∫ t

0
⟨bm(s, ·),∇um,ν(s, ·)⟩ds = g − u(t, ·)−

∫ t

0
f(s, ·)ds ∈ Cγ

b (K,R), (4.4)

for any compact K ⊂ Rd. We highly point out that b lies in any arbitrary negative regularity in space
L∞([0, T ];B−β

∞,∞(Rd,Rd)), β ∈ R+, and ∇u(s, ·) ∈ B−1+γ
∞,∞ (Rd,Rd).

In other words, thanks to the time averaging, we get a new para-product condition. Indeed, in
general from Bony’s microlocal analysis [Bon81], for all φ ∈ Bα1

∞,∞ and ψ ∈ Bα2
∞,∞, we have

ϕψ ∈ Bα1∧α2
∞,∞ , if α1 + α2 > 0. (4.5)

However, the uniqueness of the limit in (4.4) seems to be false in general.
Also in the weak formulation, from Theorem 1, we obtain, if ∇ · b = 0 and β < γ (regularity

condition weaker than (4.5)), a distributional meaning of ⟨b(s, ·),∇u(s, ·)⟩, but we still do not know
in this case if the limit is unique.

Finally, we point out that in the Positive regularity framework, we meet the Bony’s para-
product condition (4.5). Indeed, for any t ∈ [0, T ], b(t, ·) ∈ Bα

∞,∞, α = −β, and ∇u(t, ·) ∈ B−1+γ
∞,∞

with α − 1 + γ > 0. We are able quantify the regularity, ⟨b(t, ·),∇u(t, ·)⟩ ∈ B−1+γ
∞,∞ by para-product

detailed further in Section 5.6. Moreover, the time averaging version
∫ t
0 ⟨b(s, ·),∇u(s, ·)⟩ds in the

sense of (4.4) is γ-Hölder. We remark, as α∧ (−1+ γ) = −1+ γ then there is a +1 gain of regularity
comparing with the usual para-product result.

5 Proof of Theorem 1

5.1 Parabolic approximation procedure

Let us first smoothen the drift and the source functions of the parabolic approximation,{
∂tu

m,ν(t, x) + ⟨bm,∇um,ν⟩(t, x)− ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,
(5.1)

where the mollified functions are defined by

bm(t, x) :=

∫
Rd

ρm(x− y)b(t, y)dy,

fm(t, x) :=

∫
Rd

ρm(x− y)f(t, y)dy,

gm(t, x) :=

∫
Rd

ρm(x− y)g(y)dy, (5.2)

for ρm(·) := mdρ(m·) where ρ is a non-negative smooth function ρm, such that
∫
Rd ρm(x− y)dy = 1.

In particular, we choose ρ = h1, the heat kernel defined in 2.4. In Appendix Sections G and E, we
see that the limit of bm does not depend on the choice of the mollification procedure, whereas the
limit of um,ν potentially does.

In our analysis, we use some point-wise controls of the mollified functions or distributions whose
blowing-up in the regularisation parameter m is stated below.

Lemma 1. For all m > 1, and β > 0, if b ∈ L∞([0, T ], B−β
∞,∞(Rd,Rd)), we have for any (t, x) ∈

[0, T ]× Rd:

|bm(t, x)| ≤ Cmβ∥b∥
L∞(B−β

∞,∞)
,

|∇bm(t, x)| ≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
, (5.3)
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where ∇bm stands for the Jacobian matrix of bm; also if β ≤ 0,

|bm(t, x)| ≤ ∥b∥L∞ ,

|∇bm(t, x)| ≤ Cm1+β∥b∥L∞(C−β).

Proof of Lemma 1. From the mollification definition (5.2), we see, from (2.5), that ρm = hm−2 , and
from our scaling choice, we get for any m > 1∣∣bm(t, x)

∣∣ =
∣∣ ∫

Rd

hm−2(x− y)b(t, y)dy
∣∣

≤ mβ sup
m̃−2∈[0,1], x∈Rd

m̃−β
∣∣ ∫

Rd

hm̃−2(x− y)b(t, y)dy
∣∣.

We readily get by the thermic definition of the Besov norm (2.4):

|bm(t, x)| ≤ mβ∥b∥
L∞(B̈−β

∞,∞)
≤ mβ∥b∥

L∞(B−β
∞,∞)

.

For the second inequality, it is known that for any t ∈ [0, T ], ∇b(t, ·) ∈ B−1−β
∞,∞ , see Theorem 9 of

Chapter 3 in [Pee76], in particular if β ∈ (0,−1) see Corollary 6 in Appendix Section F. Hence,∣∣∇xbm(t, x)
∣∣ ≤ m1+β sup

m̃−2∈[0,1], x̃∈Rd

m̃−β
∣∣ ∫

Rd

hm̃−2(x̃− y)∇yb(t, y)dy
∣∣

= m1+β∥∇b∥
L∞(B̈−1−β

∞,∞ )
.

We deduce that there is a constant C = C(d) > 0 such that:∣∣∇xbm(t, x)
∣∣ ≤ Cm1+β∥b∥

L∞(B−β
∞,∞)

,

see Corollary 6 in Appendix Section F.
The two last inequalities, i.e. for the case β ≤ 0, are standard.

5.1.1 L∞ control

We have directly by the Feynman-Kac formulation the uniform control, see for example from the
analysis performed in [Hon22], or from maximum principle for linear parabolic equation see e.g.
[Lie96].

∥um,ν∥L∞ ≤ T∥f∥L∞ + ∥g∥L∞ . (5.4)

For the sake of completeness, we provide in Section 6.6 a way to get exactly the same upper-bound
when ν → 0.

5.1.2 Some a priori controls

It is well-known that the unique solution um,ν of (5.1) is smooth, see [Fri64]. Some a priori controls,
potentially blowing up with m and ν, are required in our analysis.

Lemma 2. For um,ν strong solution of (5.1), we have

∥∇um,ν(t, ·)∥L∞ ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cm1+βt∥b∥

L∞(B−β
∞,∞)

)
=: Om(t), (5.5)

and

∥∇2um,ν(t, ·)∥L∞ ≤ Cm2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

) =: O(2)
m (t), (5.6)

also
∥∇3um,ν(t, ·)∥L∞ ≤ Cm3−γ

(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

). (5.7)

The proof is postponed in Appendix Section A.
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5.1.3 Proxy choice

To derive the other estimates from Duhamel formulation, we approximate the Cauchy problem around
the flow associated to the smooth function bm, which is unique by Cauchy-Lipschitz theorem. Namely,
let us consider the unique function defined for any freezing point (τ, ξ) ∈ [0, T ]× Rd by,

θms,τ (ξ) := ξ +

∫ τ

s
bm(s̃, θms̃,τ (ξ))ds̃, s ∈ [0, τ ]. (5.8)

In other words, for any t ∈ [0, τ ],

θ̇mt,τ (ξ) = −bm(t, θmt,τ (ξ)), θ
m
τ,τ (ξ) = ξ.

We again rewrite the system of linear parabolic PDEs (5.2),

∂tu
m,ν(t, x) + bm(t, θmt,τ (ξ)) · ∇um,ν(t, x)− ν∆um,ν(t, x) = bm∆ [τ, ξ](t, x) · ∇um,ν(t, x) + fm(t, x), (5.9)

where we define
bm∆ [τ, ξ](t, x) := bm(t, θmt,τ (ξ))− bm(t, x). (5.10)

For such a fixed freezing point (τ, ξ) ∈ [0, T ]× Rd, we use the corresponding Duhamel formula:

um,ν(t, x) = P̂ τ,ξgm(t, x) + Ĝτ,ξfm(t, x) + Ĝτ,ξ
(
bm∆ [τ, ξ] · ∇um,ν

)
(t, x), (5.11)

where we define, for any f ∈ C1,2
0 ((0, T ]× Rd,R), the Green operator associated with the perturbed

parabolic equation with constant coefficients (5.9),

∀(t, x) ∈ (0, T ]× Rd, Ĝτ,ξfm(t, x) :=

∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)f(s, y) dy ds, (5.12)

and for any g ∈ C2
0 (Rd,R), the associated semi-group

P̂ τ,ξgm(t, x) :=

∫
Rd

p̂τ,ξ(0, t, x, y)gm(y) dy, (5.13)

where the perturbed heat kernel is

p̂τ,ξ(s, t, x, y) :=
1

(4πν(t− s))
d
2

exp

(
−

∣∣∣x+
∫ t
s bm(s̃, θms̃,τ (ξ))ds̃− y

∣∣∣2
4ν(t− s)

)
. (5.14)

We carefully point out that, from definition (5.8), if (τ, ξ) = (t, x),

p̂t,x(s, t, x, y) =
1

(4πν(t− s))
d
2

exp

(
−
∣∣θms,t(x)− y

∣∣2
4ν(t− s)

)
.

We have for each α ∈ Nd that there is a constant Cα > 1 s.t.

|Dαp̂τ,ξ(s, t, x, y)| ≤ Cα[ν(t− s)]−
|α|
2

(4πν(t− s))
d
2

exp
(
− C−1

α

∣∣x+
∫ t
s bm(s̃, θms̃,τ (ξ))ds̃− y

∣∣2
4ν(t− s)

)
=: C[ν(t− s)]−

|α|
2 p̄τ,ξ(s, t, x, y), (5.15)

and also, after the derivatives we can choose (τ, ξ) = (t, x), and γ ∈ [0, 1],

|Dαp̂t,x(s, t, x, y)| ×
∣∣y − x−

∫ t

s
bm(s̃, θms̃,τ (ξ))ds̃

∣∣γ = |Dαp̂t,x(s, t, x, y)| ×
∣∣y − θms,t(x)

∣∣γ
≤ C[ν(t− s)]−

|α|
2
+ γ

2 p̄t,x(s, t, x, y), (5.16)
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from absorbing property (2.8). It also clear, for any 0 ≤ s < t, that

∂tp̂
τ,ξ(s, t, x, y) = ν∆p̂τ,ξ(s, t, x, y)− ⟨bm(t, θmt,τ (ξ)),∇p̂τ,ξ(s, t, x, y)⟩, (5.17)

which naturally implies that the function um,ν defined in (5.11) is indeed solution to (5.1) and to (5.9).

Finally, we will marginally use the “pure” heat kernel already defined in (5.18),

p̃(s, t, x, y) = p̂τ,ξ
(
s, t, x−

∫ t

s
bm(s̃, θms̃,τ (ξ))ds̃, y

)
=

1

(4πν(t− s))
d
2

exp

(
− |x− y|2

4ν(t− s)

)
, (5.18)

recalling the corresponding Green operator

∀(t, x) ∈ (0, T ]× Rd, G̃fm(t, x) :=

∫ t

0

∫
Rd

p̃(s, t, x, y)fm(s, y) dy ds, (5.19)

and the associated semi-group

P̃ gm(t, x) :=

∫
Rd

p̃(0, t, x, y)gm(y) dy. (5.20)

5.2 Control of Hölder modulus

For any (t, x, x′) ∈ [0, T ]× Rd × Rd, we choose the associated freezing points (τ, ξ) and (τ ′, ξ′). Like
in [CDRHM18], we take τ = τ ′. The previous Duhamel formula (5.11) yields

|um,ν(t, x)− um,ν(t, x′)|
≤ |Ĝτ,ξfm(t, x)− Ĝτ,ξ′fm(t, x′)|+ |P̂ τ,ξgm(t, x)− P̂ τ,ξ′gm(t, x′)|

+
∣∣∣ ∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)] · ∇um,ν(s, y)dy ds

−
∫ t

0

∫
Rd

p̂τ
′,ξ′(s, t, x, y)[bm(s, θms,τ ′(ξ

′))− bm(s, y)] · ∇um,ν(s, y)dy ds
∣∣∣

=: |Ĝτ,ξfm(t, x)− Ĝτ,ξ′fm(t, x′)|+ |P̂ τ,ξgm(t, x)− P̂ τ,ξ′gm(t, x′)|+ |Rτ,ξ,ξ′(t, x, x′)|. (5.21)

However, our analysis need different choices of freezing point which yields extra contributions in the
above inequality, the final Duhamel like identity is stated in (5.62) further.

By integration by parts, we are able to rewrite the remainder term by

Rτ,ξ,ξ′(t, x, x′)

=
{∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y) · [bm(s, θms,τ (ξ))− bm(s, y)][um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds

−
∫ t

0

∫
Rd

∇p̂τ ′,ξ′(s, t, x′, y) · [bm(s, θms,τ (ξ
′))− bm(s, y)][um,ν(s, y)− um,ν(s, θms,τ (ξ

′))]dy ds
}

+
{∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)∇ · bm(s, y)[um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds

−
∫ t

0

∫
Rd

p̂τ
′,ξ′(s, t, x′, y)∇ · bm(s, y)[um,ν(s, y)− um,ν(s, θms,τ (ξ

′))]dy ds
}

=: Rτ,ξ,ξ′

1 (t, x, x′) +Rτ,ξ,ξ′

2 (t, x, x′). (5.22)

Actually, this integration by parts is not essential, we could use a point-wise a priori control of ∇um,ν

performed in Section 6. However we aim to track as sharp as possible the required a priori controls in
the upper-bounds. To be more specific, we unsuccessfully tried to only upper-bound by ∥um,ν∥L∞(Cγ

b )

instead of ∥um,ν∥L∞(C1
b )
. This last value is finite but increases exponentially with m, see Lemma

2. This exponential blowing-up yields the limit criterion (4.2) of (m, ν), and prevents us to get any
balance between m and ν to conclude with uniqueness of solution.
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5.2.1 Main terms

For the main contributions associated with f and g, we choose the freezing parameters to be τ = t
and ξ = ξ′ = x, we choose the same parameters as in the diagonal regime specified further.

Semi-group

We readily derive by change of variables:

|P̂ τ,ξgm(t, x)− P̂ τ,ξgm(t, x′)|
∣∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫

Rd

[p̂τ,ξ(0, t, x, y)− p̂τ,ξ
′
(0, t, x′, y)]gm(s, y)dy

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫

Rd

[p̂t,x(0, t, 0, y)[gm(s, x+ y)− gm(s, x′ + y)]dy
∣∣∣

≤ [g]γ |x− x′|γ . (5.23)

Green operator

We also get by change of variables:

|Ĝτ,ξfm(t, x)− Ĝτ,ξfm(t, x′)|
∣∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0

∫
Rd

[p̂t,x(s, t, x, y)− p̂t,x(s, t, x′, y)]fm(s, y)dy ds
∣∣∣

=
∣∣∣ ∫ t

0

∫
Rd

[p̂t,x(s, t, 0, y)[fm(s, x− y)− fm(s, x′ − y)]ds dy
∣∣∣

≤ ∥f∥L∞(Cγ)|x− x′|γt. (5.24)

5.2.2 Remainder term

To analyse the Hölder modulus of the remainder term, the core of the a priori controls, we separate
the diagonal regime from the off-diagonal one, as performed in [CDRHM18]. This strategy is natural
in view with the vanishing viscous solution selected by a parabolic approximation.

However, in the vanishing viscosity context, we have to carefully track the dependency on ν which
yields, for our first approach, to consider a unusual criterion of diagonal / off-diagonal regime, unlike
for the standard parabolic scaling.

Specifically, for any x, x′ ∈ Rd and for given parameters (α1, α2) ∈ R2, to be tailored further, we
call off-diagonal regime the case |x− x′| > να1(t− s)α2 ⇔ s > t0 with

t0 := t− ν
−α1

α2 |x− x′|
1
α2 , (5.25)

called the cut locus time; on the contrary the diagonal regime holds when |x− x′| ≤ να1(t− s)α2 ⇔
s ≤ t0.

The point t0 can be regarded as a cut-locus point where we “catch” the shortest path from
um,ν(t, x) to um,ν(t, x′) if t ∈ [0, t0] and we choose another way if t0 < t. We carefully point out that
this procedure yields an extra contribution in (5.21), this is detailed in Sections 5.3, 5.3.2.

We specify in Section 5.3.3 below why it is possible to choose different freezing parameters for the
remainder term according to the current regime; meanwhile the semi-group and the Green operator
dealt in Section 5.2.1 has somehow to stay in the diagonal regime.
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5.2.3 Diagonal regime

If |x−x′| ≤ να1(t− s)α2 ⇔ s ≤ t0 = t−ν−
α1
α2 |x−x′|

1
α2 , the points x and x′ are supposed to be closed

from each other, then we pick ξ = ξ′ = x, also τ = t, then we define the associated space

A(x, x′, ν, t)(s) := {|x− x′| ≤ να1(t− s)α2}, (5.26)

with the indicator function

1A(x,x′,ν,t)(s) :=

{
1 if |x− x′| ≤ να1(t− s)α2 ,

0 if |x− x′| > να1(t− s)α2 ,

also the associated remainder terms

Rτ,ξ,ξ′

1,A (t, x, x′) :=

∫ t

0
1A(x,x′,ν,t)(s)∫

Rd

[
∇p̂τ,ξ(s, t, x, y) ·

(
bm(s, θms,τ (ξ))− bm(s, y)

)(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−∇p̂τ ′,ξ′(s, t, x′, y) ·

(
bm(s, θms,τ (ξ

′))− bm(s, y)
)(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds,

and,

Rτ,ξ,ξ′

2,A (t, x, x′) :=

∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

[
p̂τ,ξ(s, t, x, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−p̂τ ′,ξ′(s, t, x′, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds. (5.27)

Let us remark that, if t0 ≥ 0, we equivalently write the above terms by

Rτ,ξ,ξ′

1,A (t, x, x′) =

∫ t0

0

∫
Rd

[
∇p̂τ,ξ(s, t, x, y) ·

(
bm(s, θms,τ (ξ))− bm(s, y)

)(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−∇p̂τ ′,ξ′(s, t, x′, y) ·

(
bm(s, θms,τ (ξ

′))− bm(s, y)
)(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds

=: ∇ · Ĝτ,ξ
0,t0

{(
bm(·, θm·,τ (ξ))− bm

)(
um,ν − um,ν(·, θm·,τ (ξ))

)}
(t, x)

−∇ · Ĝτ,ξ′

t0,t

{(
bm(·, θm·,τ (ξ′))− bm

)(
um,ν − um,ν(·, θm·,τ (ξ′))

)}
(t, x′), (5.28)

and by

Rτ,ξ,ξ′

2,A (t, x, x′)

=

∫ t0

0

∫
Rd

[
p̂τ,ξ(s, t, x, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−p̂τ ′,ξ′(s, t, x′, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds (5.29)

=: Ĝτ,ξ
0,t0

{
∇ · bm

(
um,ν − um,ν(·, θm·,τ (ξ))

)}
(t, x)− Ĝτ,ξ′

t0,t

{
∇ · bm

(
um,ν − um,ν(·, θm·,τ (ξ′))

)}
(t, x′).

Remainder term Rτ,ξ,ξ′

1,A (t, x, x′)
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By change of variables§, we directly get

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

∇p̂τ,ξ(s, t, 0, y)

·
{(
bm(s, θms,τ (ξ))− bm(s, x+ y)

)(
um,ν(s, x+ y)− um,ν(s, θms,τ (ξ))

)
−
(
bm(s, θms,τ (ξ))− bm(s, x′ + y)

)(
um,ν(s, x′ + y)− um,ν(s, θms,τ (ξ))

)}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

,

by parity of the Gaussian density, specifying that

p̂τ,ξ(s, t, 0, y) =
1

(4πν(t− s))
d
2

exp

(
−

∣∣∣∫ t
s bm(s̃, θms̃,τ (ξ))ds̃− y

∣∣∣2
4ν(t− s)

)
,

and expanding the terms above, gives us

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

∇p̂τ,ξ(s, t, 0, y) ·
{
bm(s, θms,τ (ξ))

(
um,ν(s, x+ y)− um,ν(s, x′ + y)

)
+
(
bm(s, x+ y)− bm(s, x′ + y)

)
um,ν(s, θms,τ (ξ))

+bm(s, x′ + y)um,ν(s, x′ + y)− bm(s, x+ y)um,ν(s, x+ y)
}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

,

and putting together the corresponding contributions

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

∇p̂τ,ξ(s, t, 0, y) ·
{
bm(s, θms,τ (ξ))

(
um,ν(s, x+ y)− um,ν(s, x′ + y)

)
+
(
bm(s, x+ y)− bm(s, x′ + y)

)
um,ν(s, θms,τ (ξ))

+
(
bm(s, x′ + y)− bm(s, x+ y)

)
um,ν(s, x′ + y)

−bm(s, x+ y)
(
um,ν(s, x+ y)− um,ν(s, x′ + y)

)}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

.

We finally get

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0

∫
Rd

1A(x,x′,ν,t)(s)∇p̂τ,ξ(s, t, 0, y)

·
{(
bm(s, θms,τ (ξ))− bm(s, x+ y)

)(
um,ν(s, x+ y)− um,ν(s, x′ + y)

)
(5.30)

+
(
bm(s, x′ + y)− bm(s, x+ y)

)(
um,ν(s, x′ + y)− um,ν(s, θms,τ (ξ))

)}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

,

§Specifically, we choose the new variable y′ = y − x.
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hence by gradient control (5.15),

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|∥bm∥L∞(C1)∥um,ν∥L∞(C1)

∫ t

0
1A(x,x′,ν,t)(s)

×
∫
Rd

(
ν(t− s)

)− 1
2 p̄τ,ξ(s, t, 0, y)×

(
|θms,τ (x)− x− y|+ |θms,τ (x)− x′ − y|

)
dy ds

≤ C|x− x′|∥bm∥L∞(C1)∥um,ν∥L∞(C1) (5.31)

×
∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

(
ν(t− s)

)− 1
2 p̄τ,ξ(s, t, 0, y)

(
|θms,τ (x)− x− y|+ |x′ − x|

)
dy ds

∣∣∣∣∣
τ=t,ξ=ξ′=x

,

where we recall from (5.15) that

p̄τ,ξ(s, t, 0, y) =
C

(4πν(t− s))
d
2

exp
(
− C−1

∣∣ ∫ t
s bm(s̃, θms̃,τ (ξ))ds̃− y

∣∣2
4ν(t− s)

)
.

and by Lemma 2:

∥um,ν(t, ·)∥C1 ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
= Om(t). (5.32)

For (τ, ξ) = (t, x), recalling that
∫ t
s bm(s̃, θs̃,t(x))ds̃ = θms,t(x)−x, and by absorption property (2.8),

we deduce

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|∥b∥
L∞(B−β

∞,∞)
m1+βOm(t)

∫ t

0
1A(x,x′,ν,t)(s)

(
1 + [ν(t− s)]−

1
2 |x− x′|

)
ds

≤ C|x− x′|γνα1(1−γ)∥b∥
L∞(B−β

∞,∞)
m1+βOm(t)

∫ t

0
(t− s)(1−γ)α2

(
1 + ν−

1
2 (t− s)−

1
2 να1(t− s)α2

)
ds,

because in the current diagonal regime, |x− x′|1−γ ≤ να1(1−γ)(t− s)α2(1−γ).

If (1− γ)α2 > −1 and (1− γ)α2 − 1
2 + α2 > −1 ⇔ α2 > − 1

2(2−γ) > − 1
1−γ > −1, the above time

integral is finite, and after integration,

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

(5.33)

≤ C|x− x′|γ∥b∥
L∞(B−β

∞,∞)
m1+βOm(t)

(
να1(1−γ)t1+(1−γ)α2 + ν−

1
2
+α1(2−γ)t

1
2
+α2(2−γ)

)
.

To consider vanishing viscous, it is necessary to have α1(1 − γ) > 0 and −1
2 + α1(2 − γ) > 0 ⇔

α1 >
1

2(2−γ) > 0 for γ < 1.

To sum up, we consider the constraints

α1 >
1

2(2− γ)
,

α2 > − 1

2(2− γ)
. (5.34)

Remainder term Rτ,ξ,ξ′

2,A (t, x, x′)
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Also by change of variables and by similar computations as for the first remainder termRτ,ξ,ξ′

1,A (t, x, x′):

|Rτ,ξ,ξ′

2,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

p̂t,x(s, t, 0, y)∇ · bm(s, x+ y)
(
um,ν(s, x+ y)− um,ν(s, θms,t(x))

)
dy ds

−
∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

p̂t,x(s, t, 0, y)∇ · bm(s, x′ + y)
(
um,ν(s, x′ + y)− um,ν(s, θms,t(x))

)
dy ds

∣∣∣
=

∣∣∣ ∫ t

0
1A(x,x′,ν,t)(s)

∫
Rd

p̂t,x(s, t, 0, y) ·
{
∇ · bm(s, x′ + y)

(
um,ν(s, x+ y)− um,ν(s, x′ + y)

)
+
(
∇ · bm(s, x+ y)−∇ · bm(s, x′ + y)

)(
um,ν(s, x+ y)− um,ν(s, θms,t(x))

)}
dy ds

∣∣∣
≤ C|x− x′|

(
∥∇bm∥L∞ + ∥∇bm∥L∞(C1)

)
∥um,ν∥L∞(C1)

∫ t

0
1A(x,x′,ν,t)(s)ds.

Next, we obtain from (2.8) and (5.32),

|Rτ,ξ,ξ′

2,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|∥b∥
L∞(B−β

∞,∞)

(
m1+β +m2+β

)
Om(t)

∫ t

0
1A(x,x′,ν,t)(s)(1 + [ν(t− s)])

1
2ds.

By assumption of the diagonal regime, we get

|Rτ,ξ,ξ′

2,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|γνα1(1−γ)∥b∥
L∞(B−β

∞,∞)

(
m1+β +m2+β

)
Om(t)

∫ t

0
(t− s)α2(1−γ)(1 + [ν(t− s)])

1
2ds

≤ C|x− x′|γνα1(1−γ)t1+α2(1−γ)∥b∥
L∞(B−β

∞,∞)

(
m1+β +m2+β

)
Om(t), (5.35)

for νt ≤ νT ≤ 1. The above inequality satisfies the vanishing viscosity analysis if α1 > 0 and if
α2 >

−1
1−γ which is already required for the first remainder (because 1

2(2−γ) > 0 and −1
2(2−γ) >

−1
1−γ ).

5.2.4 Off-diagonal regime

If |x− x′| > να1(t− s)α2 ⇔ s > t− ν
−α1

α2 |x− x′|
1
α2 , we recall the corresponding cut locus time

t0 = t− ν
−α1

α2 |x− x′|
1
α2 .

In this case, we choose as freezing parameters ξ = x and ξ′ = x′. In the off-diagonal regime, the
associated space is

Ac(x, x′, ν, t)(s) := {|x− x′| > να1(t− s)α2}, (5.36)

the indicator function

1Ac(x,x′,ν,t)(s) = 1− 1A(x,x′,ν,t)(s) =

{
1 if |x− x′| > να1(t− s)α2 ,

0 if |x− x′| ≤ να1(t− s)α2 ,

and the associated remainder terms are

Rτ,ξ,ξ′

1,Ac (t, x, x
′)

= Rτ,ξ,ξ′

1 (t, x, x′)−Rτ,ξ,ξ′

1,A (t, x, x′)

=

∫ t

0
1Ac(x,x′,ν,t)(s)

∫
Rd

[
∇p̂τ,ξ(s, t, x, y) ·

(
bm(s, θms,τ (ξ))− bm(s, y)

)(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−∇p̂τ ′,ξ′(s, t, x′, y) ·

(
bm(s, θms,τ (ξ

′))− bm(s, y)
)(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds,
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and

Rτ,ξ,ξ′

2,Ac (t, x, x
′) = Rτ,ξ,ξ′

2 (t, x, x′)−Rτ,ξ,ξ′

2,A (t, x, x′)

=

∫ t

0
1Ac(x,x′,ν,t)(s)

∫
Rd

[
p̂τ,ξ(s, t, x, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−p̂τ ′,ξ′(s, t, x′, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds.

Like in the diagonal regime, we also rewrite the above remainder terms

Rτ,ξ,ξ′

1,Ac (t, x, x
′)

=

∫ t

t0

∫
Rd

[
∇p̂τ,ξ(s, t, x, y) ·

(
bm(s, θms,τ (ξ))− bm(s, y)

)(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−∇p̂τ ′,ξ′(s, t, x′, y) ·

(
bm(s, θms,τ (ξ

′))− bm(s, y)
)(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds

=: ∇ · Ĝτ,ξ
t0,t

{(
bm(·, θm·,τ (ξ))− bm

)(
um,ν − um,ν(·, θm·,τ (ξ))

)}
(t, x)

−∇ · Ĝτ,ξ′

t0,t

{(
bm(·, θm·,τ (ξ′))− bm

)(
um,ν − um,ν(·, θm·,τ (ξ′))

)}
(t, x′), (5.37)

and

Rτ,ξ,ξ′

2,Ac (t, x, x
′)

=

∫ t

t0

∫
Rd

[
p̂τ,ξ(s, t, x, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ))

)
−p̂τ ′,ξ′(s, t, x′, y)∇ · bm(s, y)

(
um,ν(s, y)− um,ν(s, θms,τ (ξ

′))
)]
dy ds (5.38)

=: Ĝτ,ξ
t0,t

{
∇ · bm

(
um,ν − um,ν(·, θm·,τ (ξ))

)}
(t, x)− Ĝτ,ξ′

t0,t

{
∇ · bm

(
um,ν − um,ν(·, θm·,τ (ξ′))

)}
(t, x′).

Remainder term Rτ,ξ,ξ′

1,Ac (t, x, x′)

By triangular inequality

|Rτ,ξ,ξ′

1,Ac (t, x, x
′)|
∣∣
τ=t,ξ=x,ξ′=x′

≤ 2C∥bm∥L∞(C1)∥um,ν∥L∞(Cγ) sup
x∈Rd

∫ t

t0

∫
Rd

(
ν(t− s)

)− 1
2 p̄t,x(s, t, x, y)|y − θms,τ (ξ)|1+γdy ds.

Next, by absorbing property of the exponential (2.8) we get

|Rτ,ξ,ξ′

1,Ac (t, x, x
′)|
∣∣
τ=t,ξ=x,ξ′=x′ ≤ Cm1+β∥b∥

L∞(B−β
∞,∞)

∥um,ν∥L∞(Cγ)

∫ t

t0

(
ν(t− s)

) γ
2 ds

≤ m1+β

2 + γ
Cν

γ
2 ∥b∥

L∞(B−β
∞,∞)

∥um,ν∥L∞(Cγ)(t− t0)
1+ γ

2 .

Eventually, by definition of the cut locus time (5.25):

|Rτ,ξ,ξ′

1,Ac (t, x, x
′)|
∣∣
τ=t,ξ=x,ξ′=x′ ≤ m1+β

1 + γ
Cν

γ
2 ∥b∥

L∞(B−β
∞,∞)

∥um,ν∥L∞(Cγ)(ν
−α1

α2 |x− x′|
1
α2 )

2+γ
2

≤ m1+β

1 + γ
Cν

γ
2
−α1(2+γ)

2α2 ∥b∥
L∞(B−β

∞,∞)
∥um,ν∥L∞(Cγ)|x− x′|

2+γ
2α2 .

(5.39)
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Hence, we have a second constraint to be satisfied:

γ =
2 + γ

2α2
,

0 <
γ

2
− α1(2 + γ)

2α2
. (5.40)

In particular, the parameter α2 is then determined by α2 =
2+γ
2γ .

Remainder term Rτ,ξ,ξ′

2,Ac (t, x, x′)

We also derive by triangular inequality,

|Rτ,ξ,ξ′

2,Ac (t, x, x
′)|
∣∣
τ=t,ξ=x,ξ′=x′

≤
∣∣∣ ∫ t

0
1Ac(x,x′,ν,t)(s)

∫
Rd

p̂t,x(s, t, 0, y)∇ · bm(s, x+ y)
(
um,ν(s, x+ y)− um,ν(s, θms,t(x))

)
dy ds

∣∣∣
+
∣∣∣ ∫ t

0
1Ac(x,x′,ν,t)(s)

∫
Rd

p̂t,x
′
(s, t, 0, y)∇ · bm(s, x′+ y)

(
um,ν(s, x′+ y)− um,ν(s, θms,t(x

′))
)
dy ds

∣∣∣
≤ 2C∥∇ · bm∥L∞∥um,ν∥L∞(Cγ)

∫ t

t0

[ν(t− s)]
γ
2 ds,

by similar absorbing arguments previously performed; and finally

|Rτ,ξ,ξ′

2,Ac (t, x, x
′)|
∣∣
τ=t,ξ=x,ξ′=x′ ≤

m1+β

1 + γ
Cν

γ
2
−α1(2+γ)

2α2 ∥b∥
L∞(B−β

∞,∞)
∥um,ν∥L∞(Cγ)|x− x′|

2+γ
2α2 , (5.41)

which yields the same constraints as (5.40).

5.2.5 Sum up on the constraints on α1, α2

Recalling from (5.40)

α2 =
2 + γ

2γ
,

0 <
γ

2
− α1(2 + γ)

2α2
, (5.42)

and from (5.34), that we recall

α1 >
1

2(2− γ)
,

α2 > − 1

2(2− γ)
, (5.43)

the second inequality above is satisfied by the choice α2 =
2+γ
2γ > 0 > − 1

2(2−γ) .

Next, combining (5.42) with (5.43):

γ

2(2− γ)
< α1γ <

γ

2
. (5.44)

This is possible if
1 < 2− γ ⇐⇒ γ < 1,

which means that there is no possibility, with our strategy to obtain any Lipschitz control.
Furthermore, we also need to suppose that

α1 <
1

2
. (5.45)

27



5.2.6 Choice of α1

Finally, we calibrate α1 such that the “worst” contribution of ν in the diagonal regime in (5.33)
matches with the off-diagonal one in (5.39), namely

−1

2
+ α1(2− γ) =

γ

2
− α1(2 + γ)

2α2
,

as γ
2 − α1(2+γ)

2α2
= γ

2 − α1γ, we deduce

α1 =
1 + γ

4
. (5.46)

We point out that the constraint (5.45) is indeed satisfied.

Let us detail that, with the choice (5.46), the conditions in (5.44) are satisfied, namely that
γ

2(2−γ) <
γ(1+γ)

4 < γ
2 , the second inequality is direct as 1+γ

2 < 1 for any γ < 1. In order to prove the

first inequality, we equivalently need to have Γ(γ) := (2− γ)(1+ γ) > 2. Differentiating this function
readily gives Γ′(γ) = −1− γ + 2− γ = 1− 2γ, hence infγ∈(0,1) Γ(γ) = minγ∈{0,1} Γ(γ) = 2.

Remark 6. The condition to get a diagonal regime is then |x − x′| ≤ ν
1+γ
4 (t − s)

2+γ
2γ , which differs

from the usual parabolic scale where (α1, α2) is replaced by (12 ,
1
2); but recalling that α1 = 1

2 is not
allowed in (5.45). We do not seek for any parabolic bootstrap of regularity, unlike [CDRHM18], our
goal is above all to control as sharp as possible the dependency on ν.

5.2.7 Comments on the necessity of using the norm ∥um,ν∥L∞(C1)

At this stage of the proof, we can justify why we upper-bound by the blowing-up term ∥um,ν∥L∞(C1)

in the diagonal regime, which is overwhelmed by the viscosity ν but prevents to get uniqueness, see
Remark 5; instead of the well-controlled ∥um,ν∥L∞(Cγ).

Let us rewrite one of the term of Rτ,ξ,ξ′

1,A (t, x, x′) in r.h.s. in (5.30),∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, 0, y) ·
(
bm(s, x′ + y)− bm(s, x+ y)

)
(
um,ν(s, x′ + y)− um,ν(s, θms,τ (ξ))

)
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|∥bm∥L∞(C1)

∫ t

0
∥um,ν(s, ·)∥Cγ

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, 0, y)× |θms,τ (ξ)− x′ − y|γdy ds

≤ C|x− x′|∥bm∥L∞(C1)

∫ t

0
∥um,ν(s, ·)∥Cγ

(
[ν(t− s)]

γ−1
2 + [ν(t− s)]−

1
2 |x− x′|γ

)
ds

≤ C|x− x′|γνα1(1−γ)∥b∥
L∞(B−β

∞,∞)
m1+β

∫ t

0
∥um,ν(s, ·)∥Cγ

×(t− s)(1−γ)α2

(
[ν(t− s)]

γ−1
2 + [ν(t− s)]−

1
2 να1γ(t− s)α2γ

)
ds

= C|x− x′|γ∥b∥
L∞(B−β

∞,∞)
m1+β

×
∫ t

0
∥um,ν(s, ·)∥Cγ

(
(t− s)(1−γ)α2+

γ−1
2 να1(1−γ)+ γ−1

2 + να1− 1
2 (t− s)α2− 1

2

)
ds.

Then the required, assumption on parameters is for this control (from the second additive term above)

α1 >
1

2
, α2 > −1

2
,

which combined with the constraint on the off-diagonal regime (5.40) is absurd.
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We could consider the case α1 = 1
2 , but this case yields no viscosity contribution and makes

the previous upper-bounds blowing up with m (except for the usual framework, i.e. for b Lipschitz
continuous); there is no possibility to obtain a regularisation by turbulence for such a choice.

If we suppose that b is γ-Hölder in space, in order to avoid any blowing-up in m, from (5.31), we
are able to write

|Rτ,ξ,ξ′

1,A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|γ∥b∥L∞(Cγ)

∫ t

0
∥um,ν(s, ·)∥Cγ∫

Rd

1A(x,x′,ν,t)(s)[ν(t− s)]−
1
2 p̄τ,ξ(s, t, 0, y)× |θms,τ (x)− x′ − y|γdy ds

≤ C|x− x′|γ∥b∥L∞(Cγ)

∫ t

0
1A(x,x′,ν,t)(s)∥um,ν(s, ·)∥Cγ

(
[ν(t− s)]

γ−1
2 + [ν(t− s)]−

1
2 |x− x′|γ

)
ds

≤ C|x− x′|γ∥b∥L∞(Cγ)

∫ t

0
1A(x,x′,ν,t)(s)∥um,ν(s, ·)∥Cγ(

[ν(t− s)]
γ−1
2 + ν−

1
2 (t− s)−

1
2 να1γ(t− s)α2γ

)
ds,

which goes to +∞ when ν → 0, except if γ = 1. In other words, we need to consider the norms
∥bm∥L∞(C1) and ∥um,ν∥L∞(C1) on the one hand to smoothen the blowing-up in ν and to get a suitable
control by |x− x′| which allows to overwhelm ν in the diagonal regime.

Again, we could rewrite the analysis performed before this current section without doing an
integration by parts in (5.22), and by upper-bounding with ∥∇um,ν∥L∞ . We choose to keep this
separation of the remainder term defined in (5.22) in order to track precisely where the regime helps
us to overuse the suitable a priori regularity of um,ν in L∞([0, T ];Cγ

b (R
d,R)).

5.3 On the discontinuous choice of freezing parameters

Let us carefully point out that even if the solution um,ν does not depend on the corresponding
freezing parameter ξ, the choice of ξ in this section does depend on the current time variable of
integration s.

Therefore, like for the approach developed in [CDRHM18], the cut locus time yields an additional
contribution.

5.3.1 Consequence for um,ν(t, x′)

Previously, in the Hölder norm controls, we considered two points (x, x′) ∈ Rd × Rd. Let us specify
how to write the solution um,ν(t, x′) with the different choices of freezing parameter ξ′ depending on
the time variable of integration s. To do so, we first rewrite the theoretical representation of the
solution where the initial time is r ∈ [0, T ], and the initial function is replaced by um,ν(r, x′),

um,ν(t, x′) = Pm,ν
r um,ν(r, x′) +Gm,ν

r fm(t, x′), (5.47)

where Pm,ν
r,t and Gm,ν

r,t stand respectively for the semi-group and the Green operator associated with
the Cauchy problem{

∂tu
m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (r, T ]× Rd,

um,ν(r, x) = um,ν(r, x), x ∈ Rd.
(5.48)

We also write

um,ν(t, x) = P̂ τ,ξ
r um,ν(r, ·)(t, x) + Ĝτ,ξ

r fm(t, x) + Ĝτ,ξ
r

(
bm∆ [τ, ξ] · ∇um,ν

)
(t, x), (5.49)
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where the operators are defined by

∀(t, x) ∈ (0, T ]× Rd, Ĝτ,ξ
r fm(t, x) :=

∫ t

r

∫
Rd

p̂τ,ξ(s, t, x, y)f(s, y)dy ds, (5.50)

and

P̂ τ,ξ
r gm(t, x) :=

∫
Rd

p̂τ,ξ(r, t, x, y)gm(y)dy. (5.51)

Let us recall the definition of the transition time

t0 := t− ν
−α1

α2 |x− x′|
1
α2 = t− ν

− γ(1+γ)
2(2+γ) |x− x′|

2γ
2+γ . (5.52)

If t0 ≤ 0 ⇔ t ≤ ν
−α1

α2 |x− x′|
1
α2 , the off-diagonal regime is in force, then we pick ξ′ = x′ and there

is no intricate choice of the freezing parameter.

However, if t0 > 0 ⇔ t > ν
−α1

α2 |x−x′|
1
α2 , we need to be more subtle to handle with the dependency

on s for the value choice of ξ′ ∈ Rd. From now on, we suppose that t0 > 0.

We next differentiate (5.49)w.r.t. r

0 = ∂r
(
P̂ τ,ξ′
r um,ν(r, ·)

)
(t, x′) + ∂rĜ

τ,ξ′
r fm(t, x′) + ∂rĜ

τ,ξ′
r

(
bm∆ [τ, ξ′] · ∇um,ν

)
(t, x′). (5.53)

We integrate the variable r between [t0, t] with the proxy parameter ξ′ ∈ Rd,

0 = um,ν(t, x′)− [P τ,ξ′

t0
um,ν(t0, ·)](t, x′)−Gτ,ξ′

t0
fm(t, x′)− Ĝτ,ξ′

t0

(
bm∆ [τ, ξ′] · ∇um,ν

)
(t, x′),

which yields for t ∈ [t0, T ]

um,ν(t, x′) = [P τ,ξ′

t0
um,ν(t0, ·)](t, x′) +Gτ,ξ′

t0
fm(t, x′) + Ĝτ,ξ′

t0

(
bm∆ [τ, ξ′] · ∇um,ν

)
(t, x′). (5.54)

Next, we integrate in time between [0, t0] with a different freezing parameter ξ̃′ ∈ Rd,

0 = [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)− P̂ τ,ξ̃′

0 gm(x′) + Ĝτ,ξ̃′

t0
fm(t, x′)− Ĝτ,ξ̃′

0 fm(t, x′)

+Ĝτ,ξ̃′

t0

(
bm∆ [τ, ξ̃′] · ∇um,ν

)
(t, x′)− Ĝτ,ξ̃′

0

(
bm∆ [τ, ξ̃′] · ∇um,ν

)
(t, x′).

Hence,

um,ν(t, x′) = [P τ,ξ′

t0
um,ν(t0, ·)](t, x′) +Gτ,ξ′

t0
fm(t, x′) + Ĝτ,ξ′

t0

(
bm∆ [τ, ξ′] · ∇um,ν

)
(t, x′)

−[P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′) + P̂ τ,ξ̃′

0 gm(x′)− Ĝτ,ξ̃′

t0
fm(t, x′) + Ĝτ,ξ̃′

0 fm(t, x′)

−Ĝτ,ξ̃′

t0

(
bm∆ [τ, ξ̃′] · ∇um,ν

)
(t, x′) + Ĝτ,ξ̃′

0

(
bm∆ [τ, ξ̃′] · ∇um,ν

)
(t, x′).

Defining

∀(t′, x) ∈ [0, t]× Rd, Ĝτ,ξ
r,t′fm(t, x) :=

∫ t′

r

∫
Rd

p̂τ,ξ(s, t, x, y)f(s, y)dy ds, (5.55)

we write

um,ν(t, x′) = [P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′) +Gτ,ξ′

t0
fm(t, x′)

+Ĝτ,ξ′

t0

(
bm∆ [τ, ξ′] · ∇um,ν

)
(t, x′) + P̂ τ,ξ̃′

0 gm(x′) + Ĝτ,ξ̃′

0,t0
fm(t, x′)

+Ĝτ,ξ̃′

0,t0

(
bm∆ [τ, ξ̃′] · ∇um,ν

)
(t, x′). (5.56)

There is an extra contribution [P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′) due to the discontinuous

freezing choice, the other terms match with the ones appearing in the above computations.
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5.3.2 Extra contribution [P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

Thanks to a change of variables, we readily obtain

[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

=

∫
Rd

p̂τ,ξ
′
(t0, t, x

′, y)um,ν(t0, y)dy −
∫
Rd

p̂τ,ξ̃
′
(t0, t, x

′, y)um,ν(t0, y)dy

=

∫
Rd

p̃(t0, t, x
′, y)

[
um,ν

(
t0, y +

∫ t

t0

bm(s̃, θms̃,τ ′(ξ
′))ds̃

)
dy − um,ν

(
t0, y +

∫ t

t0

bm(s̃, θms̃,τ̃ ′(ξ̃
′)ds̃)

)]
dy,

recalling that p̃(t0, t, x
′, y) stands for the usual heat kernel defined in (5.18). Therefore,∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣
≤ ∥um,ν∥L∞(C1)

∫ t

t0

∣∣bm(s̃, θms̃,τ (ξ
′))− bm(s̃, θms̃,τ (ξ̃

′)
∣∣ds̃

≤ ∥um,ν∥L∞(C1)∥bm∥L∞(C1)

∫ t

t0

|θms̃,τ ′(ξ′)− θms̃,τ (ξ̃
′)|ds̃.

Additionally, we get the a priori control for the flow.

Lemma 3. For all (x, x′) ∈ Rd × Rd and 0 ≤ s ≤ τ ≤ T :

sup
s̃∈[0,τ ]

|θms,τ (x)− θms,τ (x
′)| ≤ |x− x′| exp

(
∥bm∥L∞(C1)τ

)
.

The proof is postponed in Appendix Section B.

We then deduce for (τ, ξ′, ξ̃′) = (t, x′, x) that

∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ ∥um,ν∥L∞(C1)∥bm∥L∞(C1)

∫ t

t0

|x− x′| exp
(
∥bm∥L∞(C1)t

)
ds̃

≤ ∥um,ν∥L∞(C1)∥bm∥L∞(C1)|x− x′|(t− t0) exp
(
∥bm∥L∞(C1)t

)
ds̃.

Recalling that, see Lemma 2,

∥∇um,ν(t, ·)∥L∞ ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cm1+βt∥b∥

L∞(B−β
∞,∞)

)
= Om(t).

Therefore,

∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ m1+βOm(t)∥b∥
L∞(B−β

∞,∞)
|x− x′|(t− t0) exp

(
∥bm∥L∞(C1)t

)
. (5.57)

Because |x− x′| = να1(t− t0)
α1 , we get

∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ |x− x′|γm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν(1−γ)α1(t− t0)

(1−γ)α2+1 exp
(
∥bm∥L∞(C1)t

)
. (5.58)
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As we have supposed that t0 ≥ 0, it follows that

∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ t(1−γ)α2+1|x− x′|γm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν(1−γ)α1 exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
. (5.59)

Taking, the choice (5.40) and (5.46),

(α1, α2) =

(
1 + γ

4
,
2 + γ

2γ

)
,

we finally derive,

∣∣∣[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ ν
1−γ2

4 t
(1−γ)(2+γ)

2γ
+1|x− x′|γm1+βOm(t)∥b∥

L∞(B−β
∞,∞)

exp
(
∥bm∥L∞(C1)t

)
= ν

1−γ2

4 t
(1−γ)(2+γ)

2γ
+1|x− x′|γm1+βOm(2t)∥b∥

L∞(B−β
∞,∞)

. (5.60)

From definition of Om(t) in (5.32), we obtain the vanishing condition

ν ≪ (m1+β−γT
(1−γ)(2+γ)

2γ
+1

)
− 4

1−γ2 exp
(
− C

m1+β∥b∥
L∞(B−β

∞,∞)
T

1− γ2
)
. (5.61)

5.3.3 Justification of the freezing point change

For any (t, x, x′) ∈ [0, T ]× Rd × Rd and (τ, ξ, ξ′, ξ̃′) ∈ [0, T ]× Rd, we write from (5.56),

um,ν(t, x)− um,ν(t, x′) =
[
P̂ τ,ξgm(t, x)− P̂ τ,ξ̃′gm(t, x′)

]
+
[
Ĝτ,ξ

t0,t
fm(t, x)− Ĝτ,ξ′

t0,t
fm(t, x′)

]
+
[
Ĝτ,ξ

0,t0
fm(t, x)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
+
[
G̃τ,ξ

t0,t

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

t0,t

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+
[
G̃τ,ξ

0,t0

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

0,t0

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′).

Because the l.h.s. of the first equality does not depend on (ξ, ξ′), we can get the infimum over these
freezing points, namely

um,ν(t, x)− um,ν(t, x′)

= inf
ξ,ξ′,ξ̃′∈R

{[
P̂ τ,ξgm(t, x)− P̂ τ,ξ̃′gm(t, x′)

]
+
[
Ĝτ,ξ

t0,t
fm(t, x)− Ĝτ,ξ′

t0,t
fm(t, x′)

]
+
[
Ĝτ,ξ

0,t0
fm(t, x)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
+
[
G̃τ,ξ

t0,t

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

t0,t

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+
[
G̃τ,ξ

0,t0

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

0,t0

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

}
.
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However, we aim to control the source functions term only in the diagonal regime, see Section 5.3.5
below for details. We rewrite,[

Ĝτ,ξ
t0,t
fm(t, x)− Ĝτ,ξ′

t0,t
fm(t, x′)

]
+
[
Ĝτ,ξ

0,t0
fm(t, x)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
=

[
Ĝτ,ξfm(t, x)− Ĝτ,ξ̃′fm(t, x′)

]
+
[
Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
,

and,

um,ν(t, x)− um,ν(t, x′)

= inf
ξ,ξ′,ξ̃′∈R

{[
P̂ τ,ξgm(t, x)− P̂ τ,ξ̃′gm(t, x′)

]
+
[
Ĝτ,ξfm(t, x)− Ĝτ,ξ̃′fm(t, x′)

]
+
[
Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
+
[
G̃τ,ξ

t0,t

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

t0,t

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+
[
G̃τ,ξ

0,t0

[
bm∆ [τ, ξ] · ∇um,ν

]
(t, x)− G̃τ,ξ′

0,t0

[
bm

′
∆ [τ, ξ′] · ∇um,ν

]
(t, x′)

]
+[P τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

}
, (5.62)

because, from definitions (5.28), (5.29), (5.37) and (5.38), we have Ĝτ,ξ̃′fm(t, x′) = Ĝτ,ξ̃′

0,t0
fm(t, x′) +

Ĝτ,ξ̃′

t0,t
fm(t, x′).

Hence, taking (τ, ξ, ξ′, ξ̃′) = (t, x, x′, x) yields the previous terms already controlled plus a new

extra contribution
[
Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
.

5.3.4 Control of the new extra contribution
[
Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
This last extra term is tackled similarly as the first one, see Section 5.3.2.[

Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

]
=

∫ t0

0

∫
Rd

p̃(s, t, x′, y)
[
fm
(
s, y +

∫ t

s
bm(s̃, θms̃,τ ′(ξ

′))ds̃
)
− fm

(
s, y +

∫ t

s
bm(s̃, θms̃,τ̃ ′(ξ

′)ds̃)
)]
dy ds.

We readily obtain, ∣∣∣Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

∣∣∣
≤ ∥fm∥L∞(C1)

∫ t0

0

∣∣∣ ∫ t

s
bm(s̃, θms̃,τ (ξ

′))− bm(s̃, θms̃,τ (ξ̃
′)ds̃

∣∣∣ds
≤ ∥fm∥L∞(C1)∥bm∥L∞(C1)

∫ t0

0

∫ t

s
|θms̃,τ ′(ξ′)− θms̃,τ (ξ̃

′)|ds̃ ds.

Again, we use, for any (x, x′) ∈ Rd × Rd, the control of the flow,

sup
s̃∈[0,τ ]

|θms,τ (x)− θms,τ (x
′)| ≤ |x− x′| exp

(
∥bm∥L∞(C1)τ

)
, (5.63)

see Lemma 3.
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We then deduce for (τ, ξ′, ξ̃′) = (t, x′, x) that∣∣∣Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ ∥fm∥L∞(C1)∥bm∥L∞(C1)

∫ t0

0

∫ t

s
|x− x′| exp

(
∥bm∥L∞(C1)t

)
ds̃ ds

≤ 1

2
m1−γ∥f∥L∞(Cγ)m

1+β∥b∥
L∞(B−β

∞,∞)
|x− x′|t2 exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
. (5.64)

From the definition of t0 in (5.25), |x− x′| = να1(t− t0)
α1 , we get∣∣∣Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ |x− x′|γ ν
(1−γ)α1t(1−γ)α2+2

2
m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)

= |x− x′|γ ν
1−γ2

4 t
(1−γ)(2+γ)

2γ
+2

2
m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
.

(5.65)

Hence, the vanishing constraint is

ν ≪ (m2+β−γT
(1−γ)(2+γ)

2γ
+2∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
)
− 4

1−γ2 exp
(
− 4

m1+β∥b∥
L∞(B−β

∞,∞)
T

1− γ2
)
. (5.66)

5.3.5 Comments on the choice of freezing point for the source functions terms

It is crucial to fix the same freezing point for the terms associated with source functions. In our con-
text, it may be unavoidable. To fully explain this choice, let us develop the computations associated
with these terms for the same choice of ξ and ξ′ as for A, the off-diagonal regime, i.e. ξ = x and
ξ′ = x′.

To deal with the semi-group, we consider an analysis of the type (or equivalent controls),

|P̂ τ,ξgm(t, x)− P̂ τ,ξ′gm(t, x′)|
∣∣∣
τ=t,ξ=x,ξ′=x′

=
∣∣∣ ∫

Rd

[p̂τ,ξ(0, t, x, y)− p̂τ,ξ
′
(0, t, x′, y)]gm(s, y)dy

∣∣∣∣∣
τ=t,ξ=x,ξ′=x′

=
∣∣∣ ∫

Rd

p̃(0, t, 0, y)
[
gm
(
t, θm0,t(x) + y

)
− gm

(
t, θm0,t(x

′) + y
)]
dy

≤ [g]γ |θm0,t(x)− θm0,t(x
′)|γ .

Similarly, for the Green operator,

|Ĝτ,ξfm(t, x)− Ĝτ,ξ′fm(t, x′)|
∣∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t

0

∫
Rd

[p̂τ,ξ(s, t, x, y)− p̂τ,ξ
′
(s, t, x′, y)]fm(s, y)dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=x,ξ′=x′

=
∣∣∣ ∫ t

0

∫
Rd

[p̃(s, t, 0, y)[fm(s, θms,t(x) + y)− fm(s, θms,t(x
′) + y)]dy ds

∣∣∣
≤ ∥f∥L∞(Cγ)

∫ t

0
|θms,t(x)− θms,t(x

′)|γds.

In other words, we see in the both controls above that we only upper-bound by the flow associated
with bm which is a priori not controlled uniformly on m in a suitable spatial Hölder space, see (5.63).
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5.3.6 Final Hölder control

We have from the final Duhamel formula (5.56) combined with the estimates of each contribution
stated in (5.33), (5.35), (5.39), (5.41), (5.60), (5.65):

∥um,ν(t, ·)∥Cγ

≤ t∥f∥L∞(Cγ) + [g]γ + C∥b∥
L∞(B−β

∞,∞)
m1+βOm(t)

(
να1(1−γ)t1+(1−γ)α2 + ν−

1
2
+α1(2−γ)t

1
2
+α2(2−γ)

)
+Cνα1(1−γ)t1+α2(1−γ)∥b∥

L∞(B−β
∞,∞)

(
m1+β +m2+β

)
Om(t)

+
m1+β

1 + γ
Cν

γ
2
−α1(2+γ)

2α2 ∥b∥
L∞(B−β

∞,∞)
∥um,ν∥L∞(Cγ)

+t(1−γ)α2+1m1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν(1−γ)α1 exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)

+
ν(1−γ)α1t(1−γ)α2+2

2
m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
. (5.67)

In the above inequality, taking

(α1, α2) =

(
1 + γ

4
,
2 + γ

2γ

)
, (5.68)

and gathering some contributions, give

∥um,ν(t, ·)∥Cγ

≤ t∥f∥L∞(Cγ) + [g]γ + C∥b∥
L∞(B−β

∞,∞)
m2+βOm(2t)

(
ν

1−γ2

4 t
1+(1−γ) 2+γ

2γ + ν
γ(1−γ)

4 t
1
2
+ 4−γ2

2γ

)
+
m1+β

1 + γ
Cν

γ(1−γ)
4 ∥b∥

L∞(B−β
∞,∞)

∥um,ν∥L∞(Cγ)

+ν
1−γ2

4 t
(1−γ)(2+γ)

2γ
+1
m1+βOm(t)∥b∥

L∞(B−β
∞,∞)

exp
(
∥bm∥L∞(C1)t

)
+
ν

1−γ2

4 t
(1−γ)(2+γ)

2γ
+2

2
m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
, (5.69)

where we recall that

Om(t) =
(
t∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
≤ Cm1−γ(t∥f∥L∞(Cγ) + [g]γ) exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
.

Then, for ν ≪ T and because 1−γ2

4 > γ(1−γ)
4 , we obtain

∥um,ν(t, ·)∥Cγ

≤ t∥f∥L∞(Cγ) + [g]γ

+Cν
γ(1−γ)

4 m2+β∥b∥
L∞(B−β

∞,∞)

(
t
1+(1−γ) 2+γ

2γ Om(2t)(1 + ∥f∥L∞(Cγ)) + ∥um,ν∥L∞(Cγ)

)
.

For a “small” κ ∈ (0, 1), we choose

ν ≤ κ
4

γ(1−γ)

(
1 + Cm2+β∥b∥

L∞(B−β
∞,∞)

)− 4
γ(1−γ)

, (5.70)

which yields by circular argument

∥um,ν(t, ·)∥Cγ ≤ (1− κ)−1
(
t∥f∥L∞(Cγ) + [g]γ

+Cν
γ(1−γ)

4 m2+β∥b∥
L∞(B−β

∞,∞)
t
1+(1−γ) 2+γ

2γ Om(2t)(1 + ∥f∥L∞(Cγ))
)
.
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Finally, we also impose a given “small” κ̃ ∈ (0, 1),

ν ≤ κ̃
4

γ(1−γ)

(
Cm2+β∥b∥

L∞(B−β
∞,∞)

T
1+(1−γ) 2+γ

2γ Om(2T )(1 + ∥f∥L∞(Cγ))
)− 4

γ(1−γ)

= κ̃
4

γ(1−γ)

(
Cm2+β∥b∥

L∞(B−β
∞,∞)

T
2−γ2+γ

2γ (m1−γ(t∥f∥L∞(Cγ) + [g]γ))(1 + ∥f∥L∞(Cγ))

)− 4
γ(1−γ)

× exp
(
−

8m1+βT∥b∥
L∞(B−β

∞,∞)

γ(1− γ)

)
, (5.71)

which obviously implies condition (5.70) for κ = κ̃.
Under assumptions (5.70) and (5.71), we deduce for any (κ, κ̃) ∈ (0, 1)2

∥um,ν∥L∞(Cγ) ≤ (1− κ)−1(T∥f∥L∞(Cγ) + [g]γ + κ̃), (5.72)

the required Hölder control (4.1) is then established when κ, κ′ → 0 and (m, ν) → (+∞, 0) according
to conditions (4.2), up to a convergence argument developed in Section 5.5 below.

Let also notice the limit, up to selection of sub-sequence, can permute with the considered Hölder
norm by a Fatou property like, see for instance Theorem 2.25 in [BCD11].

5.3.7 Why the computations are compatible with the usual method of characteristics?

In this section, we explain some links between the upper-bounds in (4.1) stated in Theorem 1 with
the ones obtained by method of characteristics for the transport equation.

If b is constant, then the solution of the transport equation writes

u(t, x) = u0(x− bt) +

∫ t

0
f(s, x− b(t− s))ds,

which obviously satisfies inequalities (4.1).

If b is linear, namely replacing b by bx for a constant b ∈ R, we obtain that the associated flow,
introduced in (5.8), is

θs,τ (ξ) = ξ + b

∫ τ

s
θs̃,τ (ξ)ds̃, (5.73)

which is solved by
θs,τ (ξ) = ξe(τ−s)b.

Nonetheless, in this case the estimate (5.69) is not available any-more; the a priori controls of the
gradient stated in Lemma 1 do not work any-longer. That is to say that in a smooth framework, the
coefficient b has to be bounded, that is why we consider inhomogeneous Besov norm which is L∞

bounded for positive regularity.

If b is bounded and smooth, the solution of the transport equation is

u(t, x) = u0(θ
m
0,t(x)) +

∫ t

0
f(s, θms,t(x))ds.

The control in L∞ meet with (4.1). But it is clear that

∥∇u∥L∞ = ∥∇θm0,t∥L∞∥∇u0∥L∞ +

∫ t

0
∥∇θms,t∥L∞∥∇f∥L∞ds,
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also from the definition of the flow (5.8), and Grönwall’s lemma yields

∥∇θms,t∥L∞ ≤ exp
( ∫ τ

s
∥∇bm(s̃, ·)∥L∞ds̃

)
.

Therefore,

∥∇u∥L∞ ≤ exp
( ∫ t

0
∥∇bm(s̃, ·)∥L∞ds̃

)(
∥∇u0∥L∞ +

∫ t

0
∥∇f∥L∞ds

)
,

which does not match with the Hölder control (4.1) for the case γ = 1 or Hölder control by interpo-
lation.

This odd mismatch comes from the gap between the γ < 1 and the Lipschitz control which
can be seen in (5.69). Indeed, therein, if γ = 1 then there is no more negligible contribution of
exp

( ∫ t
0 ∥∇bm(s̃, ·)∥L∞ds̃

)
, and the analysis fall into the usual estimates by the method of character-

istics.

5.4 Another control of uniform norm

In this section, we provide another way to get uniform control without stochastic representation or
usual maximum principle; these computations lead some dependency on m overwhelmed by ν and
might be useful in other contexts.

For the L∞, control we choose the freezing point as for the diagonal regime, i.e. (τ, ξ) = (t, x).
The terms associated with the source functions are dealt easily:

|P̂ τ,ξgm(t, x)|
∣∣∣
τ=t,ξ=x

≤ ∥g∥L∞ , |Ĝτ,ξfm(t, x)|
∣∣∣
τ=t,ξ=x

≤ t∥f∥L∞ .

The remainder terms are controlled in a very similar way as previously in Section 5.2.4∣∣∣ ∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)
(
bm(s, θms,τ (ξ))− bm(s, y)

)
· ∇um,ν(s, y)dy ds

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤ 2C∥bm∥L∞(C1)∥∇um,ν∥L∞ sup
x∈Rd

∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)|y − θms,τ (ξ)|γdy ds

∣∣∣∣∣
τ=t,ξ=x

≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
∥∇um,ν∥L∞

∫ t

0

(
ν(t− s)

) γ
2 ds,

by (2.8), and we conclude by (5.32) that∣∣∣ ∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)
(
bm(s, θms,τ (ξ))− bm(s, y)

)
· ∇um,ν(s, y)dy ds

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤ COm(t)
m1+βt1+

γ
2

2 + γ
ν

γ
2 ∥b∥

L∞(B−β
∞,∞)

.

5.5 Compactness arguments

5.5.1 Mild vanishing viscous

In order to pass to the limit m→ +∞, ν → 0, according to the vanishing condition (4.2), we consider
a subsequence given by the usual Arzelà-Ascoli theorem. However, this former result is available
for uniform continuous function in a compact space. From the lack of smoothness, uniformly on
ν, in space of um,ν(t, ·) (only γ-Hölder continuous, γ < 1), we are stuck at a convergence in a
compact subset of Rd. For instance, the analysis performed in [Hon22] to get rid of the compactness
convergence criterion for quasi-linear equations does not work here as there is no hope to obtain any
strong formulation of the PDE (1.1).
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We do not succeed to obtain any positive regularity on t, which would imply dependency on b like
in the linear case (5.73); and so we cannot exploit uniform continuity in time to get a convergence of
a sub-sequence of um,ν in [0, T ]× Rd. Thus the convergence at any given time in all compacts set of
the mild vanishing viscous solution in Theorem 1.

Nevertheless, we are still able to include a truncation procedure into a weak formulation in order
to obtain a convergence in a distributional meaning and not a point-wise one as for the mild vanishing
viscous solution.

5.5.2 Truncation procedure

The method is highly inspired by the one in [Hon22], we also consider a smooth cut-off ϑy,R ∈ D
supported in a ball Bd(y,R) = {x ∈ Rd; |x− y| ≤ R}, y ∈ Rd and defined by

ϑy,R(x) = ϑy(
x

R
), (5.74)

where ϑy : Rd → [0, 1]d is function lying in C∞
0 (Rd,Rd) s.t.

ϑy(x) =

{
x, if |x− y| < 1,

0, if |x− y| > 2.

The corresponding truncated function is, for any (t, x) ∈ [0, T ]× Rd,

um,ν
y,R (t, x) := um,ν(t, ϑy,R(x)). (5.75)

We highlight the particular case
um,ν
x,R (t, x) = um,ν(t, x). (5.76)

The above truncation solution (5.75) naturally appears when we write a weak formulation of the
parabolic equation (2.11).

5.5.3 Weak solution of the parabolic approximating equation

For any smooth function φR supported on Bd(0, R), a d-ball of radius R > 0 and center (0, . . . , 0) ∈
Rd. We consider a weak formulation of the parabolic solution um,ν , for any (t, x) ∈ [0, T ]× Rd:∫ t

0

∫
Rd

{
− ∂tφR(s, y)u

m,ν(s, y) + φR(s, y)⟨bm(s, y),∇um,ν(s, y)⟩+ ν∆φR(s, y)u
m,ν(s, y)

}
dy ds

=

∫
Rd

φR(0, y)gm(y)dy −
∫
Rd

φR(t, y)u
m,ν(t, y)dy +

∫ t

0

∫
Rd

φR(s, y)fm(s, y)dy ds,

where in l.h.s. the limit of the first order term, ⟨bm(s, y),∇um,ν(s, y)⟩, has a priori no point-wise
limit neither in term of the usual distributional meaning of Schwartz. Indeed, as already enunciated
in Section 4.2, the usual distribution theory does not provide any interpretation of a product of
distributions, to get any limit result we have to thoroughly use the PDE.

By the cut-off definition, we equivalently have∫ t

0

∫
Rd

{
− ∂tφR(s, y)u

m,ν
0,R (s, y) + φR(s, y)⟨bm(s, y),∇um,ν

0,R (s, y)⟩+ ν∆φR(s, y)u
m,ν
0,R (s, y)

}
dy ds

=

∫
Rd

φR(0, y)gm(y)dy −
∫
Rd

φR(s, y)u
m,ν
0,R (s, y)dy +

∫ t

0

∫
Rd

φR(s, y)fm(s, y)dy ds.

(5.77)

Now, from compact argument developed in Section 5.5.1, we have that um,ν
0,R (s, ·) converges in Cγ

b (K,R
d),

K = Bd(0, R), towards a function u0,R(s, ·) when (m, ν) → (+∞, 0) and the condition (4.2) is satis-
fied. In other words, u0,R(s, ·) is a mild vanishing viscous solution of (1.1).
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5.5.4 Mild-weak solution of the transport equation

To get a mild-weak solution we have to pass to the limit in the weak formulation (5.77) of the mollified
parabolic equation (2.11). In equation (5.77), up to a sub-sequence selection, except for the first order
term φR(s, y)⟨b(s, y),∇um,ν

0,R (s, y)⟩, each contribution obviously has the good converge property by the
Arzelà-Ascoli theorem. In particular, from (5.4), we have

ν

∫ t

0

∫
Rd

∆φR(s, y)u
m,ν
0,R (s, y)dy ds

(4.2)−−−−−−−−−→
(m,ν)→(+∞,0)

0. (5.78)

To deal with the drift part, we write by integration by parts∫
Rd

⟨bm(t, y),∇um,ν
0,R (t, y)⟩φR(t, y)dy

=

∫
Rd

∇φR(t, y) · bm(t, y)um,ν
0,R (t, y)dy +

∫
Rd

φR(t, y)∇ · bm(t, y)um,ν
0,R (t, y)dy

=: B1 +B2. (5.79)

By the Besov duality property, see Proposition 1, we write

|B1| ≤ ∥bm∥
L∞(B−β

∞,∞)
∥∇φRu

m,ν
0,R ∥

L∞(Bβ
1,1)
, (5.80)

and
|B2| ≤ ∥∇ · bm∥

L∞(B−1−β
∞,∞ )

∥φRu
m,ν
0,R ∥

L∞(B1+β
1,1 )

. (5.81)

Control of ∥∇φRu
m,ν
0,R ∥

L∞(Bβ
1,1)

Let us prove that ∥∇φRu
m,ν
0,R ∥

L∞(Bβ
1,1)

is controlled uniformly in (m, ν). By the thermic represen-

tation of the Besov norms (2.4), we have

∥∇φRu
m,ν
0,R ∥

L∞(Bβ
1,1)

= ∥∇φRu
m,ν
0,R ∥L1 + ∥∇φRu

m,ν
0,R ∥

L∞(B̈β
1,1)

= ∥∇φRu
m,ν
0,R ∥L1 +

∫ 1

0

1

v
v1−

β
2

∫
Rd

∣∣∣ ∫
Rd

∂vhv(z − y)um,ν
0,R (t, y)∇φR(t, y)dy

∣∣∣dz dv.
The first contribution in the r.h.s. above is obviously bounded uniformly in (m, ν) by

∥∇φRu
m,ν
0,R ∥L1 ≤ ∥∇φR∥L1∥um,ν

0,R ∥L∞ ≤ C∥∇φR∥L1

(
T∥f∥L∞ + ∥g∥L∞

)
,

by uniform estimate (5.4).
For the second one, we need to deeply use the already known regularity of um,ν

0,R . By cancellation
and by triangular inequality, we obtain

∥∇φRu
m,ν
0,R ∥

L∞(B̈β
1,1)

≤
∫ 1

0

1

v
v1−

β
2

∫
Rd

∣∣∣ ∫
Rd

∂vhv(z − y) ·
{
[um,ν

0,R (t, y)− um,ν
0,R (t, z)]∇φR(t, y)

+um,ν
0,R (t, z)[∇φ(t, y)−∇φ(t, z)]

}
dy
∣∣∣dz dv

≤
∫ 1

0

1

v
v1−

β
2

∫
Rd

∣∣∣ ∫
Rd

∂vhv(z − y) ·
{
[um,ν

0,R (t, y)− um,ν
0,R (t, z)]∇φR(t, y)

+um,ν
0,R (t, z)(y − z) ·

∫ 1

0
D2φR(t, z + µ(y − z))dµ

}
dy
∣∣∣dz dv,
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by Taylor expansion. Next, with the exponential absorbing property (2.8),

∥∇φum,ν
0,R ∥

L∞(B̈β
1,1)

≤ C∥um,ν
0,R ∥L∞(Cγ)

∫ 1

0

1

v
v−

β
2

∫
Rd

∫
Rd

hC−1v(z − y)|y − z|γ |∇φR(t, y)|dy dz dv

+C∥um,ν
0,R ∥L∞

∫ 1

0

1

v
v−

β
2

∫
Rd

∫
Rd

hC−1v(z − y)|y − z|
∫ 1

0

∣∣D2φR(t, z + µ(y − z))
∣∣dµdy dz dv

≤ C∥um,ν
0,R ∥L∞(Cγ)∥∇φR∥L1

∫ 1

0

1

v
v

γ−β
2 dv + C∥um,ν

0,R ∥L∞∥D2φR∥L1

∫ 1

0

1

v
v

1−β
2 dv,

which is finite if β < γ.

Control of ∥φRu
m,ν
0,R ∥

L∞(B1+β
1,1 )

The analysis is similar as before, replacing β by 1 + β and ∇φR by φR:

∥φRu
m,ν
0,R ∥

L∞(B1+β
1,1 )

= ∥φRu
m,ν
0,R ∥L1 + ∥φRu

m,ν
0,R ∥

L∞(B̈1+β
1,1 )

.

We readily get

∥φRu
m,ν
0,R ∥L1 ≤ ∥φR∥L1∥um,ν

0,R ∥L∞ ≤ ∥φR∥L1

(
T∥f∥L∞ + ∥g∥L∞

)
,

and

∥φRu
m,ν
0,R ∥

L∞(B̈1+β
1,1 )

≤ C∥um,ν
0,R ∥L∞(Cγ)∥φR∥L1

∫ 1

0

1

v
v

γ−β−1
2 dv + C∥um,ν

0,R ∥L∞∥∇φR∥L1

∫ 1

0

1

v
v

−β
2 dv,

this is finite if 1 + β < γ ⇐⇒ β < −1 + γ. Let us carefully notice that if there is the incompressible
assumption ∇ · b = 0, then B2 = 0 and this former constraint disappears. Thus the different cases
considered in Theorem 1.

The Bolzano-Weierstrass theorem then yields the result.

5.5.5 Weak solution

The difficulty for the usual weak solution, here, is to prove that, up to a subsequence extraction,

lim
m→∞

∫
Rd

∫ T

0
⟨bm(t, y),∇um,ν

0,R (t, y)⟩φR(t, y)dy dt =

∫ T

0

∫
Rd

⟨b(t, y),∇u0,R(t, y)⟩φR(t, y)dy dt

=

∫ T

0

∫
Rd

⟨b(t, y),∇u(t, y)⟩φR(t, y)dy dt,

(5.82)

where b ∈ L∞([0, T ]; B̃−β
∞,∞(Rd,Rd)) is the drift of the initial Cauchy problem (1.1) and coincides with

the limit of bm in L∞([0, T ];B−β−ε
∞,∞ (Rd,Rd)), for any 0 < ε when m → ∞; also u(s, ·) ∈ Cγ

b (K,R),
K = Bd(0, R), is the limit of um,ν(s, ·), up to a subsequence selection possibly depending on the
current time s, in Cγ−ε̃

b (Rd,R) for any 0 < ε̃ < γ, see Section 5.5.1.

Let us recall that B̃−β
∞,∞ is the closure space of C∞

b in B−β
∞,∞, from Appendix Section G, we still

can take the regular sequence (bm)m≥1 defined in (5.2) to approximate b in L∞([0, T ];B−β−ε
∞,∞ (Rd,Rd)),

for any 0 < ε; whereas the considered solution u(s, ·) may depend on the choice of mollification. In
other words, we have:

lim
m→∞

∥bm − b∥
L∞(B−β−ε

∞,∞ )
+ lim

m→∞
∥∇ · bm −∇ · b∥

L∞(B−1−β−ε
∞,∞ )

= 0. (5.83)
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For all m > 0, t ∈ [0, T ], we write by integration by parts that∣∣∣ ∫
Rd

⟨bm(t, y),∇um,ν
0,R (t, y)⟩φR(t, y)dy −

∫
Rd

⟨b(t, y),∇u0,R(t, y)⟩φR(t, y)dy
∣∣∣

≤
∣∣∣ ∫

Rd

[bm − b](t, y)um,ν(t, y) · ∇φR(t, y)dy
∣∣∣+ ∣∣∣ ∫

Rd

b(t, y)[u− um,ν ](t, y) · ∇φR(t, y)dy
∣∣∣

+
∣∣∣ ∫

Rd

∇ · [bm − b](t, y)um,ν(t, y)φR(t, y)dy
∣∣∣+ ∣∣∣ ∫

Rd

∇ · b(t, y)[u− um,ν ](t, y) φR(t, y)dy
∣∣∣

=: B̃1 + B̃2 + B̃3 + B̃4. (5.84)

To deal with the first contribution, we aim to use (5.83). We have by the Besov duality result of
Proposition 1:

B̃1 ≤ ∥bm − b∥
L∞(B−β−ε

∞,∞ )
∥um,ν∇φR∥L∞(Bβ+ε

1,1 )
, (5.85)

it then remains to control ∥um,ν∇φR∥L∞(Bβ+ε
1,1 )

. Similar computations as in Section 5.5.4 yields that

∥um,ν∇φR∥L∞(Bβ+ε
1,1 )

is finite if β < γ − ε.

Also for the third term, which is null if ∇ · b = 0, we have that

B̃3 ≤ ∥∇ · bm −∇ · b∥
L∞(B−β−ε

∞,∞ )
∥um,νφR∥L∞(Bβ+ε

1,1 )
, (5.86)

is finite if β < −1 + γ − ε.
Hence, from (5.83), we obtain

B̃1
(4.2)−−−−−−−−−→

(m,ν)→(+∞,0)
0, and B̃3

(4.2)−−−−−−−−−→
(m,ν)→(+∞,0)

0. (5.87)

Now, let us handle with the second term in (5.84). We aim here to use the convergence of um,ν(s, ·)
towards u(s, ·) in the ball Bd(0, R).

Again by the Besov duality result of Proposition 1, we have:

B̃2 =
∣∣∣ ∫

Rd

b(t, y)[u− um,ν ](t, y) · ∇φR(t, y)dy
∣∣∣

≤ ∥b∥
L∞(B−β

∞,∞)
∥(um,ν − u)∇φR∥L∞(Bβ

1,1)
. (5.88)

By Arzelà-Ascoli theorem, we have

∥∇φR(u
m,ν − u)∥L∞ ≤ ∥∇φR∥L∞∥(um,ν − u)∥L∞

(4.2)−−−−−−−−−→
(m,ν)→(+∞,0)

0.

For the homogenous part of the Besov norm, we also mimic the analysis in the previous section
replacing um,ν by (um,ν − u), for any ε ∈ (0, γ):

∥(um,ν − u)∇φR∥L∞(B̈β
1,1)

≤ C∥(um,ν − u)∥L∞(Cγ−ε)

∫ 1

0

1

v
v−

β
2

∫
Rd

∫
Rd

hC−1v(z − y)|y − z|γ−ε|∇φR(t, y)|dy dz dv

+C∥(um,ν − u)∥L∞

∫ 1

0

1

v
v−

β
2

∫
Rd

∫
Rd

hC−1v(z − y)|y − z|
∫ 1

0

∣∣D2φR(t, z + µ(y − z))
∣∣dµdy dz dv

≤ C∥(um,ν − u)∥L∞(Cγ−ε)∥∇φR∥L1

∫ 1

0

1

v
v

γ−ε−β
2 dv + C∥(um,ν − u)∥L∞∥D2φR∥L1

∫ 1

0

1

v
v

1−β
2 dv,

which is finite as soon as β < γ− ε < 0, also by Arzelà-Ascoli theorem, we have the converging result

∥(um,ν − u)∥L∞(Cγ−ε)
(4.2)−−−−−−−−−→

(m,ν)→(+∞,0)
0. Therefore, we even get

B̃2
(4.2)−−−−−−−−−→

(m,ν)→(+∞,0)
0. (5.89)

41



The last contribution B̃4, null if ∇ · b = 0, is similar replacing ∇φR by φR and β by β + 1. Namely,
we have

B̃4 ≤ ∥∇b∥
L∞(B−1−β

∞,∞ )
∥(um,ν − u)φR∥L∞(B1+β

1,1 )

= ∥∇b∥
L∞(B−1−β

∞,∞ )
(∥(um,ν − u)φR∥L1 + ∥(um,ν − u)φR∥L∞(B̈1+β

1,1 )
), (5.90)

with
∥(um,ν − u)φR∥L1 ≤ ∥um,ν − u∥L∞∥φR∥L1 ,

and

∥(um,ν − u)φR∥L∞(B̈1+β
1,1 )

=

∫ 1

0

1

v
v1−

1+β
2

∫
Rd

∣∣∣ ∫
Rd

∂vhv(z − y)(um,ν − u)(t, y)φR(t, y)dy
∣∣∣dz dv

≤ C∥um,ν − u∥L∞(Cγ−ε)∥φR∥L1

∫ 1

0

1

v
v

γ−ε−1−β
2 dv + C∥um,ν − u∥L∞∥D2φR∥L1

∫ 1

0

1

v
v

−β
2 dv,

which is finite if β < −1 + γ − ε and by Arzelà-Ascoli theorem, we deduce

B̃4
(4.2)−−−−−−−−−→

(m,ν)→(+∞,0)
0. (5.91)

Hence, from (5.84), (5.87), (5.89) and (5.91) we deduce (5.82).

5.6 Control of ∥∂tu(t, ·)∥B−1+γ
∞,∞

If b ∈ L∞([0, T ];C γ̃(Rd,Rd)), 0 < 1 − γ < γ̃, we derive an upper-bound of ∥∂tu(t, ·)∥B−1+γ
∞,∞

by the

equation (1.1) and by para-product result. But first of all, let us precise why we have, point-wisely,
with the viscous condition (4.2),

lim
(m,ν)→(+∞,0)

ν∆um,ν(t, ·) = 0. (5.92)

Recalling that Lemma 2,

∥∇2um,ν(t, ·)∥L∞ ≤
(
m2−γ

(
t∥f∥L∞(Cγ)+[g]γ

)
+Ctm2−γ̃∥b∥

L∞(Bγ̃
∞,∞)

Om(t)
)
exp(tm1−γ̃∥b∥

L∞(Bγ̃
∞,∞)

).

(5.93)
Hence, for

ν ≪
(
m2−γ

(
T∥f∥L∞ + [g]γ

)
+ CTm2−γ̃∥b∥

L∞(Bγ̃
∞,∞)

Om(t)
)−1

exp(−Tm1−γ̃∥b∥
L∞(Bγ̃

∞,∞)
),

we deduce (5.92).
We are able to take the limit of equation (2.11), up to sub-sequence selection defined in the

Arzelà-Ascoli theorem, for any t ∈ (0, T ],

lim
(m,ν)→(+∞,0)

∂tu
m,ν(t, ·) = lim

(m,ν)→(+∞,0)
⟨bm(t, ·),∇um,ν(t, ·)⟩+ f(t, ·). (5.94)

But from para-product (4.5), we know that ⟨bm(t, ·),∇um,ν(t, ·)⟩ ∈ B−1+γ
∞,∞ (Rd,R), ∇um,ν(t, ·) being

in B−1+γ
∞,∞ , the result then follows.

6 Analysis of the parabolic equation

The previous analysis strongly relies on the vanishing result but seems to be incompatible with
the parabolic equation. We developed, here, a new technique based on a time decomposition trick,
detailed in Section 6.5 below.
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6.1 The types of solution to the Cauchy problem

6.1.1 Parabolic equation

For 0 < γ < 1, and for a given viscosity ν > 0, we define some solutions of the parabolic equation.

Definition 4 (mild solution). We say that u is a mild solution in L∞([0, T ];Cγ
b (R

d,R)
)
of equation

(1.1) if there is a sequence¶ (bm)m∈R+ in L∞([0, T ];C∞
b (Rd,Rd)) such that there is β ∈ R,

∀ε > 0, lim
m→+∞

∥bm − b∥
L∞([0,T ];B−β−ε

∞,∞ (Rd,Rd))
= 0, (6.1)

for any t ∈ [0, T ], there exists a sub-sequence of um,ν(t, ·)m∈R+ lying in Cγ
b (R

d,R) converging, for any
compact subset K ⊂ Rd, when m→ +∞, towards u(t, ·) ∈ Cγ

b (K,R) and satisfying, for any m ∈ R+,{
∂tu

m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,
(6.2)

where (fm, gm) −→
m→+∞

(f, g) in L∞([0, T ];Cγ
b (R

d,R)).

Let us now, recall the notion of usual weak solution.

Definition 5 (weak solution). A function u is a weak solution in L∞([0, T ];Cγ
b (R

d,R)
)
of equation

(1.1) if u is a mild solution such that for any function φ ∈ C∞
0 ([0, T ]× Rd,R):∫

Rd

{
φ(t, y)u(t, y) +

∫ t

0

{
− ∂tφ(s, y)u(s, y) + ⟨b(s, y),∇u(s, y)⟩φ(s, y) + νu(s, y)∆φ(s, y)

}
ds
}
dy

=

∫
Rd

φ(0, y)g(y)dy +

∫
Rd

∫ t

0
φ(s, y)f(s, y)ds dy.

(6.3)

Again, this formulation allows us to give a usual distributional meaning of the product ⟨b,∇u⟩.

6.2 Main results on the parabolic equation

When b lies in Hölder-Besov space, we succeed in obtaining the same regularity of the solution as for
f and g. The type of solution strongly depends on the regularity of b.

Theorem 2 (Rough parabolic equation in Hölder spaces). For β ∈ R∗ and 0 < γ < 1, be given.

For all b ∈ L∞([0, T ], B̃−β
∞,∞(Rd,Rd)), f ∈ L∞([0, T ];Cγ

b (R
d,R)) and g ∈ Cγ

b (R
d,R), there is a mild

solution u ∈ L∞([0, T ];Cγ
b (R

d,R)) of (1.1) satisfying

∥u∥L∞(Cγ) ≤ T∥f∥L∞(Cγ) + ∥g∥(Cγ),

∥u∥L∞ ≤ T∥f∥L∞ + ∥g∥L∞ . (6.4)

Moreover, if β < γ and ∇ · b = 0 then the solution u is also a weak solution.

We do not consider the positive regular case, i.e. β < 0, whose control is well-known, the Schauder
estimates are even in force, see [Fri64].

Remark 7. The control (6.4) exactly matches with the Hölder estimates of the solution of the heat
equation, independently of the dimension, and above all of b. As consequence, the mild solution has
no condition on β, there is to say we define a solution beyond the Peano condition, β > −1, developed
in Section 1.3.1.

¶We have such a sequence (bm)m≥0, if b ∈ L∞([0, T ]; B̃−β
∞,∞(Rd,R)).
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In the incompressible case, ∇· b, the condition β < γ < 1 corresponds to the Peano’s heuristic‖ in
Section 1.3.1. However, we fail to obtain uniqueness of the solution out of the usual Hölder continuous
case (i.e. β < 0) handled in [Fri64], for more information see Remark 9 further.

The case β = 0 can be considered, replacing the condition b ∈ L∞([0, T ], B̃0
∞,∞(Rd,Rd)) by b ∈

L∞([0, T ], L∞(Rd,Rd)). Considering the Besov space B0
∞,∞ would yield some refinements involving

some logarithm corrections.
Again, the case β < 0 is the usual framework, see for instance [Fri64], [Kry96].

An interesting extension to this result would be to adapt our work for f = b corresponding to
the Zvonking transform which is crucial to deal with stochastic differential equations. The difficulty
is that the consider Gaussian kernel proxy, in our analysis, does depend on b and the parameter of
mollification, so the control of the source function become unclear in a rough framework.

6.3 Proof of Theorem 2

The beginning of the analysis for the parabolic case is similar as for the transport equation performed
in Section 5, except that the goal of the regularisation is different. We aim here to raise the time
contribution instead of the viscosity one. This allows us to conclude, thanks to a time cutting trick,
without any vanishing viscosity.

Let us recall the Duhamel formula (5.21),

|um,ν(t, x)− um,ν(t, x′)|
≤ |Ĝτ,ξfm(t, x)− Ĝτ,ξ′fm(t, x′)|+ |P̂ τ,ξgm(t, x)− P̂ τ,ξ′gm(t, x′)|

+
∣∣∣ ∫ t

0

∫
Rd

p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)] · ∇um,ν(s, y)dy ds

−
∫ t

0

∫
Rd

p̂τ
′,ξ′(s, t, x, y)[bm(s, θms,τ ′(ξ

′))− bm(s, y)] · ∇um,ν(s, y)dy ds
∣∣∣

=: |Ĝτ,ξfm(t, x)− Ĝτ,ξ′fm(t, x′)|+ |P̂ τ,ξgm(t, x)− P̂ τ,ξ′gm(t, x′)|+ |Rτ,ξ,ξ′(t, x, x′)|. (6.5)

Here, we again want to calibrate properly the parameters (α1, α2) ∈ R2 in the off-diagonal regime,
|x− x′| > να1(t− s)α2 ⇔ s > t0 where we recall that the cut locus time is defined by

t0 = t− ν
−α1

α2 |x− x′|
1
α2 ; (6.6)

also the diagonal regime happens if |x− x′| ≤ να1(t− s)α2 ⇔ s ≤ t0.
We specify that the parameters (α1, α2) will be different as the ones tailored in Section 5.

6.3.1 Diagonal regime

Let us define the remainder term without integration by parts, unlike in identity (5.22),

Rτ,ξ,ξ′

A (t, x, x′)

:=

∫ t0

0

∫
Rd

[
p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)] · ∇um,ν(s, y)

−p̂τ ′,ξ′(s, t, x′, y)[bm(s, θms,τ (ξ
′))− bm(s, y)] · ∇um,ν(s, y)

]
dy ds (6.7)

=: Ĝτ,ξ
0,t0

{(
bm(·, θm·,τ (ξ))− bm

)
· ∇um,ν

}
(t, x)− Ĝτ,ξ′

0,t0

{(
bm(·, θm·,τ (ξ′))− bm

)
· ∇um,ν

}
(t, x′).

Unlike in Section 5.2, we do not proceed with an integration by parts which seems to useless as
detailed therein.

‖The true condition is β < 1, but this is the case, here, as γ which can be arbitrarily close to 1.
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A simple change of variable gives

|Rτ,ξ,ξ′

A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t0

0

∫
Rd

p̂τ,ξ(s, t, 0, y)
{(
bm(s, θms,τ (ξ))− bm(s, x+ y)

)
· ∇um,ν(s, x+ y)

−
(
bm(s, θms,τ (ξ

′))− bm(s, x′ + y)
)
· ∇um,ν(s, x′ + y)

}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

,

also

|Rτ,ξ,ξ′

A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t0

0

∫
Rd

p̂τ,ξ(s, t, 0, y)
{
bm(s, θms,τ (x)) ·

(
∇um,ν(s, x+ y)−∇um,ν(s, x′ + y)

)
+bm(s, x′ + y) · ∇um,ν(s, x′ + y)− bm(s, x+ y) · ∇um,ν(s, x+ y)

}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

,

and finally

|Rτ,ξ,ξ′

A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

=
∣∣∣ ∫ t0

0

∫
Rd

p̂τ,ξ(s, t, 0, y)
{
bm(s, θms,τ (x)) ·

(
∇um,ν(s, x+ y)−∇um,ν(s, x′ + y)

)
+
(
bm(s, x′ + y)− bm(s, x+ y)

)
· ∇um,ν(s, x′ + y)

−bm(s, x+ y) ·
(
∇um,ν(s, x+ y)−∇um,ν(s, x′ + y)

)}
dy ds

∣∣∣∣∣∣∣∣
τ=t,ξ=ξ′=x

.

Hence, we readily derive that

|Rτ,ξ,ξ′

A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|∥bm∥L∞(C1
b )
∥∇um,ν∥L∞(C1

b )

∫ t0

0
ds. (6.8)

Recalling that we have to use the a priori controls of the gradient and the Hessian in Lemma 2,

∥um,ν(t, ·)∥C1 ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
= Om(t),

∥∇2um,ν(t, ·)∥L∞ ≤ Cm2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

) = O(2)
m (t). (6.9)

From the definition of the diagonal regime, |x− x′| ≤ |x− x′|γνα1(1−γ)(t− s)(1−γ)α2 , we deduce

|Rτ,ξ,ξ′

A (t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ C|x− x′|γ∥b∥
L∞(B−β

∞,∞)
m1+β(Om(t) +O(2)

m (t))

∫ t0

0
να1(1−γ)(t− s)(1−γ)α2ds. (6.10)

As annunciated, we aim to get positive time contribution inside the time integral, namely from the
previous control, we suppose that

(1− γ)α2 > 0 ⇔ γ < 1 and α2 > 0. (6.11)

We again see the impossibility to consider the Lipschitz case, γ = 1.
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6.3.2 Off-diagonal regime

In this case, x and x′ are supposed to be “far away” from each other, then we pick ξ = x and ξ′ = x′.
The associated remainder terms is defined by

Rτ,ξ,ξ′

Ac (t, x, x′)

:= Rτ,ξ,ξ′(t, x, x′)−Rτ,ξ,ξ′

A (t, x, x′)

=

∫ t

t0

∫
Rd

[
p̂τ,ξ(s, t, x, y)

(
bm(s, θms,τ (ξ))− bm(s, y)

)
· ∇um,ν(s, y)

−p̂τ ′,ξ′(s, t, x′, y)
(
bm(s, θms,τ (ξ

′))− bm(s, y)
)
· ∇um,ν(s, y)

]
dy ds (6.12)

=: Ĝτ,ξ
t0,t

{(
bm(·, θm·,τ (ξ))− bm

)
· ∇um,ν

}
(t, x)− Ĝτ,ξ′

t0,t

{(
bm(·, θm·,τ (ξ′))− bm

)
· ∇um,ν

}
(t, x′).

The analysis is direct by triangular inequality

|Rτ,ξ,ξ′

Ac (t, x, x′)|
∣∣
τ=t,ξ=x,ξ′=x′

≤ 2C∥bm∥L∞(C1)∥um,ν∥L∞(C1) sup
x∈Rd

∫ t

t0

∫
Rd

p̄t,x(s, t, x, y)|y − θms,t(x)|dy ds,

the absorbing property of the exponential (2.8) gives

|Rτ,ξ,ξ′

Ac (t, x, x′)|
∣∣
τ=t,ξ=x,ξ′=x′

≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
Om(t)

∫ t

t0

(
ν(t− s)

) 1
2ds

≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
Om(t)

∫ t

t0

ν
1
2 (t− s)

1−ε
2 ν

−α1ε
2α2 |x− x′|

ε
2α2 ds, (6.13)

for a given 0 < ε < 1, and because the off-diagonal regime is in force, |x− x′| ≥ να1(t− s)α2 .
The solution um,ν is supposed to be γ-Hölder then

γ =
ε

2α2
⇒ ε = 2α2γ > 0.

Also, we have to suppose that ε < 1 (for positive time contribution purpose) which implies

α2 <
1

2γ
. (6.14)

Let us consider equality between the two regimes from (6.10) and (6.13), i.e.

(1− γ)α2 =
1− 2α2γ

2
⇔ α2 =

1

2
<

1

2γ
, (6.15)

which is exactly the parabolic scale, and also

ε = γ.

This is another way to see the difficulty to get a Lipschitz control, in our framework, because ε has
to be strictly lower than 1.

We then conclude

|Rτ,ξ,ξ′(t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
|x− x′|γ(Om(t) +O(2)

m (t))

∫ t

0
(να1(1−γ) + ν

1
2
−α1γ)(t− s)

1−γ
2 ds.
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Let us also consider the equality of the exponent of ν,

α1(1− γ) =
1

2
− α1γ ⇔ α1 =

1

2
.

We retrieve the usual parabolic scale for α1 and α2. We deduce,

|Rτ,ξ,ξ′(t, x, x′)|
∣∣
τ=t,ξ=ξ′=x

≤ Cm1+β∥b∥
L∞(B−β

∞,∞)
|x− x′|γ(Om(t) +O(2)

m (t))

∫ t

0
ν

1−γ
2 (t− s)

1−γ
2 ds.

(6.16)

6.4 Adapting the controls of the extra contributions

We have to change the parameters (α1, α2) into (5.59) and (5.65), which gives

∣∣∣[P̂ τ,ξ′

t0
um,ν(t0, ·)](t, x′)− [P̂ τ,ξ̃′

t0
um,ν(t0, ·)](t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

≤ |x− x′|γm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2 (t− t0)

(1−γ)
2

+1 exp
(
∥bm∥L∞(C1)t

)
, (6.17)

and ∣∣∣Ĝτ,ξ′

0,t0
fm(t, x′)− Ĝτ,ξ̃′

0,t0
fm(t, x′)

∣∣∣∣∣∣∣∣
(τ,ξ′,ξ̃′)=(t,x′,x)

(6.18)

≤ |x− x′|γm2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β
∞,∞)

exp
(
m1+β∥b∥

L∞(B−β
∞,∞)

t
) ∫ t0

0

∫ t

s

ν
1−γ
2 (t− t0)

(1−γ)
2

2
ds̃ ds.

6.4.1 Gathering the controls

To put in a nutshell, gathering all the previous estimates (5.23), (5.24), (6.16), (6.17), (6.18) into
(5.62)

∥um,ν(t, ·)∥Cγ

≤ t∥f∥L∞(Cγ) + [g]γ

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))

∫ t

0
ν

1−γ
2 (t− s)

1−γ
2 ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2 (t− t0)

(1−γ)
2

+1 exp
(
∥bm∥L∞(C1)t

)
(6.19)

+m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β
∞,∞)

exp
(
m1+β∥b∥

L∞(B−β
∞,∞)

t
) ∫ t

0

∫ t

s

ν
1−γ
2 (t− t0)

(1−γ)
2

2
ds̃ ds,

with

Om(t) =
(
t∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
≤ C

(
m1−γ(t∥f∥L∞(Cγ) + [g]γ)

)
exp

(
m1+βt∥b∥

L∞(B−β
∞,∞)

)
.

Now, the idea is to make negligible the terms involving positive time contribution in the time integral.

6.5 The right control the Hölder modulus: the time cutting trick

We cut the Cauchy problem in small intervals of [0, T ], and we see, from computations below, that
the first order term bm∆ · ∇um,ν and the extra terms are negligible when the size of the time intervals
goes to 0.
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Let n ∈ N, and for each k ∈ [[0, n]],

τk :=
k

n
T,

we also denote, for all x ∈ R3, k ∈ [[0, n− 1]] and t ∈ (τk, τk+1],{
um,ν
k+1(t, x) := um,ν(t, x),

um,ν
1 (0, x) := gm(x).

The associated Cauchy problems write

If k ∈ [[1, n− 1]]{
∂tu

m,ν
k+1(t, x) + ⟨bm,∇um,ν

k+1⟩(t, x) = ν∆um,ν
k+1(t, x) + fm(t, x), t ∈ (τk, τk+1]

um,ν
k+1(τk, x) = um,ν

k (τk, x),

if k = 0 {
∂tu

m,ν
1 (t, x) + ⟨bm,∇um,ν

1 ⟩(t, x) = ν∆um,ν
1 (t, x) + fm(t, x), t ∈ (0, τ1),

um,ν
1 (0, x) = gm(x).

Using the Duhamel formulation (5.11) around the consider heat like equation, we get for any t ∈
(τk, τk+1], if k ∈ [[1, n− 1]],

um,ν
k+1(t, x) = P̂ τ,ξ

τk
um,ν
k (t, x) + Ĝτ,ξ

τk
fm(t, x) + Ĝτ,ξ

τk

(
⟨bm∆ [τ, ξ],∇um,ν

k ⟩
)
(t, x), (6.20)

and if k = 0,

um,ν
1 (t, x) = P̂ τ,ξ

0 gm(t, x) + Ĝτ,ξ
0 fm(t, x) + Ĝτ,ξ

0

(
⟨bm∆ [τ, ξ],∇um,ν

1 ⟩
)
(t, x).

Next, we use the corresponding Hölder control (6.19), including the extra contributions coming from
the cut locus argument,

∥um,ν
k+1(t, ·)∥Cγ

≤
∫ t

τk

∥f(s, ·)∥Cγds+ [um,ν
k (τk, ·)]γ

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))

∫ t

τk

ν
1−γ
2 (t− s)

1−γ
2 ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2 (t− t0)

(1−γ)
2

+1 exp
(
∥bm∥L∞(C1)t

)
(6.21)

+m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β
∞,∞)

exp
(
m1+β∥b∥

L∞(B−β
∞,∞)

t
) ∫ t

τk

∫ t

τk

ν
1−γ
2 (t− t0)

(1−γ)
2

2
ds̃ ds.

Let us carefully point out that we can suppose that (t − t0) ≤ (t − τk), otherwise there is no off-
diagonal regime and so no need to use the cut locus technique with the extra terms. Hence, recalling
that τk+1 − τk = T

n ,

∥um,ν
k+1(t, ·)∥Cγ

≤
∫ t

τk

∥f(s, ·)∥Cγds+ [um,ν
k (τk, ·)]γ

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ t

τk

ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
(t− τk) exp

(
∥bm∥L∞(C1)t

)
(6.22)

+Cν
1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
(t− τk)

(1−γ)
2

+1

∫ t

τk

ds.

48



For any t ∈ [0, T ], let κn(t) = ⌊ntT ⌋ ∈ [[0, n]], such that τκn(t) ≤ t < τκn(t)+1, and iterating the above
inequality,

∥um,ν(t, ·)∥Cγ

≤ ∥g∥Cγ +

∫ t

tκn(t)

∥f(s, ·)∥Cγds

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ t

tκn(t)

ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
(t− tκn(t)) exp

(
∥bm∥L∞(C1)t

)
+Cν

1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
(t− tκn(t))

(1−γ)
2

+1

∫ t

τk

ds

+

κ(t)−1∑
k=0

{∫ τk+1

τk

∥f(s, ·)∥Cγds

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ τk+1

τk

ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
(τk+1 − τk) exp

(
∥bm∥L∞(C1)t

)
+Cν

1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)
(τk+1 − τk)

(1−γ)
2

+1

∫ τk+1

τk

ds
}
.

By Chasles equality and by telescopic sum,

∥um,ν(t, ·)∥Cγ

≤ ∥g∥Cγ +

∫ t

0
∥f(s, ·)∥Cγds

+Cm1+β∥b∥
L∞(B−β

∞,∞)
(Om(t) +O(2)

m (t))ν
1−γ
2

(T
n

) 1−γ
2

∫ t

0
ds

+Cm1+βOm(t)∥b∥
L∞(B−β

∞,∞)
ν

1−γ
2

(T
n

) 1−γ
2
t exp

(
∥bm∥L∞(C1)t

)
+Cν

1−γ
2 m2+β−γ∥f∥L∞(Cγ)∥b∥L∞(B−β

∞,∞)
exp

(
m1+β∥b∥

L∞(B−β
∞,∞)

t
)(T
n

) (1−γ)
2

+1
∫ t

0
ds.

The l.h.s. does not depend on n, then we are able to pass to the limit n→ +∞,

∥um,ν(t, ·)∥Cγ ≤ ∥g∥Cγ +

∫ t

0
∥f(s, ·)∥Cγds. (6.23)

6.6 Another control of uniform norm

By a similar way as for the Hölder control performed in the previous section, by Duhamel formula
(6.20), after choosing (τ, ξ) = (t, x), we get

∥um,ν
k+1(t, ·)∥L∞ ≤ ∥um,ν

k (tk, ·)∥L∞ +

∫ t

tk

∥f(s, ·)∥L∞ds+ C∥bm∥L∞(C1)∥∇u
m,ν
k ∥L∞

∫ t

tk

(t− s)
1
2ds.

Iterating this inequality,

∥um,ν∥L∞ ≤ ∥g∥L∞ +

∫ T

0
∥f(s, ·)∥L∞ds+ C

T
3
2

n
1
2

∥bm∥L∞(C1)∥∇um,ν∥L∞ .
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We obviously deduce when n→ +∞, the following estimate,

∥um,ν∥L∞ ≤ ∥g∥L∞ +

∫ T

0
∥f(s, ·)∥L∞ds. (6.24)

In fine, the time cutting trick allows to retrieve the powerful uniform estimate given by Feynman-Kac
formula or usual maximum principle method.

7 Second result for the transport equation

From the previous analysis based on a time cutting trick, we are able to derive uniqueness of selection
principle for the transport equation, defined below.

Definition 6 (Uniqueness). There is a unique solution of (1.1) if for two solutions um,ν and ūm,ν̄ of{
∂tu

m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν∆um,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

um,ν(0, x) = gm(x), x ∈ Rd,

and respectively{
∂tū

m,ν̄(t, x) + ⟨b̄m(t, x),∇ūm,ν̄(t, x)⟩ − ν̄∆ūm,ν̄(t, x) = fm(t, x), (t, x) ∈ (0, T ]× Rd,

ūm,ν̄(0, x) = gm(x), x ∈ Rd,

for ν, ν̄ > 0, with

∀ε > 0, lim
m→+∞

∥bm − b∥
L∞([0,T ];B−β−ε

∞,∞ (Rd,Rd))
+ lim

n→+∞
∥b̄n − b∥

L∞([0,T ];B−β−ε
∞,∞ (Rd,Rd))

= 0, (7.1)

converging, up to sub-sequence selection, towards two Hölder continuous solutions u, ū, when (m, ν, ν̄) →
(+∞, 0, 0), then u = ū.

7.1 Statement for the transport equation

Theorem 3 (Rough transport equation in Hölder spaces). For β ∈ R∗ and 0 < γ < 1 be given.

For all b ∈ L∞([0, T ], B̃−β
∞,∞(Rd,Rd)), f ∈ L∞([0, T ];Cγ

b (R
d,R)) and g ∈ Cγ

b (R
d,R), there is a mild

vanishing viscosity solution u ∈ L∞([0, T ];Cγ
b (R

d,R)) of (1.1) satisfying

∥u∥L∞(Cγ) ≤ T∥f∥L∞(Cγ) + ∥g∥(Cγ).

∥u∥L∞ ≤ T∥f∥L∞ + ∥g∥L∞ . (7.2)

i) Incompressibility. If β < γ and ∇ · b = 0 then the solution u is also a weak and a mild-weak
solution.

ii) Positive regularity. If β < −1 + γ, namely if b ∈ L∞([0, T ];C γ̃
b (R

d,Rd)), γ̃ = −β > −1 + γ, the
solution u is also a weak solution and if we also suppose that

ν∥∇2gm∥L∞ + ν
γ
2m1−γ̃ ≪ 1, (7.3)

then ∂tu(t, ·) ∈ B−1+γ
∞,∞ (Rd,R), for any t ∈ (0, T ].

iii) Greater regularity. If γ̃ = −β > 1
1+γ , and if

ν∥∇2gm∥L∞ +m−γ̃+1−γ̃ν
γ−1
2 +m1−γ̃ν

γ
2 ≪ 1, (7.4)

the solution is unique∗∗.
∗∗Namely the limit solution does not depend on the choice of sequence (m, ν) and on the way to mollify b.
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Remark 8. There is still no constraint on b for the mild vanishing viscous solution, we observe an
“infinite regularisation”. The two other types of solutions requires more constraints on b.

We even obtain uniqueness for the Greater regularity case, we use a kind of regularisation by
turbulence which makes negligible the second order term. The condition on g means that the initial
function has to be smooth enough such that ν∥∇2gm∥L∞ is negligible, obvious if g ∈ C2(Rd,R). Again,
this a positive answer to the question (Q3) in [CCS20], but we fail to consider uniqueness in a rough
(negative regularity) case, see Remark 9 further.

In this Hölder case, the product ⟨b,∇u⟩ falls into the usual case of the para-product by the Bony’s
mircolocal analysis [Bon81]. In the negative regularity case, we again obtain a challenging result on
the distribution product.

Except for the control of the time derivative and for uniqueness, there is no condition on the
vanishing viscosity unlike in Theorem 1. This is due to the possibility to use the time decomposition
trick which allows to get estimates independent on b.

7.2 Uniqueness for transport equation

Let us insist that uniqueness of vanishing viscous solution does not mean uniqueness of usual solution.
Indeed, this question arises for the uniqueness of the limits of any sub-sequence of (um,ν)m,ν≥0 and for
the non-dependency of the limit on the regularisation procedure; also the smooth selection principle
established here does not depend on the choice of the vanishing sequence (ν).

To get any point-wise uniqueness, we naturally suppose that β < 0 which means that b is γ̃-Hölder
continuous in space, γ̃ = −β.

Let us suppose that there are two vanishing viscous solutions u and ū of (1.1) satisfying estimates
(7.2). We then consider the associated mollified version (um,ν)m≥0 and (ūm,ν̄)m≥0 solutions, for any
x ∈ Rd, to {

∂tu
m,ν(t, x) + ⟨bm(t, x),∇um,ν(t, x)⟩ − ν̄∆um,ν(t, x) = fm(t, x), t ∈ [0, T ),

um,ν(0, x) = gm(x),
(7.5)

where bm is a mollified version of b as in (5.2) by a convolution with the Gaussian mollifier ρm, and{
∂tū

m,ν̄(t, x) + ⟨b̄m(t, x),∇ūm,ν̄(t, x)⟩ − ν̄∆ūm,ν̄(t, x) = fm(t, x), t ∈ [0, T ),

ūn(0, x) = gm(x),
(7.6)

where b̄m is a mollified version of b which is potentially defined differently as in (5.2), and such that

∀0 < ε < 1, lim
n→+∞

∥b̄m − b∥L∞([0,T ];C−β−ε(Rd,Rd)) = 0. (7.7)

From the linearity of the equations, we then derive that Um := um,ν − ūm,ν̄ solves the following
Cauchy problem for any (t, x) ∈ [0, T )× Rd:{

∂tUm(t, x) + ⟨b̄m,∇Um⟩(t, x)− ν̄∆Um(t, x) = (ν − ν̄)∆um,ν(t, x)− ⟨[bm − b̄m],∇um,ν⟩(t, x),
Um(0, x) = 0.

(7.8)
By uniform control (5.4), we directly derive that

∥Um(t, ·)∥L∞ ≤
∫ t

0
∥⟨[bm − b̄m],∇um,ν⟩(s, ·)∥L∞ds+

∫ t

0
(ν − ν̄)∥∆um,ν(s, ·)∥L∞ds

≤ T∥bm − b̄m∥L∞∥∇um,ν∥L∞ + T |ν − ν̄|∥∆um,ν∥L∞ . (7.9)

It is clear that if b is γ̃-Hölder continuous then ∥bm − b̄m∥L∞ ≤ Cm−γ̃ . To take advantage of the
convergence of ∥bm − b̄m∥L∞ towards 0, we need to use other a priori controls.
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Lemma 4. If um,ν is solution of (7.5), then, for any (t, x) ∈ [0, T ]×Rd, we get the gradient estimate

|∇um,ν(t, x)| ≤ m1−γ
(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
+ C∥bm∥L∞(C1)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ−1
2 t

γ+1
2 ,

and he Hessian estimate

|∇2um,ν(t, x)|

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+ C∥bm∥L∞(C1)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ
2
−1t

γ
2 .

The proof is deferred in Appendix Section C.

Hence,

∥Um(t, ·)∥L∞

≤ Tm−γ̃

(
m1−γ(t∥f∥L∞(Cγ) + ∥g∥Cγ ) + Cm1−γ̃∥b∥L∞(Cγ̃)(t∥fm∥L∞(Cγ) + ∥gm∥Cγ )ν

γ−1
2 t

γ+1
2

)
+T |ν − ν̄|

(
(Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞) + C∥bm∥L∞(C1)(t∥f∥L∞(Cγ) + ∥g∥Cγ )ν

γ
2
−1t

γ
2

)
.

From this estimate, to prove uniqueness, we need to consider

m1−γ−γ̃ + ν∥∇2gm∥L∞ +m−γ̃+1−γ̃ν
γ−1
2 +m1−γ̃ν

γ
2 ≪ 1, (7.10)

the first and the third term are indeed negligible if γ̃ > max(1− γ, 12).
We also write for the two last terms,

ν
γ−1
2 ≪ m−1+2γ̃ , and m1−γ̃ ≪ ν−

γ
2 .

Combining the two terms, we get

m1−γ̃ ≪ ν−
γ
2 ≪

(
m

2(−1+2γ̃)
1−γ

) γ
2 = m

γ(−1+2γ̃)
1−γ .

Hence, we have to suppose that

1− γ̃ <
γ(−1 + 2γ̃)

1− γ
.

This is equivalent to
1− γ̃ − γ + γγ̃ < γ(−1 + 2γ̃),

and
1 < γ̃γ + γ̃ = γ̃(1 + γ),

thus the condition γ̃ > 1
1+γ > max(1− γ, 12) of Theorem 3.

Remark 9. We fail to get uniqueness for negative Besov regularity of b. Indeed, from the analysis
performed in Section 6.5, and because we do not differentiate Um in order to take unsuccessfully take
advantage of Grönwall’s lemma, we need to consider the term by Besov duality

∥∇p̃(s, t, x, ·)Um(s, ·)∥
B̈β

1,1
=

∫ 1

0
v−1v1−

β
2

∫
Rd

∣∣∣ ∫
Rd

∂vhv(z − y)∇p̃(s, t, x, y)Um(s, y)dy
∣∣∣dz dv

≤ C∥Um(s, ·)∥L∞

∫ 1

0
v−1v−

β
2 [ν(t− s)]−

1
2dv,

which is finite if only β < −1, that means that b has to be Lipschitz continuous.
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7.3 Control of ∥∂tu(t, ·)∥B−1+γ
∞,∞

Like in Section 5.6, we need to get

lim
(m,ν)→(+∞,0)

ν∆um,ν(t, ·) = 0.

Because, now, we do not have to suppose any exponential convergence of ν unlike in (4.3) in Theorem
1, we use the a priori estimates of Lemma 4,

|∇2um,ν(t, x)|

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+ C∥bm∥L∞(C1)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ
2
−1t

γ
2 .

In other words, for
ν∥∇2gm∥L∞ +m1−γ̃ν

γ
2 ≪ 1,

and by para-product like in Section 5.6 ⟨bm(t, ·),∇um,ν(t, ·)⟩ ∈ B−1+γ
∞,∞ (Rd,R), we deduce ∂um,ν(t, ·) ∈

B−1+γ
∞,∞ (Rd,R).

8 Inviscid Burgers’ equation

The controls (4.1) of the vanishing viscous solution of the PDE (1.1) being independent on the first
order term b, we can expect to obtain some fixed-point argument to consider that b being the solution
u itself in dimension 1††.

Such a Cauchy problem thus defined is called the inviscid Burgers’ equation,{
∂tu(t, x) + u(t, x)∂xu(t, x) = f(t, x), (t, x) ∈ R+ × R,
u(0, x) = g(x), x ∈ R.

(8.1)

For more information about the Burgers’ equation and the corresponding turbulence phenomenon,
we refer to the recent book [BK21].

8.1 Statement about the Inviscid Burgers’ equation

We obtain a different notion of uniqueness for this equation because the convergence of the mollified
first order term, being the solution itself, is more intricate comparing with the transport equation
case.

Definition 7 (Turbulent uniqueness). There is a turbulent unique solution if there are two solutions
um,ν and um,ν̄ of{

∂tu
m,ν(t, x) + um,ν

m (t, x)∂xu
m,ν(t, x)− ν∂2xxu

m,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× R,
um,ν(0, x) = gm(x), x ∈ R,

(8.2)

and respectively{
∂tu

m,ν̄(t, x) + um,ν̄
m (t, x)∂xu

m,ν̄(t, x)− ν̄∂2xxu
m,ν̄(t, x) = fm(t, x), (t, x) ∈ (0, T ]× R,

um,ν̄(0, x) = gm(x), x ∈ R,
(8.3)

for ν, ν̄ > 0, and for any (t, x) ∈ [0, T ] × R, where um,ν
m and um,ν̄

m stand respectively for a mollified
version of um,ν and um,ν̄ , such that, for any (t, x) ∈ [0, T ]× R,

∀ε > 0, lim
n→+∞

∥um,ν
n − um,ν∥L∞([0,T ];Cγ−ε

b ) = lim
n→+∞

∥um,ν̄
n − um,ν̄∥L∞([0,T ];Cγ−ε

b ) = 0,

††It is possible to adapt the analysis for a more general dimension d ≥ 1 by a reformulation of the product
⟨u(t, x),∇u(t, x)⟩.
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and,
|um,ν

m (t, x)− um,ν̄
m (t, x)| ≤ |um,ν̄(t, x)− um,ν̄(t, x)|, (8.4)

converging, up to sub-sequence selection, towards two Hölder continuous solutions u, ū, when (m, ν, ν̄) →
(+∞, 0, 0) then u = ū.

The last condition (8.4) simply means that the mollification procedure behaves like a convolution
with a smooth kernel (like performed in (5.2)).

Let us insist that the difference with the uniqueness introduced in Definition 6 is that the consid-
ered regularisation procedure for the first order terms um,ν and um,ν̄ is the same in equations (8.2)
and (8.3); this explains the definition (8.4).

In particular, uniqueness introduced in Definition 6 (for the transport equation) yields turbulent
uniqueness. We detail in Remark 12 why we have to handle with such a turbulent uniqueness or
the viscous uniqueness, defined below, instead of the classical uniqueness‡‡ for the inviscid Burgers’
equation.

Definition 8 (Viscous uniqueness). There is a viscous unique solution if there are two solutions um,ν

and um,ν̄ of{
∂tu

m,ν(t, x) + um,ν
m (t, x)∂xu

m,ν(t, x)− ν∂2xxu
m,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× R,

um,ν(0, x) = gm(x), x ∈ R,
(8.5)

and respectively{
∂tū

m,ν(t, x) + ūm,ν
m (t, x)∂xū

m,ν(t, x)− ν∂2xxū
m,ν(t, x) = fm(t, x), (t, x) ∈ (0, T ]× R,

ūm,ν(0, x) = gm(x), x ∈ R,
(8.6)

for ν > 0, with

∀ε > 0, lim
n→+∞

∥um,ν
n − um,ν∥L∞([0,T ];Cγ−ε

b ) = lim
n→+∞

∥ūm,ν
n − ūm,ν∥L∞([0,T ];Cγ−ε

b ) = 0,

converging, up to sub-sequence selection, towards two Hölder continuous solutions u, ū, when (m, ν, ν̄) →
(+∞, 0, 0) then u = ū.

Importantly, the above equations have the same viscosity ν > 0, but the mollification procedure of
the first order coefficient may be different. This uniqueness definition is, somehow, the complementary
of the turbulent uniqueness in the usual uniqueness introduced in Definition 6.

Replacing b by u in the different definitions of solution in Section 6.1, we establish the last result
of this paper.

Theorem 4 (Existence and uniqueness of Hölder solution of the inviscid Burgers’ equation). For
γ ∈ (0, 1) be given. For all f ∈ L∞([0, T ];Cγ

b (R,R)) and g ∈ Cγ
b (R,R), there is a mild vanishing

viscosity solution u ∈ L∞([0, T ];Cγ
b (R,R)) of (8.1) satisfying

∥u∥L∞(Cγ) ≤ T∥f∥L∞(Cγ) + [g]γ ,

∥u∥L∞ ≤ T∥f∥L∞ + ∥g∥L∞ . (8.7)

i) Good regularity. If γ > 1
2 then the considered mild vanishing viscosity solution is also a mild-weak

and a weak solution, and if
ν∥∇2gm∥L∞ + ν

γ
2m1−γ ≪ 1, (8.8)

then ∂tu(t, ·) ∈ B−1+γ
∞,∞ (Rd,R), ∀t ∈ (0, T ].

‡‡Definition 6.
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ii) Fast vanishing viscosity. If, for a constant C > 0 big enough,

exp

(
CT (T∥fm∥L∞(C1)+∥gm∥C1) exp

(
Cmt

(
T∥f∥L∞+∥g∥L∞

)))(
(1+m1−γ)ν

γ
2+ν∥∇2gm∥L∞

)
≪ 1,

(8.9)
then the solution is turbulent unique.

iii) Slow vanishing viscosity. If ∥∂xf∥L∞ + ∥∂xg∥L∞ < +∞ and, for a constant C > 0 big enough,

exp

(
CT
(
T∥∂xf∥L∞ + ∥∂xg∥L∞

)
exp

(
CTν−1(T∥f∥L∞ + ∥g∥L∞)2

))
m−γ ≪ 1, (8.10)

then the solution is viscous unique.

Let us remark that the condition ii) in Theorem 3 is satisfied if the considered a priori regularity
of the solution is strong enough (a priori not the condition i) in Theorem 3, as u is not incompressible,
except if u is also solution of the Euler equation), as we have −γ < −1 + γ ⇐⇒ γ > 1

2 .

Remark 10. Without considering the regularity condition γ > 1
2 to get a weak solution, we may have

pathologic situation. Specifically, let us consider the steady-state non-linear problem

u(x)u′(x) =
1

2
sgn(x), (8.11)

whose x 7→
√

|x| is solution§§ which is as expected 1
2 -Hölder continuous. In other words, if γ = 1

2 ,
we can explicitly find a γ-Hölder steady-state solution of the inviscid Burgers’ equation with source
function being in B0

∞,∞(R,R) but C∞
b almost everywhere and being the limit of a C∞

b function, e.g.
tanh.

Remark 11. With our current approach, we fail to provide any Lipschitz control of a solution of the
inviscid Burgers’ equation (8.1) for the same reason as for the transport equation (1.1). This is not
surprising by the well-known blowing-up of the gradient of a solution of the inviscid Burgers’ equation
(8.1).

Remark 12. The conditions (8.9) and (8.10) are not compatible, that is to say there is no uniqueness
in the sense of Definition 6, being the combination of turbulent and viscous uniqueness. Condition
(8.9) to get turbulent uniqueness means that ν goes to 0 exponentially faster than m goes to +∞;
whereas condition (8.10) to get viscous uniqueness implies that m goes to +∞ exponentially faster
than ν goes to 0.

We insist that turbulent uniqueness or viscous uniqueness of a such smooth solution of the inviscid
Burgers’ equation is not a contradiction with the usual counter-example built thanks to a character-
istics, because we only consider solution selected by a vanishing viscosity approximation for a given
mollification procedure. Somehow, this selection principle allows to avoid the blow-up time appearing
in the characteristic building for a given vanishing viscous path.

Actually, from the mild vanishing viscous solution, we see that for any t ∈ [0, T ], the solution
u(t, ·) given by the limit of a sub-sequence of um,ν(t, ·) depends on the mollification choice, moreover
the sub-sequence choice also depends on the current time t. In other words, u(t, ·) seems to avoid the
time of blowing-up thanks to a different choice of sub-sequence at each current time.

8.2 Proof of Theorem 4

To establish this result, we consider the mollified version of Burgers’ equation, for all m ∈ R+ and
ν > 0,{

∂tu
m,ν(t, x) + um,ν

m (t, x)∂xu
m,ν(t, x)− ν∂2xxu

m,ν(t, x) = fm(t, x), (t, x) ∈ [0, T )× R,
um(0, x) = gm(x), x ∈ R,

(8.12)

§§Also the function x 7→ −
√

|x|, but this non-uniqueness should be related with some ergodic properties.
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where um,ν
m stands for a mollified version of um,ν , such that

∀ε > 0, lim
n→+∞

∥um,ν
n − um,ν∥L∞([0,T ];Cγ−ε

b ) = 0,

It is direct from Theorem 3 in [Hon22] that there is a smooth solution of (8.12).

We then perform the same computations as for the transport equation, where −β = γ and we
change in the viscous condition ∥b∥

L∞(B−β
∞,∞)

by an upper-bound of ∥u∥L∞ , namely by T∥f∥L∞(Cγ)+

[g]γ given by Feynman-Kac formula or from the time decomposition trick, see Section 6.6. Finally,
we are able to take the limit, thanks to a compact argument, of a suitable sub-sequence yields the
result, all the computations readily derives from the analysis of Theorems 1, 2 and 3.

8.2.1 Turbulent uniqueness

To establish uniqueness, let us consider a regularised Burgers’ equation with another viscosity ν̄,{
∂tu

m,ν̄(t, x) + um,ν̄
m (t, x)∂xu

m,ν̄(t, x)− ν̄∂2xxu
m,ν̄(t, x) = fm(t, x), (t, x) ∈ [0, T )× R,

um,ν̄(0, x) = gm(x), x ∈ R.
(8.13)

We highlight that um,ν̄
m is also a regularisation version of um,ν̄

m such that (8.4) is in force and,

∀ε > 0, lim
n→+∞

∥ūm,ν
n − ūm,ν∥L∞([0,T ];Cγ−ε

b ) = 0,

Like for um,ν , we suppose that there is a constant C > 0 such that for any (m, ν̄) ∈ R2
+,

∥um,ν̄∥L∞(Cγ
b )

≤ C(T∥f∥L∞(Cγ) + [g]γ),

under some specific asymptotic conditions on (m, ν̄). We still write Um := um,ν − um,ν̄ which is
solution of

∂tUm(t, x)+um,ν
m (t, x)∂xUm(t, x)− ν̄∆Um(t, x) = −[um,ν

m −um,ν̄
m ](t, x)∂xu

m,ν̄(t, x)+(ν− ν̄)∆um,ν(t, x),
(8.14)

with Um(0, x) = 0.
Adapting inequality (7.9) yields

∥Um(t, ·)∥L∞ ≤
∫ t

0
∥[um,ν

m − um,ν̄
m ](s, ·)∂xum,ν̄

m (s, ·)∥L∞ds+ t|ν − ν̄|∥∆um,ν∥L∞ .

We then get by triangular inequality and by (8.4), we can suppose w.l.o.g. that ν̄ ≤ ν (if not we
switch roles of ν and ν̄),

∥Um(t, ·)∥L∞ ≤ C̄

∫ t

0
∥Um(s, ·)∥L∞∥∂xum,ν̄

m ∥L∞ds+ tν∥∆um,ν∥L∞ .

Recalling the Hessian estimate of Lemma 2,

|∇2um,ν(t, x)|

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+ C∥um,ν

m ∥L∞(C1)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ
2
−1t

γ
2

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+Cm1−γ∥um,ν∥L∞(Cγ)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ
2
−1t

γ
2 .
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The a priori control of ∥um,ν∥L∞(Cγ) obtained in (6.23) yields

|∇2um,ν(t, x)| ≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+Cm1−γ

(
T∥f∥L∞(Cγ) + [g]γ

)(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
ν

γ
2
−1t

γ
2 .

Hence,

∥Um(t, ·)∥L∞ ≤ C

∫ t

0
∥Um(s, ·)∥L∞∥∂xum,ν̄

m ∥L∞ds+ Tν

(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

+Cm1−γ
(
T∥f∥L∞(Cγ) + [g]γ

)(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
ν

γ
2
−1t

γ
2

)
.

By Grönwall’s inequality, we derive

∥Um(t, ·)∥L∞ ≤ eCT∥∂xum,ν̄
m ∥L∞T

(
Cν

γ
2 t

γ
2 ∥f∥L∞(Cγ) + ν∥∇2gm∥L∞

+Cm1−γ
(
T∥f∥L∞(Cγ) + [g]γ

)(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
ν

γ
2 t

γ
2

)
.

Recalling the gradient estimate from Lemma 2

∥∇um,ν(t, ·)∥L∞ ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cmt∥um,ν∥L∞

)
≤

(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cmt

(
T∥f∥L∞ + ∥g∥L∞

))
.

Hence, we get

∥Um(t, ·)∥L∞ (8.15)

≤ T exp

(
CT (T∥fm∥L∞(C1) + ∥gm∥C1) exp

(
Cmt

(
T∥f∥L∞ + ∥g∥L∞

)))
(
Cν

γ
2 t

γ
2 ∥f∥L∞(Cγ) + ν∥∇2gm∥L∞ + Cm1−γ

(
T∥f∥L∞(Cγ) + [g]γ

)(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
ν

γ
2 t

γ
2

)
,

which goes to 0 if

exp

(
CT (T∥fm∥L∞(C1)+∥gm∥C1) exp

(
Cmt

(
T∥f∥L∞+∥g∥L∞

)))(
(1+m1−γ)ν

γ
2+ν∥∇2gm∥L∞

)
≪ 1.

Turbulent uniqueness of vanishing viscous solution is then established.

8.2.2 Viscous uniqueness

Let us consider another regularised Burgers’ equation with different mollification procedure but with
the same viscosity ν > 0,{

∂tū
m,ν(t, x) + ūm,ν

m (t, x)∂xū
m,ν(t, x)− ν∂2xxū

m,ν(t, x) = fm(t, x), (t, x) ∈ [0, T )× R,
ūm,ν(0, x) = gm(x), x ∈ R,

(8.16)

with ν > 0, and where ūm,ν
m is a regularisation of ūm,ν (not necessarily a defined by a convolution)

such that
sup

(m,ν)∈R2
+

∥ūm,ν∥L∞(Cγ
b )

≤ T∥f∥L∞(Cγ) + [g]γ < +∞,
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and for any 0 < ε < 1,

lim
n→+∞

∥ūm,ν
n − ūm,ν∥L∞ = lim

n→+∞
∥ūm,ν

n − ūm,ν∥L∞(Cγ−ε
b ) = 0. (8.17)

We still write Um := um,ν − ūm,ν which is solution of{
∂tUm(t, x) + um,ν

m (t, x)∂xUm(t, x)− ν∆Um(t, x) = −[um,ν
m − ūm,ν

m ](t, x)∂xū
m,ν(t, x),

Um(0, x) = 0.
(8.18)

We again adapt inequality (7.9) yields

∥Um(t, ·)∥L∞ ≤
∫ t

0
∥(um,ν

m − ūm,ν
m )∂xū

m,ν
m (s, ·)∥L∞ds.

Let us denotes

ūm,ν
m,m(t, x) :=

∫
R
ρm(x− y)ūm,ν(t, y)dy, (8.19)

such that
∥ūm,ν

m,m − ūm,ν
m ∥L∞ ≤ Cm−γ∥ūm,ν∥L∞(Cγ),

and
∥um,ν

m − ūm,ν
m,m∥L∞ ≤ ∥um,ν − ūm,ν∥L∞ = ∥Um(t, ·)∥L∞ .

We then get by triangular inequality,

∥Um(t, ·)∥L∞ ≤
∫ t

0

(
∥(um,ν

m − ūm,ν
m,m)(s, ·)∥L∞ + ∥(ūm,ν

m,m − ūm,ν
m )(s, ·)∥L∞

)
∥∂xūm,ν

m ∥L∞ds

≤ C̄

∫ t

0

(
Cm−γ∥ūm,ν∥L∞(Cγ) + ∥Um(s, ·)∥L∞

)
∥∂xūm,ν

m ∥L∞ds

≤ C̄

∫ t

0

(
Cm−γ

(
T∥f∥L∞(Cγ) + [g]γ

)
+ ∥Um(s, ·)∥L∞

)
∥∂xūm,ν

m ∥L∞ds.

Also by Grönwall’s inequality, we derive

∥Um(t, ·)∥L∞ ≤ eCT∥∂xūm,ν
m ∥L∞TCm−γ(T∥f∥L∞(Cγ) + [g]γ)∥∂xūm,ν

m ∥L∞ .

From exponential absorbing property,

∥Um(t, ·)∥L∞ ≤ eCT∥∂xūm,ν
m ∥L∞TCm−γ(T∥f∥L∞(Cγ) + [g]γ)∥∂xūm,ν

m ∥L∞

≤ eCT∥∂xūm,ν
m ∥L∞m−γ(T∥f∥L∞(Cγ) + [g]γ). (8.20)

We need a new estimate of the gradient to avoid any blowing up terms in m which cannot be balanced
by the m−γ in front of the exponential; the singularity has to be in ν.

Lemma 5. For um,ν solution to (8.12), we have

∥∂xum,ν∥L∞ ≤ 2
(
T∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
exp

(
C2ν−1π(T∥f∥L∞ + ∥g∥L∞)2T

)
.

The proof is postponed in Appendix Section D.
We deduce from (8.20),

∥Um(t, ·)∥L∞ ≤ exp

(
CT2

(
T∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
exp

(
C2ν−1π(T∥f∥L∞ + ∥g∥L∞)2T

))
×m−γ(T∥f∥L∞(Cγ) + [g]γ),

which goes to 0 under condition (8.10).
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A Proof of Lemma 2

A.1 Gradient estimates

Let us precise the control previously used:

∥∇um,ν(t, ·)∥L∞ ≤
(
T∥fm∥L∞(C1) + ∥gm∥C1

)
exp

(
Cm1+βt∥b∥

L∞(B−β
∞,∞)

)
=: Om(t). (A.1)

We directly have from Duhamel formula (5.11):

|∇um,ν(t, x)|

≤
(
t∥∇fm∥L∞ + ∥∇gm∥L∞

)
+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)] · ∇um,ν(s, y)dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
(
t∥∇fm∥L∞ + ∥∇gm∥L∞

)
+C∥bm∥L∞(C1)

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, x, y)|θms,τ (ξ)− y|∥∇um,ν(s, ·)∥L∞dy ds

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

.

By absorbing property (2.8), we derive

|∇um,ν(t, x)| ≤
(
t∥∇fm∥L∞ + ∥∇gm∥L∞

)
+Cm1+β∥b∥

L∞(B−β
∞,∞)

∫ t

0

∫
Rd

p̄τ,ξ(s, t, x, y)∥∇um,ν(s, ·)∥L∞dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
(
t∥∇fm∥L∞ + ∥∇gm∥L∞

)
+ Cm1+β∥b∥

L∞(B−β
∞,∞)

∫ t

0
∥∇um,ν(s, ·)∥L∞ds.

(A.2)

Finally, Grönwall’s lemma yields the result.
This useful a priori control allows to avoid any blow-up when ν → 0. However, to be able to

prove uniqueness, we also need another estimate stated in Lemma 4 and proved in Section C.

A.2 Hessian estimates

We perform a similar argument, but for the second derivatives we have to put a second derivatives on
[bm(s, θt(ξ))− bm(s, y)] ·∇u(s, y). Indeed, if we twice differentiate p̂τ,ξ(s, t, x, y) there is no possibility
to smoothen the blowing up the contribution of ν by Hölder control (or even Lipschitz).

We obtain by Leibniz rules

|∇2um,ν(t, x)|

≤
(
t∥∇2fm∥L∞ + ∥∇2gm∥L∞

)
+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)∇b(s, y) · ∇u(s, y)dy ds
∣∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)]∇2u(s, y)dy ds
∣∣∣∣∣∣∣∣
ξ=x

≤ m2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
+C

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, x, y)|θms,τ (ξ)− y|∥∇bm ⊗∇um,ν(s, ·)∥L∞(C1)dy ds

+C∥bm∥L∞(C1)

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, x, y)|θms,τ (ξ)− y|∥∇2um,ν(s, ·)∥L∞dy ds.
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Next, with Leibniz rules and absorbing property (2.8),

|∇2um,ν(t, x)|

≤ m2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
+ Cm2+β∥b∥

L∞(B−β
∞,∞)

∫ t

0

∫
Rd

p̄τ,ξ(s, t, x, y)∥∇um,ν(s, ·)∥L∞dy ds

+Cm1+β∥b∥
L∞(B−β

∞,∞)

∫ t

0
∥∇2um,ν(s, ·)∥L∞ds

≤ m2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
+ Ctm2+β∥b∥

L∞(B−β
∞,∞)

∥∇um,ν∥L∞

+Cm1+β∥b∥
L∞(B−β

∞,∞)

∫ t

0
∥∇2um,ν(s, ·)∥L∞ds. (A.3)

We finally get by Grönwall’s lemma and by identity (A.1)

∥∇2um,ν(t, ·)∥L∞ (A.4)

≤
(
m2−γ

(
t∥f∥L∞(Cγ) + [g]γ

)
+ Ctm2+β∥b∥

L∞(B−β
∞,∞)

Om(t)
)
exp(tm1+β∥b∥

L∞(B−β
∞,∞)

).

We also write by exponential absorbing property:

∥∇2um,ν(t, ·)∥L∞ ≤ Cm2−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

) =: O(2)
m (t). (A.5)

We insist on the fact that the above inequality does not depend on ν.

A.3 Third derivatives estimates

In this section, we detail how to control the third derivatives of um,ν . We use the same method as
for the Hessian, the additional derivative is also put on [bm(s, θt(ξ))− bm(s, y)] · ∇u(s, y).

|∇3um,ν(t, x)|

≤
(
t∥∇3fm∥L∞ + ∥∇3gm∥L∞

)
+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)∇2b(s, y) · ∇u(s, y)dy ds
∣∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)∇b(s, y) · ∇2u(s, y)dy ds
∣∣∣∣∣∣∣∣
ξ=x

+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)]∇3u(s, y)dy ds
∣∣∣∣∣∣∣∣
ξ=x

≤ Cm3−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
+C

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, x, y)|θms,τ (ξ)− y|

×(∥∇2bm · ∇um,ν(s, ·)∥L∞(C1) + ∥∇bm · ∇2um,ν(s, ·)∥L∞(C1))dy ds

+C∥bm∥L∞(C1)

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̄τ,ξ(s, t, x, y)|θms,τ (ξ)− y|∥∇3um,ν(s, ·)∥L∞dy ds

≤ Cm3−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
+ Ctm3+β∥b∥

L∞(B−β
∞,∞)

∥∇um,ν∥L∞

+Ctm2+β∥b∥
L∞(B−β

∞,∞)
∥∇2um,ν∥L∞ + Cm2+β∥b∥

L∞(B−β
∞,∞)

∫ t

0
∥∇3um,ν(s, ·)∥L∞ds.
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Eventually, by Grönwall’s lemma, identities (A.1) and (A.4) imply

∥∇3um,ν(t, ·)∥L∞ (A.6)

≤ C
(
m3−γ

(
t∥f∥L∞(Cγ) + [g]γ

)
+ tm2+β∥b∥

L∞(B−β
∞,∞)

(
mOm(t) +mO(2)

m (t)
))

× exp(Ctm1+β∥b∥
L∞(B−β

∞,∞)
)

≤ Cm3−γ
(
t∥f∥L∞(Cγ) + [g]γ

)
exp(Cm1+βt∥b∥

L∞(B−β
∞,∞)

), (A.7)

by exponential absorbing property.

B Proof of Lemma 3

This section is devoted to the regularity of the flow

θms,τ (x) := x+

∫ τ

s
bm(s̃, θms̃,τ (x))ds̃.

By definition, we have

|θms,τ (x)− θms,τ (x
′)| ≤ |x− x′|+

∣∣∣ ∫ τ

s
bm(s̃, θms̃,τ (x))− bm(s, θms̃,τ (x

′))ds
∣∣∣

≤ |x− x′|+ ∥bm∥L∞(C1)

∫ τ

s
|θms̃,τ (x)− θms̃,τ (x)|ds̃,

which is not the suitable inequality to apply directly Grönwall’s lemma. To do so, we use a sup
formulation, namely for any r ≤ τ , we write similarly to above

sup
s∈[0,r]

|θms,τ (x)− θms,τ (x
′)| ≤ |x− x′|+

∫ r

0

∣∣bm(s̃, θms̃,τ (x))− bm(s, θms̃,τ (x
′))|ds

≤ |x− x′|+ ∥bm∥L∞(C1)

∫ r

0
|θms̃,τ (x)− θms̃,τ (x)|ds̃

≤ |x− x′|+ ∥bm∥L∞(C1)

∫ r

0
sup

ŝ∈[0,s̃]
|θmŝ,τ (x)− θmŝ,τ (x)|ds̃.

We are now in position to use Grönwall’s lemma, for r = τ

sup
s̃∈[0,τ ]

|θms,τ (x)− θms,τ (x
′)| ≤ |x− x′| exp

(
∥bm∥L∞(C1)τ

)
.

C Proof of Lemma 4

C.1 Gradient estimates

By integration by parts

|∇um,ν(t, x)|
≤ t∥∇fm∥L∞ + ∥∇gm∥L∞

+
∣∣∣ ∫ t

0

∫
Rd

∇2p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)][um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

+
∣∣∣ ∫ t

0

∫
Rd

∇p̂τ,ξ(s, t, x, y)∇bm(s, y)[um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

,
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and by exponential absorbing property,

|∇um,ν(t, x)| ≤ t∥∇fm∥L∞ + ∥∇gm∥L∞

+C∥bm∥L∞(C1)∥um,ν∥L∞(Cγ)

∫ t

0

∫
Rd

[ν(t− s)]
γ−1
2 p̄τ,ξ(s, t, x, y)dy ds

∣∣∣∣∣
(τ,ξ)=(t,x)

≤ m1−γ
(
t∥f∥L∞(Cγ) + ∥g∥Cγ

)
+ C∥bm∥L∞(C1)∥um,ν∥L∞(Cγ)ν

γ−1
2 t

γ+1
2 .

(C.8)

The last identity comes from the Hölder estimates stated in Theorem 2.

C.2 Hessian estimates

Like in Section C.1, we integrate by parts

|∇2um,ν(t, x)| ≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+
∣∣∣ ∫ t

0

∫
Rd

∇3p̂τ,ξ(s, t, x, y)[bm(s, θms,τ (ξ))− bm(s, y)]

[um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

+
∣∣∣ ∫ t

0

∫
Rd

∇2p̂τ,ξ(s, t, x, y)∇bm(s, y)[um,ν(s, y)− um,ν(s, θms,τ (ξ))]dy ds
∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

,

and by exponential absorbing property after choosing the freezing parameters,

|∇2um,ν(t, x)|

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+C∥bm∥L∞(C1)∥um,ν∥L∞(Cγ)

∫ t

0

∫
Rd

[ν(t− s)]
γ
2
−1p̄τ,ξ(s, t, x, y)dy ds

∣∣∣∣∣∣∣∣
(τ,ξ)=(t,x)

≤
(
Cν

γ
2
−1t

γ
2 ∥f∥L∞(Cγ) + ∥∇2gm∥L∞

)
+ C∥bm∥L∞(C1)

(
t∥fm∥L∞(Cγ) + ∥gm∥Cγ

)
ν

γ
2
−1t

γ
2 .

(C.9)

D Proof of Lemma 5

From the usual Duhamel formula around the heat equation,

|∂xum,ν(t, x)| ≤
(
t∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
+
∣∣∣ ∫ t

0

∫
Rd

∂xp̃(s, t, x, y)u
m,ν
m (s, y)∂xu

m,ν(s, y)dy ds
∣∣∣

≤
(
t∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
+C∥um,ν∥L∞

∫ t

0

∫
Rd

[ν(t− s)]−
1
2 p̃(s, t, x, y)∥∂xum,ν(s, ·)∥L∞dy ds.

By the well known L∞ control, see Section 6.6, we obtain

|∂xum,ν(t, x)| (D.1)

≤
(
t∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
+ C(T∥f∥L∞ + ∥g∥L∞)ν−

1
2

∫ t

0
(t− s)−

1
2 ∥∂xum,ν(s, ·)∥L∞ds.

Here, it is not possible to directly use Grönwall’s lemma due to the “t” is in the integral. We have to
consider Grönwall-Henry’s lemma, cf. [Hen81] chapter 7 Lemma 7.1.1. .
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Lemma 6 (Lemma of Grönwall-Henry). Let T > 0, a positive a constant K > 0 and a non-negative
function α such that the function φ : [0, T ] −→ R+ satisfying for any 0 < t < Ts

φ(t) ≤ α(t) +K

∫ t

0
(t− s)−1+βφ(s)ds, (D.2)

then

φ(t) ≤ α(t) + θ

∫ t

0
E′

β(θ(t− s))α(s)ds, (D.3)

with for any r ∈ [0, T ],

θ = (KΓ(β))
1
β ,

Eβ(r) =
+∞∑
n=0

rnβ

Γ(nβ + 1)
,

E′
β(r) = ∂rEβ(r) =

+∞∑
n=0

nβ
rnβ−1

Γ(nβ + 1)
,

and if α is a non-decreasing function, then, for any 0 < t < T ,

φ(t) ≤ α(t)Eβ(θt). (D.4)

The last inequality (D.4) is readily derived from (D.3).

The only needed case, here, is β = 1
2 , for the sake of completeness, we detail the useful proof of

exercise 1 in [Hen81].

Lemma 7. For any t > 0,
et ≤ E1/2(t) ≤ 2et.

Proof of Lemma 7. Let us recall that Γ(12) =
√
π, then we get, for any r ≥ 0, by differentiating,

∂rE1/2(r) = r−1
+∞∑
n=1

n

2

r
n
2

Γ(n2 + 1)

= r−1
+∞∑
n=1

r
n
2

Γ(n2 )

= r−1
( r

1
2

Γ(12)
+

+∞∑
n=2

r
n
2

Γ(n2 )

)
= (πr)−

1
2 + E1/2(r).

This differential equation also writes

∂r(e
−rE1/2(r)) = −e−rE1/2(r) + e−r∂rE1/2(r) = e−r(πr)−

1
2 ,

and by integrating, for any t ≥ 0,

E1/2(t) = et + etπ−
1
2

∫ t

0
r−

1
2 e−rdr.

The lower bound of the lemma is direct, the upper-bound comes from

E1/2(t) ≤ et + etπ−
1
2

∫ +∞

0
r−

1
2 e−rdr = et + etπ−

1
2Γ(

1

2
) = 2et. (D.5)
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Coming back to inequality (D.1), we identify the notations in Lemma 6, β = 1
2 , and θ =

C2ν−1π(T∥f∥L∞ + ∥g∥L∞)2, then from Lemmas 6 and 7,

∥∂xum,ν(t, ·)∥L∞ ≤ 2
(
t∥∂xfm∥L∞ + ∥∂xgm∥L∞

)
exp

(
C2ν−1π(T∥f∥L∞ + ∥g∥L∞)2t

)
.

E Convergence of the mollified distribution

Proposition 2. For any ψ ∈ Cγ(Rd,R), γ ∈ (0, 1], we have for all ϑ ∈ Nd
0 and θ ∈ N0 s.t. |ϑ| = θ,

that hm−2 ⋆ Dϑψ ∈ C∞
b converges towards Dϑψ in Ḃ−θ

∞,∞ as m→ +∞. More precisely, we have:

∥hm−2 ⋆ Dϑψ −Dϑψ∥Ḃ−θ
∞,∞

≤ C[ψ]γm
−γ , (E.1)

and Dϑψ ∈ Ḃγ−θ
∞,∞ In particular, if |ϑ| = 0, hm−2 ⋆ ψ ∈ C∞

b converges towards ψ in L∞ as m→ +∞,
and:

∥hm−2 ⋆ ψ − ψ∥L∞ ≤ C[ψ]γm
−γ . (E.2)

Remark 13. Actually, γ ̸∈ {0, 1} is not a restrictive condition as changing ϑ into ϑ̃ ∈ Nd
0 such that

|ϑ̃| = |ϑ|+ 1 yields the same result.
In particular, Proposition 2 is available for the Dirac distribution δ ∈ Ḃ−d

∞,∞ regarded as the
distributional derivative of the sign function (also regarded as the derivative of the absolute value),
and for any derivative of the Dirac distribution by the same argument.

Proof of Proposition 2. Let us write φ = Dϑψ, with ψ ∈ Cγ

∥hm−2 ⋆ φ− φ∥Ḃ−ϑ
∞,∞

= ∥Dϑ[hm−2 ⋆ ψ − ψ]∥Ḃ−ϑ
∞,∞

= sup
v∈R+

v1−
−ϑ
2 ∥∂vhv ⋆ Dϑ[hm−2 ⋆ ψ − ψ]∥L∞

= sup
v∈R+

v1−
−ϑ
2 ∥∂vDϑhv ⋆ [hm−2 ⋆ ψ − ψ]∥L∞ ,

by integration by parts in convolutions. Next, we can explicitly write,

∥hm−2 ⋆ φ− φ∥Ḃ−ϑ
∞,∞

= sup
v∈R+, z∈Rd

v1−
−ϑ
2

∣∣∣ ∫
Rd

∫
Rd

∂vD
ϑhv(z − y)hm−2(y − x)[ψ(x)− ψ(y)]dx dy

∣∣∣
≤ C[ψ]γ sup

v∈R+, z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hm−2(y − x)|x− y|γdx dy

≤ C[ψ]γm
−γ sup

v∈R+, z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hm−2(y − x)dx dy,

by exponential absorbing property (2.8). Integrating in space finally yields

∥hm−2 ⋆ φ− φ∥Ḃ−ϑ
∞,∞

≤ C[ψ]γm
−γ .

Inequality (E.2) is direct with similar arguments.

Corollary 5. For any ψ ∈ Ḃγ
∞,∞(Rd,R), γ ∈ (0, 1] we have, for all ϑ ∈ Nd

0 and θ ∈ N0 s.t. |ϑ| = θ,

that hm−2 ⋆ Dϑψ ∈ C∞
b (Rd,R) converges towards Dϑψ in Ḃ−θ+γ−ε

∞,∞ (Rd,R), for any ε ∈ (0, 1) s.t.
θ − γ + ε > 0, as m→ +∞. More precisely, we have:

∥hm−2 ⋆ Dϑψ −Dϑψ∥
Ḃ−θ+γ−ε

∞,∞
≤ C[ψ]γm

−ε. (E.3)
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Proof of Corollary 5. We still use the thermic representation, and by convolution property we have:

∥hm−2 ⋆ φ− φ∥
Ḃ−θ+γ−ε

∞,∞

= sup
v∈R+

v1−
−θ+γ−θ

2 ∥∂vhv ⋆ Dϑ[hm−2 ⋆ ψ − ψ]∥L∞(Rd)

= sup
v∈R+

v1−
−θ+γ−ε

2 ∥∂vDϑhv ⋆ [hm−2 ⋆ ψ − ψ]∥L∞(Rd)

= sup
v∈R+, z∈Rd

v1−
−θ+γ−ε

2

∣∣∣ ∫
Rd

∫
Rd

∂vD
ϑhv(z − y)hm−2(y − x)[ψ(x)− ψ(y)]dx dy

∣∣∣.
For a given v ∈ (0,+∞), we compare the regular contribution v with the mollification contribution.
In other words, we consider two possibilities.

• If m−2 < v, then:

v1−
−θ+γ−ε

2 ∥∂vhv ⋆ Dϑ[hm−2 ⋆ ψ − ψ]∥L∞(Rd)

= sup
z∈Rd

v1−
−θ+γ−ε

2

∣∣∣ ∫
Rd

∫
Rd

∂vD
ϑhv(z − y)hm−2(y − x)[ψ(x)− ψ(y)]dx dy

∣∣∣
≤ C[ψ]γv

−γ+ε
2 sup

z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hm−2(y − x)|x− y|γdx dy

≤ C[ψ]γv
−γ+ε

2 m−γ sup
z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hm−2(y − x)dx dy

≤ C[ψ]γm
−ε. (E.4)

• If m−2 ≥ v, then:

v1−
−θ+γ−ε

2 ∥∂vhv ⋆ Dϑ[hm−2 ⋆ ψ − ψ]∥L∞(Rd)

= sup
z∈Rd

v1−
−θ+γ−ε

2

∣∣∣ ∫
Rd

∫
Rd

∂vhv(z − y)Dϑhm−2(y − x)[ψ(x)− ψ(y)]dx dy
∣∣∣

≤ C[ψ]γm
θ
2 v

θ−γ+ε
2 sup

z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hc−1m−1(y − x)|x− y|γdx dy

≤ C[ψ]γm
θ−γv

θ−γ+ε
2 sup

z∈Rd

∫
Rd

∫
Rd

hc−1v(z − y)hm−2(y − x)dx dy

≤ C[ψ]γm
−ε. (E.5)

The result follows from (E.4) and (E.5).

Proposition 2 and Corollary 5 are more precise forms of the well known convergence in the
distributional sense.

Proposition 3. For any ψ ∈ Ḃγ
∞,∞(Rd,R), γ ∈ (0, 1] we have for any ϑ ∈ Nd

0 that hm−2 ⋆ Dϑψ ∈
C∞
b (Rd,R) converges towards Dϑψ in distributional sense as m→ +∞. More precisely, we have for

any η ∈ C∞
0 (Rd,R):

sup
x∈Rd

∣∣∣ ∫
Rd

η(x− y)
[
hm−2 ⋆ Dϑψ(y)−Dϑψ(y)

]
dy
∣∣∣ ≤ C[ψ]γm

−γ . (E.6)

Remark 14. We precise that η is not supposed to be a Gaussian kernel, as in Proposition 2.
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Proof. We directly write by convolution property:

sup
x∈Rd

∣∣∣ ∫
Rd

η(x− y)
[
hm−2 ⋆ Dϑψ(y)−Dϑψ(y)

]
dy
∣∣∣

= sup
x∈Rd

∣∣∣ ∫
Rd

Dϑη(x− y)
[
hm−2 ⋆ ψ(y)− ψ(y)

]
dy
∣∣∣

≤ Cm−γ [ψ]γ sup
x∈Rd

∣∣∣ ∫
Rd

∣∣Dϑη(x− y)
∣∣dy∣∣∣

≤ Cm−γ [ψ]γ ,

the penultimate inequality is consequence of inequality (E.2).

F Properties of derivatives of Besov distributions

Proposition 4. For any φ ∈ S ′(Rd) such that ∇φ ∈ Ḃ−1+γ
∞,∞ (Rd), γ ∈ (0, 1), there is a constant

C > 1 such that:
∥∇φ∥

Ḃ−1+γ
∞,∞

≤ C∥φ∥Ḃγ
∞,∞

.

Proof of Proposition 4. We first write by the thermic representation of the Besov norm and by inte-
gration by parts,

∥∇φ∥
Ḃ−1+γ

∞,∞
= sup

v∈R+, z∈Rd

v1−
−1+γ

2

∣∣∣ ∫
Rd

∂vhv(z − y)∇φ(y)dy
∣∣∣

= sup
v∈R+, z∈Rd

v
3−γ
2

∣∣∣ ∫
Rd

∇ · ∂vhv(z − y)[φ(y)− φ(z)]dy
∣∣∣,

by absorbing property (2.8) we derive

∥∇φ∥
Ḃ−1+γ

∞,∞
≤ C[φ]γ sup

v∈R+, z∈Rd

v
3−γ
2

∫
Rd

v−
3
2hC−1v(z − y)|y − z|γdy

≤ C[φ]γ sup
v∈R+, z∈Rd

∫
Rd

hC−1v(z − y)dy

≤ C[φ]γ .

We also derive the corresponding inequality for the inhomogeneous case.

Corollary 6. For any φ ∈ S ′(Rd) such that ∇φ ∈ B−1+γ
∞,∞ (Rd), γ ∈ (0, 1), there is a constant c > 1

such that:
∥∇φ∥

B−1+γ
∞,∞

≤ c∥φ∥Bγ
∞,∞ .

Proof of Corollary 6. From inequality (2.6), we have ∥∇φ∥
B−1+γ

∞,∞
≤ C

1−γ ∥∇φ∥Ḃ−1+γ
∞,∞

. Moreover, it is

direct that

∥φ∥Ḃγ
∞,∞

= sup
v∈R+

v(1−
γ
2
)∥∂vhv ⋆ φ∥L∞ ≤ ∥φ∥B̈γ

∞,∞
+ sup

v>1
v(1−

α
2
)∥∂vhv ⋆ φ∥L∞

≤ ∥φ∥B̈γ
∞,∞

+ ∥φ∥L∞

= ∥φ∥Bγ
∞,∞ .

In other words, we deduce by Proposition 4,

∥∇φ∥
B−1+γ

∞,∞
≤ C

1− γ
∥∇φ∥

Ḃ−1+γ
∞,∞

≤ ∥φ∥Ḃγ
∞,∞

≤ C∥φ∥Bγ
∞,∞ .
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Remark 15. In all generality, the reverse inequality of the above results are not true. For example,
any constant function lies in Bγ

∞,∞ but its derivative is 0, hence the B−1+γ
∞,∞ norm is null, and the

corresponding Besov norm equivalence obviously fails to be true.
For an equivalence version of this result, we need to consider extra Besov norms, see for instance

[KMM07] identity (3.54) for a Triebel-Lizorkin spaces version.

G On the freedom of the mollification choice

In this section, we detail why if there is a sequence of smooth function converging toward a B−β
∞,∞

distribution then the mollification procedure (5.2) converges also toward the distribution. In other
words, if there is a sequence (b̄n)n≥1 lying in L∞([0, T ];C∞

b (Rd,Rd)) such that

lim
n→∞

∥b̄n − b∥
L∞(B−β+ε

∞,∞ )
= 0, (G.1)

for any 0 < ε, then
lim

m→∞
∥bm − b∥

L∞(B−β−ε
∞,∞ )

= 0, (G.2)

where bm is defined in (5.2) by:
bm(t, x) = b(t, ·) ⋆ ρm(x),

with for any z ∈ Rd, ρm(z) := mdρ(zm) for ρ(z) = 1

(2π)
d
2
e−

|z|2
2 . Indeed, we readily write by triangular

inequality:

∥bm− b∥
L∞(B−β+ε

∞,∞ )
≤ ∥bm−ρm ⋆ b̄n∥L∞(B−β−ε

∞,∞ )
+∥ρm ⋆ b̄n− b̄n∥L∞(B−β−ε

∞,∞ )
+∥b̄n− b∥L∞(B−β−ε

∞,∞ )
. (G.3)

The firs term in the r.h.s. above write:

∥bm − ρm ⋆ b̄n∥L∞(B−β−ε
∞,∞ )

= ∥ρm ⋆ (b− b̄n)∥L∞(B−β−ε
∞,∞ )

.

Hence, we obtain

∥bm − ρm ⋆ b̄n∥L∞(B−β−ε
∞,∞ )

= sup
v∈[0,1]

v
β−ε
2 ∥ρm ⋆ hv ⋆ (b− b̄n)∥L∞ ≤ ∥b̄n − b∥

L∞(B−β−ε
∞,∞ )

, (G.4)

by triangular inequality.
Also, for the second term in (G.3), let us deal with the corresponding homogeneous norm,

∥ρm ⋆ b̄n − b̄n∥L∞(B−β−ε
∞,∞ )

= ∥φ(D)(ρm ⋆ b̄n − b̄n)∥L∞ + ∥ρm ⋆ b̄n − b̄n∥L∞(B̈−β−ε
∞,∞ )

.

It is direct that

∥φ(D)(ρm ⋆ b̄n − b̄n)∥L∞ ≤ C∥ρm ⋆ b̄n − b̄n∥L∞ ≤ Cm−1∥Db̄n∥L∞ . (G.5)

Next,

∥ρm ⋆ b̄n − b̄n∥L∞(B̈−β−ε
∞,∞ )

= sup
v∈[0,1], t∈[0,T ], z∈Rd

v
β+ε
2

∣∣∣ ∫
Rd

∫
Rd

hv(z − y)ρm(y − x)[b̄n(t, x)− b̄n(t, y)]dx dy
∣∣∣

≤ ∥Db̄n∥L∞ sup
v∈[0,1], t∈[0,T ], z∈Rd

v
β+ε
2

∣∣∣ ∫
Rd

∫
Rd

hC−1v(z − y)ρm(y − x)|x− y|dx dy
∣∣∣

≤ C∥Db̄n∥L∞m−1 sup
v∈[0,1], t∈[0,T ], z∈Rd

v
β+ε
2

∣∣∣ ∫
Rd

∫
Rd

hC−1v(z − y)ρC−1m(y − x)dx dy
∣∣∣

= C∥Db̄n∥L∞m−1. (G.6)

Let us choose m≫ ∥Db̄n∥L∞ which yields that limm,n→∞ ∥ρm ⋆ b̄n − b̄n∥L∞(B−β−ε
∞,∞ )

= 0.

Finally, gathering identities (G.1), (G.3), (G.4), (G.5) and (G.6) yields the limit property (G.2).
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