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Abstract

We consider a transport equation whose the coefficient b can be in a negative Besov space, we
provide controls in y-Holder spaces, v € (0, 1), of some kind of vanishing viscosity solutions based
on a parabolic approximation. The regularity in y-Ho6lder space of the solution exactly matches the
one of the source functions, but the regularisation occurs on the coeflicients irregularity. Indeed,
we define some kind of solutions of the transport equation which do not require b to be Lipschitz
continuous.

If b lies in a a-Holder space, o > 1—+y, then we establish that there is a weak solution in a y-Hoélder
space.

If b is supposed to be divergence free, then we obtain the same result for b having a negative
regularity in space, precisely in Lm(B;O?OO) for 5 < 7.

Finally, if we consider a “very weak” solution, called in the paper mild vanishing viscous, also in a
v-Holder space, then there is no regularity constraint on b. In this case, there is somehow a mild
infinite regularisation by turbulence.

The vanishing viscosity allows to overwhelm the potential blowing up of the rough coefficients,
this is what we call a regularisation by turbulence. However, we do not get uniqueness of the
considered built solution; we even conjecture that there is no unique selection of the parabolic
approximation in such a rough framework.

Importantly, as a by-product of our analysis, we can give a meaning of a product of distri-
butions. For b lying in a y-Holder space, we obtain the same condition as for the usual Bony’s
paraproduct; but in a weaker solution framework, the product is defined beyond the paraproduct
condition and even with no constraint at all in the mild vanishing viscous context. We also obtain
that the time averaging of the distributions product is y-Hdlder continuous. These strong results
happens because one of the distribution is the gradient of a solution, in a certain sense, of the
transport equation.

Thanks to our analysis, we also get a Holder control of a solution of the inviscid Burgers’
equation. The vanishing viscous procedure seems to avoid the well-known time of the regularity
blowing-up of the solution built by characteristics.

Paraproduct, Inviscid Burgers’ equation.

1

Introduction

1.1 Statement of the problem

For given d € N, we consider the following d-dimensional Cauchy problem:

owu(t,z) + (b(t, ), Vu(t,z)) = f(t,z), (t,2) € Ry x RY,
u(0,z) = g(x), = € RY
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For a finite 8 € R, we suppose that the transport coefficient, b(t,-), for any ¢t € R4, lies in the
non-homogeneous Besov Hoélder space Bo_o? oo; When 8 > 0, this can be regarded as a Holder space
with negative regularity.

We establish in this article that there is a solution « which is Holder continuous and potentially
not unique. To give a meaning of the product (b(¢,z), Vu(t,z)), we introduce a kind of vanishing
viscosity solution. We indeed consider usual second order parabolic equation whose the second order
term, called viscosity v, goes to 0,

1.2
u™v(0,x) = gm(x), T € R, (12)

{8tum”’(t, ) + (b (t, ), VU™ (£, 2)) — vAU™Y (t,2) = fi(t, 3), (t,2) € (0,T] x RY,
the function b,, is a mollified version of the distributional values b. The uniform control in L° is
direct by a probabilistic representation of the solution, see [Hon22]. Next, we write the solution as
a perturbation of a PDE with constant components. These constants correspond to the first order
term by, taking at a freezing point throw the corresponding flow, as done in [CDRHM1S]. However,
to estimate the Holder norm, we have to distinguish two regimes, as usual in a parabolic context,
the diagonal and the off-diagonal ones. In each regime, the choice of freezing points changes in
order to get a negligible first order contribution when v — 0. This phenomenon can be regarded as a
reqularisation by turbulence. As for the fluid mechanics, we can define an associated Reynolds number
which goes to +00 when v — 0, corresponding to a turbulence regime, see for instance [FMRT01].

This approach allows to obtain a non-unique smooth selection principle which does not work in
a usual regularisation limit, see [CCS20]. We postulate that, in our framework, uniqueness fails in
general as soon as b, f and g are not Lipschitz continuous.

One of the crucial consequences of our analysis is that, we obtain a first general meaning of a
classical product of distributions. Indeed, we succeed in giving a meaning of (b(t, ), Vu(t, x)) where
b and Vu have negative regularity. This is written as a weak limit of a sub-sequence of a smooth
parabolic approximation. The price to pay in this representation is that we do not have uniqueness
of the limit.

Finally, thanks to this method, we also deduce existence (without uniqueness) of a Holder con-
tinuous solution of the inviscid Burgers’ equation.

The paper is organised as following. In Section we recall some well-known results on the
transport equation. The notations and the assumptions used are gathered in Section Our main
result is stated in Section [3] with some comments. The complete analysis is detailed in Section @l We
provide the statement and the proof of the regularity of a solution to the inviscid Burgers’ equation
in Section [} Finally, we gather an Appendix some well-known results about regularity controls on
the solution of linear parabolic of second order in Section [A] and about some property of the Besov
spaces in Sections [BfD] Precisely, in Section [B we establish that the space C3° functions are dense
in the space of multi-differentiated Holder continuous functions. Some inequalities over the norm of
Besov-Holder distributions with their derivative are established in Section [C] Eventually, in Section
we detail why the limit of regularised distribution in Besov-Hélder space does not depend on the
choice of mollification procedure.

1.2 Existing results on the transport equation

The Lipschitz framework is classical via the characteristic method. Indeed if b € L°°([0, T]; C*(R?, R?))
considering the ODE X; = b(t, X;), thanks to the Cauchy-Lipschitz theorem we know that there is a
unique solution u € L*([0, T]; C*(R?, R)) of the transport equation . Out of this regular context,
the analysis has to be more involved.

For instance, a meaning of the equation , when the coefficients are in a suitable Sobolev
space, can be given by a renormalisation procedure developed by DiPerna and Lions [DPL&9]. If b €
LY([0,T); W1 (RE, R)) and div(b) € L([0,T]; L°(R% R)), they establish that the Cauchy problem

loc



is well-posed in L>°. When, b is only supposed to have bounded variations in space, Ambrosio
[Amb04] extends this result for b € L'([0, T]; BVjoe(R%, R)), div(b)_ € L'([0,T]; L= (R%, R)).

However, if b is only Hoélder continuous then the Cauchy problem is not well-posed any-
longer, see the well-known counter-example specified in Section With a multiplicative noise,
Flandoli Gubinelli and Priola [FGPI0], see also [FGP12] and [MO17], establish that the following
Stochastic Partial Differential Equation

dyu + (b, Vu)dt + Vu o dW; = 0,
u(0,-) = uo(-),

with b € L*>([0,7],C}') and div(b) € LP is well-posed. Here, the symbol o corresponds to the
stochastic Stratonovich integral. This is a typical consequence of the regularisation by the noise, see
also [FE13], [AF11], [Catl6].

For other references on transport equation in the non Lipschitz case, see for instance to [MSIS§],
[Xial9).

We propose in this article a new approach to handle the determinist transport equation .
We consider vanishing viscous solution, see e.g. [Eva98], which is different to the viscous solution
introduced by Crandall and Lions [CL83] for the Hamilton-Jacobi equation. We do not consider
upper or lower solution, but a smooth well-posed parabolic equation and we take the limit, up to
sub-sequence selection, of the mollification parameter and of the viscosity.

For the best author’s knowledge, the notion of vanishing viscosity has been already used for several
classes of evolution PDEs, e.g. hyperbolic ones in [BB05], but it was not developed to establish the
regularity control of the solution of a general transport equation.

(1.3)

2 Notations and Definitions

From now on, we denote by C' > 0 and ¢ > 1 generic constants that may change from line to line but
only depends on known parameters such as -y, d. Importantly, this constant does not depend on £.
We also write, for €, > 0, the usual notation of asymptotic domination:

€
€ K E, z'fg — 0. (2.1)
We also write W 0, the limit, up to some subsequence selection, under the condition ([2.1)).
£,6)—(0,0

2.1 Tensor and Differential notations

For any z € R?, we use the decomposition z = zie; +. .. zgeq, where (e1,...,€eq) is the canonical base
of R

We usually use the notation 0; for the derivative in time ¢ € [0, T] also 0., , k € N, is the derivative
in the variable z.

The gradient in space is denoted by V or by D, in other words V = 0,,e1 + ... + 0,,€q4.

The divergence write V- = div and is defined for any R-function f : R — R by V- f = Zgzl 0. f.

From now on, the symbol “” between two tensors is the usual tensor contraction. For example,
if M e R*@RY®@R? and N € R% then M - N is a d x d matrix. If the two considered tensors are
vectors then “” matches the scalar product which is also denoted by (-, ).

For any R? R, we define the Hessian matrix D?f = (Gzi 0 f) \<ij<d’ and the usual Laplacian

operator Af = Zlgz‘,jgd 0,0, f-
More generally, for any k € N, D¥f denotes the order k tensor (Oziy -+ Oz F(in,in)e[r,ape- For

any multi-index @ = (a,...,aq) € N§, we write D f = 9% ... 02k f, in particular if for 7 € [1,d],
a; = 0 there is no derivative in z; in the expression of DY f.
We also denote for any o = (ay, -+, o) € N, the order of this multi-index by o = Y/" ;| o.



2.2 Associated Holder, Besov spaces

In this section, we provide some useful notations and functional spaces.

2.2.1 Holder spaces

For all k € N and B € (0,1), || - [[ch+o@mm rey, m € {1,d}, £ € {1,d,d® d is the usual homogeneous
Holder norm, see e.g. Lunardi [Lun95] or Krylov [Kry96]. Precisely, for all ¢ € C*+o(R™ R?),
a= (a1, - ,amy) € N we set the semi-norm:

k
H¢HC’“+5(Rm,RZ) = Z sSup HDaz/}HLOO(]Rm,]RZ) + sup [D%Ys,
i—1 lol=i la|=k
D*y(x) — DYy
oyls = sy DD 2.2)
() E®™) 2ty |z =y
the notation | - | is the Euclidean norm on the considered space. We denote by:

CEPR™RY) = {4 € C*P(R™, R) : [ o ey < +00},

the associated subspace with bounded elements (non-homogeneous Hélder space). The corresponding
Hoélder norm is defined by:

[l crts gm mey = [l crss @ gey + [19]] Loo e me)- (2.3)
For the sake of notational simplicity, from now on we write:
[¥llzoe := 9l oo mareys [€llenrs = 1dllorrsmarey, [1¥llcs = l1¥llosmarey:

For time dependent functions, ¢; € L“([O,T],CfJF‘S(Rm,RZ)) and g € L°°([0,T],Ck+5(]Rm,RZ)),
we define the norms:

[0l e ctsy == SUD 1918 Y s gum ey [ 92lomcrrsy == SUD (|9 (t, )l cnrsom ey
t€[0,T b te[0,T]

The test functions for some weak formulation of different solutions will be in in C§°(R¢, R) which
corresponds to smooth functions infinitely differentiable with bounded derivatives and with a compact
support.

2.2.2 Thermic characterization of the Besov space

We define the Besov spaces thanks to a thermic characteristic, see Triebel [Tri83] Section 2.6.4. For
all « € R, ¢ € (0, +0o0], p € (0, 0],

1

. 1d’U m—g m
1135, == 10(D) oy + I1Fl g5 » with £z, = ( /0 SOy ) (24)

where we define the heat kernel

1 2|2
hy(z) := Wexp (—Ll}) , (2.5)

and o(D)f = (¢f)Y with ¢ € C°(RY) such that o(0) # O,Af and (¢f)Y respectively denote the
Fourier transform of f and the inverse Fourier transform of ¢ f. Note that, when a > d(% — 1) then
in (2.4), we can replace |l¢(D)f | r»®a) by [Ifllzrra)-

*we write R for R? @ R? the space of square matrices of size d.




When p = ¢ = 400, we naturally write:

[fllga = sup 0" 2{|07 hy * fl|poo (rays
pa Ve

)

and if o > d(% — 1)y,

I £lBg, = Ifllzes + sup 0™ 2|05 hy * £ poo (ra)-
v€l[0,1]

We carefully point out that the homogeneous term | f|| 5. does not define a norm associated to a
p,q
Banach space. To consider the whole homogeneous Besov space we need to consider v € Ry in the

definition ([2.4)),
—+00 dv S . 1
1155, = ( /0 SOy ) (2.6)

where we do not consider the first term in , corresponding of the inhomogeneous part, of , and
the parameter v lies in R for the homogeneous norm. Somehow, for the inhomogeneous norm defined
in , the contribution of the heat kernel convolution for v > 1 is “hidden” in the inhomogeneous
term [lo(D) f| Lo (ra)-

For @ > 0, the homogeneous and respectively inhomogeneous Holder spaces match with Besov
space, namely C* = Bgo,oo and Cff = B, ., see [Tri83] for details.

Our analysis tackles with inhomogeneous Besov spaces, in order to extend our analysis to the
homogeneous ones some sophisticated changes should be performed as the homogeneous Besov spaces
are a priori not Banach spaces; and we should consider the realisation of the space of homogeneous
Besov spaces as a space of distributions defined quotiented by polynomials, see e.g. Proposition 3.8
in [LRO2] to make it a Banach space.

If a < 0 then it is known that ng C B%_, i.e. there is a constant C' > 0 such that for any o < 0:

P,q’
C
I-lag, < <1 gy - (2.7)

We also introduce the distributions that can approached by a mollification procedure. We put a
tilda in order to mean that we consider the closure of C;° in the considered spaceﬂ Namely, for any
(a,p,q) € R x (1,+00] x (1,400] we define:

By, = clpg (CFF), By, =g, (CFF). (2.8)

Remark 1. Importantly, when b € Bgfoo and such that b = D, a € Nd with » € C7, v € (0,1),

which yields that B = —|a| + 7, in Appendixz Section B we show that b € BOO’OO.

The last constraint on b, being the derivative of a Holder function, is quiet natural when we
consider the structure theorem of the tempered distributions S', see Theorem 8.53.1 in [Fri98]. We
recall indeed that any b € S’ writes b = D*) where o € Ng and ¥ is a continuous function with
polynomial growth.

Out of the Besov-Holder space, namely if 1 < p,q < 400, then B;"q = By, and ng = Bﬁq,
see Theorem 4.1.3 in [AHIG], Proposition 2.27 and Proposition 2.7/ in [BCDI11]. For more Besov
properties, we also mention [Pee76] and [JawT7].

We could consider the non-homogeneous low-frequency cut-off in the Littlewood-Paley character-
isation instead of usual mollification by convolution, as performed in the current paper, and adapt

Lemma 2.73 in [BCD11| for the space B&foo.

TAs in Proposition 3.6 in [LR02] for the closure Schwartz space, but we do not need the mollified versions of the
considered distributions to be rapidly decreasing functions.



2.2.3 Besov duality

In our analysis, we thoroughly use the Besov duality. The full proof of the duality of Besov spaces is
established for example in Proposition 3.6 in [LR02] thanks to a Littlewood-Paley decomposition.

Proposition 1. For all 1 < p,q < 400 and a € R, we have for all o, € S':

| [ 0] < Capaalieling, Il
Ra

withlﬁp’,q’§+oosuchthat%—kz%:l and%—k%:l.

Sketch of the proof. Let us suppose that w.l.o.g. that 1 < p,q < 400 (the analysis is identical if
we suppose that 1 < p/,¢ < +00). It is known that Bgiq(Rd R) and B (Rd R) are in duality
(Proposition 3.6 in [LR02]). Precisely, By, is the dual of the closure of the Schwartz class S in B,/
But S is dense in By, (see for instance 4.1.3. in [AH96]).

O

The homogeneous counterpart of this result requires additional assumptions on the considered
distributions, see for instance Proposition 2.29 in [BCD11].

2.2.4 Usual tools for the Gaussian function

Finally, one of the reason to use the thermic representation of the Besov space comes from a well-
known and important result about the Gaussian function: for all § > 0, there is C5 = Cs(d) > 1 such
that:

vz e RY, |$\5e_|$|2 < C(;e_cé_lmz. (2.9)

Furthermore, we will also often use the cancellation principle: for all f € C7, v € (0,1), z € R?
and o > 0

\2 lz—y|?

D, [ 2 py)dy = / Doe™ £ (y) — f(2)]dy, (2.10)
Rd

as the Gaussian function, up to a renormalisation by a multiplicative constant, is a probabilistic

e |2 —yl? :
distribution, hence D, fRd e 2 dy = 0. Hence, we obtain,

2 w2 | —
er)f|, [ ] < o, [ e Ty apay
Rd R4 g
< @)l [ e gy

Rd
—1
= C[f]o’7T.

The penultimate identity comes from the absorbing property (2.9)).

2.3 Different definitions of solution to the Cauchy problem

As said in the introduction, we need to carefully defined the kind of solution, no strong solution
can be define in negative Besov space or even in Hoélder implying a product of distributions which is
obviously no point-wisely defined.

Definition 1 (mild vanishing viscous). A function u is said to be a mild vanishing viscous solution
in L= ([0,T); C) (R%,R)) of equation (L) if for a sequence (by)mer, in L>®([0,T]; Cp°(R%,R?)) such
that there is 8 € R,

Ve >0, lim |bn =0, (2.11)
m——+00

- b”Loo([o,T};Bgo?;E(Rd,Rd))



for any t € [0,T], there exists a sub-sequence of (u™"(t, '))(m,V)ER%r lying in C} (RY,R) converging in

the space Cgig(K, R), 0 < € < v for any compact subset K C R%, when v — 0 and m — +oo towards
u(t,-) € CJ(K,R) and such that for any m € Ry and any v € Ry,

(2.12)

U™ (t, ) + (b (¢, ), Vu™ (t, z)) — vAU™ (t,2) = fm(t,2), (t,z) € (0,T] x RY,
u™(0,z) = gm(x), © € RY,

where (fn, gm) mjoo (f,g) in L>([0,T7; C7(R%, R)). We point out that such a sequence (bm)m>0

exists if b € L“([O,T];Bgf ~(R% R)); or in particular if b is the derivative of a bounded Holder
continuous function but in this former case the limit result has to be in the homogeneous space
L*>([0,T7; BJO?OO(Rd,R)), see Appendix Section and implies by ([2.7).

Moreover, it is important to notice that the choice of sub-sequence may depend on the current
time t. We do not succeed in getting any regularity in time ¢ (except boundedness in L°°) which
yields uniform continuity in time, hence to apply a suitable compact argument, we need to consider
the problem at a fixed time. Nevertheless, for the sake of simplicity we write for the sub-sequence
u™"(t,-) instead of a notation of the kind u™*" (¢, -).

Remark 2. We could consider another formulation of mild vanishing viscous solution, where the
considered function is

t
wm’”(t,a:):/ u™" (s, x)ds. (2.13)
0

From estimates stated in Theorem|[d below, we have that (t,z) — w™" (t,z) lies uniformly in (m,v) in
CL([0,T7; C’g(Rd, R)), by the Arzela-Ascoli theorem, we obtain a convergence in all compacts [0, T x K
of [0,T) x R? towards a function w € CL([0,T]; C} (K,R)).

To obtain such a kind of solutions, some constraints on v and m in terms of convergence are
required. Indeed, in our analysis, some blow-up contributions in m has to be overwhelmed by a
vanishing viscosity contribution v.

Let us define an alternative form of solution which is a mixed version between mild and weak
solution.

Definition 2 (mild-weak solution). A function u is a mild-weak solution in L*([0,T]; Cy (R4, R)) of
equation (L.1) if u is a mild vanishing viscous for a sequence (bm)mer, € L®([0,T]; Cs°(R%,R)) such
that there is 8 € R,

Ve >0, lim [b =0, (2.14)
m——+00

m = Ol ee o, ey
there exists a sub-sequence of (umw)(m,V)ERi in L>=([0,T]; CJ (R4, R)) strong solution of ([2.12)) con-

verging, for any compact K C RY, in L>(]0,T7; Cg_g(Rd, R)), 0 < € < v, towards the Holder contin-
wous u € L>®([0,T]; CJ (R%,R)) and such that for any function ¢ € C§°([0,T] x R%,R), we have, up
to a sub-sequence selection for any t € [0,T]:

im [ ettty + /0 { = Dupls, y)u™ (5,9) + (bun(5.9), Vu™ (s,)p(5,y) s fdy

m—00,v—0 Jpd
t
z/Rd sD(O,y)g(y)der/Rd/O o(s,y)f(s,y)ds dy.
(2.15)

The distributional formulation allows to give a sense to the potential irregularities of b and of
u”™ when v — 0, m — +o00, and to consider the whole space [0,7] x R?, the cut-off of R¢ required
to use the Arzela-Ascoli theorem is included in the test function .

We define now the usual weak solution.



Definition 3 (weak solution). A function u is a weak solution in L*([0,T]; CJ (R%,R)) of equation
(L1)) if w is @ mild vanishing viscous for any function ¢ € C§°([0,T] x R%, R):

/ {w(t,y)u(t,yH/ {—&w(&y)U(s,yH<b(s,y),Vu(s,y)%o(s,y)}dS}dy
R4 0
= [ e0mamar+ [ [ e misay (216)

Remark 3. We cannot hope to define classical solution in our irreqular context. Indeed, even if
roughly speaking Oyu + (b, Vu) is supposed to lie in LOO(C;), we cannot a priori define point-wisely
the classic scalar product between b and Vu. If b has a blow up at a point g € R? then, as u is
solution of (2.12), limg_,y, fg(b(s,x), Vu(s, z))ds is necessary finite for any t € [0,T] but we cannot
give a meaning of (b(t, zo), Vu(t,xo)) in a point-wise sense. Roughly speaking, to handle distributional
drift we have to stay in a distributional formulation of the solution.

2.4 On the non-uniqueness

We fail to obtain a uniqueness of a viscous selection principle. Indeed in the a priori controls of
(2.12)) we have to suppose that v goes to 0 much faster than m towards +o00. This constraint prevents
us to take advantage of the convergence of b,, towards b to balance the blow up in the viscosity v
occurring in the computation to get uniqueness.

The non-uniqueness is not surprising even in a Holder framework where there are usual counter-
examples of non-uniqueness of solution in the Hélder space.

For instance in [FGP10] they recall that the following transport coefficient yields non-uniqueness
of strong solution,

b(a) = - ! —sign(z)(e] A R, 7 € (0.1), (2.17)

for a given constant R > 0. With this counterexample, [AF09] get non-uniqueness of the zero noise
limit of the corresponding SPDE,

Oiuf + b - Opu® = eVu® o dWs.

Until now other method of approximations, such as a limit of mollification of the coefficient performed
by [CCS20] and [DLG22], also imply non-uniqueness of the solution. We finally can mention other
counter-examples stated in [Dep03].

3 Main results

When b lies in Holder-Besov space, we succeed in obtaining the same regularity of the solution as for
f and for g. The type of solution strongly depends on the regularity of b.

Theorem 2 (Existence of solution to rough transport equation). For v € (0,1), 8 > 0 be given.
For all b € L®([0,T], Betho (R4, R, f € L*([0,T]; CJ (R4, R)) and g € CJ (R4, R), there is a mild
vanishing viscosity solution u € L*>([0,T]; CJ (R4, R)) of (L)) satisfying

T fll oo (cmy + 9l
T fllze + llgllzee, (3.1)

HUHLw(cv)

<
[ullzee <

the conditions on the vanishing viscosity 0 < v < T~ are for a given constant C > 0 depending only



on (v,d),
m1+6"b|’Loo(B;/?m)T
1—~2 ’

_ A=7)2+7) 4 9 __4
v o< T bl s ) T exp (— 4

4
y(1—=7)

2924y _
v < (0m2+ﬁ|rb||Lw(ngw)T 5 (! W(Trf\mom+[g]7>><1+\|f||mm>>>

87"/L1+,8T1||bHLoo(BO*Oﬁ’3

°°)). (3.2)

<o (- (1 —7)

Moreover, with additional conditions on b, we have:

i) Incompressibility. If 5 < v and V - b = 0 then the solution u is also a mild-weak and a weak
solution.

i1) Positive continuity. If 5 < —1 + v, namely if b € LOO([O,T];CI?(]ROZ,R)), ¥ > 1— 1, then the
solution u is also a mild-weak and a weak solution, if

-1 _
v (THf||L°° + [g]’)’) <m2 T+ CTm2+6||b||Loo(Bgo‘foo)) eXp(—2Tm1+’8HbHLOO(B;O/?OO)), (3'3)

then Ouu(t,-) € Bxd' (RL R).

Remark 4. For the mild vanishing viscous solution there is no restriction on b, roughly speaking
there is an “infinite reqularisation by turbulence” over the coefficients.

While for the usual weak solution, there is no more such infinite regularisation effect. The In-
compressibility framework, i.e. V -b =0, allows to still consider a negative reqularity of b. Such
divergence free condition for non-smooth distributions already exists for instance for Leray’s solution
of Navier-Stokes equation [Ler3]).

In the last case, i.e. Positive continuity, the considered drift b is suppose to be Hélder continu-
ous in space, in particular lying in L*°([0,T7; C’g‘(Rd,Rd)), a > 1 — which is the Bony’s paraproduct
assumption, see Section below for more details.

Importantly, the above controls do not depend on the drift b. This is crucial to consider
very rough coefficients as well as non-linear equation such as the inviscid Burgers’ equation studied
in Section [4.

Remark 5. The exponential criterion in relies on an a priori control by ||[u™" || e, see Section
[4.2.7 for more details. This condition prevents us to hope any balance between m and v required to get
usual uniqueness. Indeed, when we expand the computations, we can see only polynomial dependency
on (m,v) in the upper-bounds. But the contribution on v goes in the wrong way, and cannot be
overwhelmed by polynomial converging terms in m, because at the best m ~ |In(v)| from .

Even for b lying in a Holder space, namely with a positive regularity, we fail to avoid an exponential

criterion like in (3.2)), see again Section [.2.7

3.1 On the product of distributions

The sense of a product of distributions is very challenging, and can allows to deal with long-standing
problems. For instance, Hairer in [Hail4] introduce a regularity theory which after some renormal-
isation allows to handle with products of distribution, and to give a meaning of stochastic partial
differential equation such as KPZ [Hail3]. However, such renormalisation leads to blowing-up con-
stants which is not the case in Theorem[2} the price that we have to pay is the potential non-uniqueness
of the limit.

From the different formulations above, we see that we can define different meaning of the product
(b, Vu).



First of all, let us remark that by rough a priori controls, see Appendix Sections [A2] and [A3]

B, < BTGRP ()
< Cm* 7 (tf ||z (o) + lgly) exp(Ctm* 2 [Bl] oo s _y)-

Hence, if v < Cm*7 (¢t f|| o (o) + [9]4) exp(CthﬁHbHLw(Bfg )), implied by (3.2)), then, up to

subsequence choice, vAu"™"(t, -) — 0 in C} (R, R).
(m,v)—(+00,0)

Also, for a given t € [0,T], we see from the definition of mild vanishing viscous solution, up to
subsequence choice according to the condition (3.2)), that

lim )/0 (b (s,-), Vu™"(s,-))ds = g — u(t,-) —i—/o f(s,-)ds € C)(K,R), (3.4)

(m,v)—(+00,0

for any compact K C R?. We highly point out that b lies in any arbitrary negative regularity in space
L=([0, T); Bilo (R, RY), B € Ry, and Vu(s,-) € Bxad (RY, RY).

In other words, thanks to the time averaging we get a new para-product condition. Indeed, in
general from Bony’s microlocal analysis [Bon81], see also [GIP15], for all p € B3l and ¢ € B2,
we have

¢ € BENS? if o 4 ap > 0. (3.5)

However, the uniqueness of the limit in seems to be false in general, which is consistent with
the non-uniqueness of classic solution for b Holder continuous, see example .

Also in the weak formulation, from Theorem [2| we obtain, if V-b =0 and 3 < v, a distributional
meaning of (b(s,-), Vu(s,-)), but we still do not know in this case if the limit is unique. But the
regularity condition is still weaker than ([3.5)).

Finally, we point out that in the Positive continuity framework, we meet the Bony’s paraproduct
condition (3.5). Indeed, for any t € [0,T7], b(t,) € B% 0, @ = —f3, and Vu(t,-) € Bgo%;? with
a—1+~ > 0. We can quantify the regularity, (b(t,-), Vu(t,-) € BO_OI,SLQ7 by paraproduct detailed
further in Section Moreover, the time averaging version fg (b(s, ), Vu(s,-)ds in the sense of
(3.4) is y-Holder. We remark, as aw A (—1 + ) = —1 + ~ then there is a +1 gain of regularity

comparing with the usual paraproduct result.

4 Proof of Theorem 2

4.1 Parabolic approximation procedure

Let us first smoothen the drift and the source functions of the parabolic approximation,

O™ (t, ) + (b, VU™)(t, 1) — vAU™ (t,x) = fi(t,z), (t,2) € (0,T] x RY, (41)
u™ (0, ) = gm(z), v € RY, '
where the mollified functions are defined by
balta) = [ ple = )bt ).
fulta) = [ oulo—n)(t.
an(t.) = [ pule =iy (42)

for pm(-) := m?p(m-) where p is a non-negative smooth function py,, such that [, pm(z — y)dy = 1.
In particular, we choose p = hy the heat kernel defined in[2.4] In Appendix Sections D] and [B] we see
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that the limit of b,, does not depend on the choice of the mollification procedure, whereas the limit
of u™" potentially does.

In our analysis, we use some point-wise controls of the mollified functions or distributions whose
the blowing-up in the regularisation parameter m is stated below.

Lemma 1. For all m > 1, and f > 0, if b € LOO([O,T},BQO?OO(Rd,Rd)), we have for any (t,x) €
[0,T] x Re:
[ Db (t, )

IN

P

le—i—ﬁHb”Loo(B;foo)a (43)

N

where Dby, stands for the Jacobian matrixz of by,; also if 5 <0,

[bm (2, )|
| Db (t, )|

18] o,

<
< Om"P)bl| poo (o).

Proof of Lemma . From the mollification definition (4.2)), we see, from (2.5)), that p,, = h,,-2, and
from our scaling choice, we get for any m > 1

bu(t,z)| = | / B2 (z — )bt ) dy|
Rd
< m’  sw ﬁfﬁ\/ -2z — y)b(t, y)dy|.
m—2€[0,1], z€Rd R4

We readily get by the thermic definition of the Besov norm ([2.4)):

(. 2)| < P[0l sy < P b

Bl) Bxl)

For the second inequality, it is known that for any ¢ € [0,7], Db(t,-) € Bgofgf , see Theorem 9 of
Chapter 3 in [Pee76], in particular case 5 € (0, —1) see Corollary |8 in Appendix Section |[C| Hence,

| Dbt )| < m'™P sup P / hyy-2(Z — y) Dyb(t, y)dy|
m-2€[0,1], F€R? R4
— 1+
= mPIDb] sy
We deduce that there is a constant C' = C'(d) > 0 such that:

| Dabin(t, )| < O Bl oo -

The two last equations of the lemma, i.e. for the case 5 < 0, are standard. O

4.1.1 L*° control

We have directly by the Feynman-Kac formulation the uniform control, see for example from the
analysis performed in [Hon22|, or from maximum principle for linear parabolic equation see e.g.
[Lie96].

[ || oo < T fllLoe + [|gllzoe- (4.4)

For the sake of completeness, we provide in Section [4.6| a way to get exactly the same upper-bound
when v — 0.

11



4.1.2 Proxy choice

To derive the others estimates from Duhamel formulation, we approximate the Cauchy problem
around the flow associated to the smooth function b,,, which is unique by Cauchy-Lipschitz theorem.
Namely, let us consider the unique function defined for any freezing point (7,&) € [0,7] x R? by,

o7 (2) = + / b (5, 67 (2))d5, s € [0,7]. (4.5)
In other words, for any t € [0, 7],
07 (€) = —bm(t.07()), 07,(€) = ¢.
We can again rewrite the system of linear parabolic PDEs (4.2)),
O™ (t, ) + by (t, 015 (€)) - VU™ (¢, 2) — vAu™" (t, x) = b[T, ] (¢, ) - VU™ (t, ) + fim(t, ), (4.6)

where we define
OA[T, €1t ) := b (2,077 (8)) — bin(t, ). (4.7)

For such a fixed freezing point (7,¢) € [0,T] x R?, we use the corresponding Duhamel formula:
u™ (t, ) = PTGy (t, ) + G fin(t, ) + GTS(WR[T, €] - Va™" ) (¢, 2), (4.8)

where we define, for any f € CS’Q((O, T] x R4 R), the Green operator associated with the perturbed
parabolic equation with constant coefficients (4.1)),

t
W(t.o) € O.T) x B, G pltn) = [ [ 5705, tmg) flsvn) dy s, (19)
0 JRd
and for any g € C2(R%, R), the associated semi-group

Prgn(ta) = [ 5740, p)an(v) dy, (1.10)

where the perturbed heat kernel is

2
f)T’E(S?taxay) = 2 €Xp <_ > (411)
(4rv(t —s))2 Av(t —s)
We carefully point out that, from definition (4.5)), if { = =
m 2
N _ 1 |05,t(w) - y‘
P(s by y) = ——————gexp | — — r— ).
(4ru(t — s))2 v(t —s)
We have for each o € N? that there is a constant C, > 1 s.t.
lo] t ~ ~ 2
oo Culv(s=t)] 2 _ w‘i‘fs b (3,0%°.(§))ds — y
|D p’g(s,t,ﬂ%y” S [ ( )] v eXp(_ch‘ 1 s } )
(47v(t — )2 v(t —s)
— Clu(s — )] 57 8(s, t,2,y), (4.12)

and also, after the derivative we can choose (7,&) = (t,z), and v € [0, 1],

t
|Daﬁt,x(55t7xay)| X |y —l’—/ bm(gv Hg?T(g))d§|’y = |Daﬁt’m(8>tal‘ay)| X |y_ agft(gj)”y
_lal

< Clu(s— )5+ 3p (s, t,2,y), (4.13)
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from absorbing property (2.9 . It also clear that for any 0 < s < t that
Dp™ (s, 1,2, y) = VAP (s, t, 2, y) — (b (t, 075(€)), VI (5,8, 2, 1)), (4.14)
which naturally implies that the function ™" defined in (4.8]) is indeed solution to (4.1)) and to (4.6)).

Finally, we will marginally use the “pure” heat kernel

p(s,t,x,y) == rf<3,t,x — /St bm (3, 05(€))ds, y) Wexp ( — M), (4.15)

the corresponding Green operator
¢
W(t.) € O.T)x B Ghltn) = [ [ pls.to0)f(svy) dy ds (4.16)
0 JRd

and the associated semi-group

Pon(ta) = [ 50t 2.0)90) do (1.17)

4.2 Control of Holder modulus

For any (t,z,2') € [0,T] x R? x R, we choose the associated freezing points (r,£) and (7/,¢), but
we take 7 = 7/ like in [CDRHMIS]. The previous Duhamel formula (4.8)) yields

[u™ (t,z) — u™" (¢, 2")|
< |G fn(t,2) = G Lo (2 + | P g (8, 2) — P g (8, 2)))]

+‘ /t /RdﬁT’g(S,t,:L"y [b (8,0:17_(5)) - bm(S,y)] : Vum’”(s,y)dyds

// 57 (5, 4,2,9) [bin (5, 07 (€)= bin(5,9)] - VU™ (s, y)dy ds
Rd
=i |G ot 2) = G4 fon(t, 2))| + | P g (t, @) — P78 g (8, 2')| 4 |RTE (8, 27)]. (4.18)

However, our analysis need different choices of freezing point which yields extra contributions in the
above inequality, the final Duhamel like identity is stated in (4.56|) further.

By integration by parts, we can rewrite the remainder term
RT7£7£I (t’ x’ x/)

- {/0 R VﬁﬂE(S:t?'%y) ’ [b (879;n7(§)) - bm(say”[um’u(say) —u™ (879?7(5))]dy ds
[V ) 02 (€) = sl (5,) = ™ (s, 85y s
H{ [ /R (5,0, )V b5, )™ (5,) — ™ s, 07 €)))dy s

[ Gt ) o) )~ o, 05 €y s
= RIS(t,2,2') + RYSS (¢, 2, 2). (4.19)

Actually, this integration by parts is not essential, we could use a point-wise a priori control of
Vu™". However we aim to track as sharp as possible the required a priori controls in the upper-
bounds. To be more specific, we unsuccessfully tried to only upper-bound by |u™"|| Le(C)) instead
of |Ju™"|| Leo(cpy- This last value is finite but increases exponentially with m, see Appendix Section
This exponential blowing-up yields the limit criterion of (m,v), and prevents us to get any
balance between m and v to conclude with uniqueness of solution.
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4.2.1 Main terms

For the main contributions associated with f and g, we choose the freezing parameters to be 7 =t
and £ = ¢ = x, we choose the same parameters as in the diagonal regime specified further.

Semi-group

We readily derive by change variables:

|p7—’£gm(t,$) - pﬂggm(t?xlﬂ - ‘ / [ﬁT’g(O’tal‘ay) —ﬁT’EI((),t’Jj/’y)]gm(S,y)dy‘
T=t,£=&'=x Rd
r=tg=¢'=a
= | [ 0000005+ 9) =~ g’ + )l
< glyle =27 (4.20)

Green operator

We also get by change variables:

t
67 fnt,2) = G7 fn(t, ) = | [ [ s ) = st )l )y ds
T=t,{={=x 0o JRd
t
= | [ ] B0 bl =) = s’ = s
< A fllzosomle = 2"t (4.21)

4.2.2 Remainder term

To analysis of the Hélder modulus of the remainder term, which is the core of the a priori controls, we
need to separate the diagonal regime from the off-diagonal one, as performed in [CDRHMI1S]|. This
strategy is natural in view with the vanishing viscous solution selected by the parabolic approximation.

However, in the vanishing viscosity context, we have to carefully track the dependency on v
which yields to consider an other criterion of diagonal / off-diagonal regime, usual in the parabolic
framework.

Specifically, for any x,z’ € R? and for given parameters (o, o) € R?, to be tailored further, we
call off-diagonal regime the case |[x — z/| > v*(t — §)*2 & s >ty with

_1 1
to:=t—v "‘2|$—CL‘,|"‘2; (422)

on the contrary the diagonal regime holds when |z — z/| < v (t — 5)*2 & s < ty.

The point ¢y can be regarded as a cut-locus point where we “catch” the shortest way from v (¢, x)
to u™¥(t,x’) if t € [0,tp] and we choose another way if ¢ty < ¢t. We carefully point out that this
procedure yields an extra contribution in , this is detailed in Sections

We specify in Section below why we can choose different freezing parameters for the remainder
term according to the current regime; meanwhile the semi-group and the Green operator dealt in
Section [4:2.1] can somehow stay in the diagonal regime.

4.2.3 Diagonal regime

_or 1
Ifle—2| <vM(t—s5)? o s<ty=t—v 2|z —12'|*2, { =& = x then we define the associated
space
Az, 2’ v, t)(s) :i= {|x — 2’| < v (t — 5)*?}, (4.23)
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with the indicator function

Lif |z — /| S v (t — s)*2
]lA(:E,:E',Z/,t)(S) = . , o a ’
0if |z — 2’| > v (t — s5)2,

and the associated remainder terms
szfl (t,x,2)
t
[ L) [ [t (02 (6)) = b5, 9) (47 (59) = ™ (5, 025(6))

=~V (s, 4,0', ) - (b (5, 02 (€)) = (5, ) (w7 (5,) = w™ (s, 02%()) | dy ds,

GyNCERD
t
= /() ]lA(x,ac’,u,t) (S) /]Rd [ﬁT,f(S’ t7 z, y)v . bm(87 y) (um,u(s’ y) - umw(sa 0?}7— (5)))

=57 (5, 4,2 )V (5, 9) (07 (5, 9) = W™ (5,07 (€1)) | dy s (4.24)

Let us remark that, if ¢g > 0, we can equivalently write the above terms by
RIff/ (t,z,2)
= [ [Tt (2 8229) = bn(5:9) (4 52) — (5, 029)
V7 (5,1, ) - (b5, 07 (E) — bin(5,9)) (W™ (5,9) — ™ (5, 075 (€))) | dy s
(

= VG5 { (b 073(8)) = bn) (™ — w7 (-, 07(€))) } (1, 2)

=GR (b 07(€) = ) (™ — ™ (07 (€) bt ), (4.25)
and by
RySE (¢ 2,2)
to
= [ s tma)V b ) (0 (s, ) — 0 (s, 0200)
0o Jrd
—ﬁT,’EI(S, t,x' y)V - bm(s,y) (um’”(s, y) —u™" (s, 9;’}(5')))] dy ds (4.26)

i {v Dy (W — (-, 07 (€))) }(t, z) — C:;ft’{v by (U™ — ™ (- e?j;(gf)))}(t, ).

0,to
Remainder term RI’ffl (t,x, )
By change of vauriaubleﬁ7 we directly get
RS (2, )| yeerrs
t
= ‘/ ]lA(a:,:c’,V,t) (S) VﬁT’f(s,t,O,y)
0 Rd
{ (b5, 07-0)) = b, + ) (™ (5, 4 ) — w™ (5,02 (€)))

»YSs, T

)

=t E=¢'=x

~ (bun(5.07()) = bua(s,2" +9)) (4™ (s,2" + ) =™ (5, 67,(€)) Jdy ds|

» VS8, T

#Specifically, we choose the new variable y' =y — .
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by parity of the Gaussian density, specifying that

[ (5.6, €))d5 - yf)

1
¢ (s,1,0,y) = ——————— -
b (37 ) >y) a €XP < 4V(t _ 8)

(4mv(t —s))2
and expanding the terms above, in the r.h.s., gives us

B o a)] e,

t
— | [ st [ V5 8.0.5) - {5, 02 €) (0™ (51 4 ) = 5.0+ )
0 R4
(b5, + ) = b5, + ))u™ (5, 677(6))

+bm (s, 2" + y)u™" (s, 2 +y) — by (s, 7 + y)u™ (s, x + y)}dy ds‘

)

T=t,{=¢'=x

and putting together the corresponding contribution
33 /
|R1,A (t’ z,z )| ‘T:t,&:f/::r
t
| [ araar(s) [ 7 5,1.0.0) - {5, 02 (0 (54 9) = (5.0 + )
0
+(bm (s, 2 + 1) = bn(s, 2" +y))u™" (5,05(€) + (bm(s,2" +y) — bu(s, 2+ y))u™"(s,2" +y)

—bm(s, 2" +y) (W™ (s, z +y) — ™" (s, 2’ +y)) }dy dS)

T=t,(={'=x

We finally get

[RTSS (6,2, eer,

— ‘/0 » Vp(s,t,0,y) - {(bm(s,e’stT(g)) —b(s,2 1)) (W (5,2 + ) — (5,7 + y))

+(bm(s, 2" +y) = bn(s,z +y)) (W™ (s, 2" +y) — u™"(5,07.(€))) }dy ds‘

)
=t £=¢'=x

hence by exponential absorption property (2.9)),
|RI:%£ <t’ Z, xl) ‘ ‘T:t,ﬁzflix
< Cla = 2[[|bmll ooty [u™ | o (1)
¢ _1
X / ]lA(x,x’,u,t)(S) \/Rd (V(t - 3)) 2ﬁ77€(37t7 07 y) X ’02}7(‘%) - 1'/ - y‘dyds
0

< COlz = 2" |bml oo ony [u™ | oo (1) (4.27)

)

¢ _1
X /0 ]lA(:E,:E’,V,t)(S) /Rd (V(t - S)) 2]37’§(S,t,0,y)(|9277.($) - = y| + |‘T/ - ﬂ7|)dy ds

T=t£=¢'=c
where we recall from (4.12) that
t, o~ - 2
C b (8,07 ds —
P (s8,0,y) = ————exp (= O |, b3, 05 (€)1 — ).
(47v(t — s))2 Av(t — s)
Let us remark thanks to Gronwall’s lemma we get, see Appendix Section [A}
lm (8, Mo < (T peen + g™ ler ) exp (m2ubll e s ) ) = Om(D). (4.28)
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For (1,&) = (t, ), recalling that fst bm (5, 054(x))ds = 07 (7) —z, and by absorption property (2.9)),
we deduce

75’5/
[RY (a2 e,

IN

t
1
C’l’ - x/Hb”Loo(Bo—oéoo)mlJrﬁOm(t)/o ]lA(x,x’,u,t)(s) (1 + [V(t - 3)]75"%' - $/|>d8

t
< Cla- xl"y”al(lﬂ)”bHLW(B—ﬁ )mH’BOm(t)/ (t—s))e (1 (s — 1) T (E - s)”)ds,
00,00 0

because in the current diagonal regime, |z — z/|'=7 < per(1=7) (¢ — g)a2(1-7),

If (1—7)az>—-land (1—7)az—3+as> -1 ay > —
integral is finite and

1
> 71

— > —1, the above time

1
2(2—)

[RTSE (ta,a)| e,

< C|x*x/nHb”Loo(Bgfoo)mHBOm(t)( a1(1=7)+(1=naz 4 |, —5+e1(2—7)3+a2(2— 7))_ (4.29)

To consider vanishing viscous, it is necessary to have a;(1 —+) > 0 and —% +a(l—=9)+a1>0&
041>2(2 )>0for7<1

To sum up, we consider the constraint

P e ——— (4.30)

Remainder term RTg £

t,x,x’)
Also by change of variables and by similar computations as for the first remainder term RI’g’EI (t,z,2):

|R;f4’§ (t,2,2")] ‘T:t,g:g:x

= | [ Bt 9) [ 500 b+ ) (07 4 ) " s, ) s
[ o) [ B0 bl ) (a7 5+ 0) 5,024 0)) )y 5

= ‘ /Ot La(zar ) (8) /Rd P (5,1,0,9) - { =V b (s, 2" +y) (W™ (5,2 +y) —u™ (s, 2" +y))
+(V - bm(s, 2" +y) = V- b(s,z +y)) (u™ (5,2 +y) —u™(s,07(x))) }dy ds‘

< Clo—2'[([Vbmllee + [[Vbmll oo en)) 0™ | oo ey /Ot]lA(m,x’,y,t)(S)dS'

Next, we obtain from (2.9 and (4.28]),

‘R;:%g (t’ Z .CU/) | |‘r:t,€:§/=x

t
< C|$ - x/|||bHLoo(B;o‘?OO)(m1+,8 + m2+ﬂ)0m(t)/0 ﬂA(z,x’,u,t)(S)(l =+ [ (t - 5)])2d8
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By assumption of the diagonal regime, we get

IRESE (6w )| ey

IN

t
Cla = 2/ P Db s (4 4+ m2+2) O (1) / (t — )220 (L4 [ut — s)]) 2ds
0

< Oz — /Py 0-ngitaz(= HbHLOO(B s )(m1+5+m2+5)0m(t), (4.31)

for vt < vT < 1. The above inequality satisfies the vanishing viscosity analysis if a1 >0 and if

g > % which is already required for the first remainder (because 5> 0 and 2327 7) > )

2(
4.2.4 Off-diagonal regime

o 1
If |x — 2| >v*(t—s)* & s>t —v °2|x —a'|*2, we recall the corresponding cut locus point

_a L
to:=t—v 2|z —a'|ee.

In this case, we choose as freezing parameters £ = x and £ = /. In the off-diagonal regime, the
associated space is
AC(z, 2 v, t)(s) == {|z — /| > v (t — 5)*?}, (4.32)

the indicator function

1if | — 2'| > v (t — s)*2,

14 !y s)=1—-1 'y S) =
Ac(z,2’, 7t)( ) A(z,x!, ,t)( ) {0 if |l‘—£L‘/| < I/Oél(t—s)og,

and the associated remainder terms are
RYSE (t,w,") = RY%% (t,2,0") — RTSE (¢, 2,2)
= /0 t]lAC(ac,m’,u,t)(s) /R , [Vﬁ“(s,t,x,y) (bin(5,07-(€)) = bn(s,9)) (W™ (5,y) — u™" (s,07-(€)))
=V (5,,2,y) - (bm(5,07(€) = bin(s,1)) (W™ (5,) — u™ (&&Aé’)))}dyds,
and
RySE (taa) = Ry (tw,a!) — RS (t,2,2')
= [ tctawaa® [ [0 bnos0) (7 510) — 5, 020)
=07 (5,0 )V < b (5, ) (0 (5, ) = ™ (5,07 (€1))) | dy s
Like in the diagonal regime, we can also rewrite the above remainder terms
RYSE (t,2,2)
[ 05750t (5. 020) = 1) (7 5 7 5,0229)
—Vp"E (s, t, 20, y) - (b (5,9’;2(5))—bm(s,y))(um”(s’y)—u (&%i(&’)))]dyds
= V-égi{(bmo,ems»—bm)(um’”—u HO) f(ta
- G (b 05()) = b) (™ — ™ (6 (5)))}( 2, (4.33)

18



and
Ry (t2,2)
Lt ¥ b () = 6, 02,60)
57 (5,8, 9)V - b (5, ) (™ (5,9) — u™ (s, 0;1(&')))} dy ds (4.34)
= GTEA b (0 = (07 (©) bt @) = GV b (™ = (- 075(E)) bt ).

Remainder term Rl’if (t,x, )

By triangular inequality

|R17§4§ (t’ €, 'r/)Hq—:t E=x.&'=x!

Loo(C) sup// v(t —s)) p’“”(s,t,:r,y)ly—9277(5)\1+”dyd8-
x€R4

< 200l gy 1™

Next, by absorbing property of the exponential (2.9) we get

¢ ol
RISE Caa | sy < O PNl o s 1™ oo o) / (v(t—s))2ds
0
14+
m et v 1+2
< 2_{_70”2”&’”[/00(3;0&0)”“”1 (t_tO) 2.

Finally by definition of the cut locus point (4.22]):

1+B @ 1
m ol _o1 1 24qy
OV [bl] o gty 1™ ooy (v 2 [ — /] 72) 5

7.6, /
‘Rl AC t , Ly T )HT:t,E:x,f’:a}’ < 1 o

ml"'ﬁ y_o1(247)

24y
2~ m,v _ | Zan
S 1% 1811 e (s y 6™ oo (omy [ = 2[22 . (4.35)
Hence, we need to have a second constraint:
24y
’Y - 2@2 ’
7 ai2+9)
0 I _ . 4.36
< 2 20[2 ( )

In particular, the parameter as is then determined by ag = 2;—77

Remainder term R;zifl (t,x, )

We also derive by triangular inequality,

|R2’§4§ (t, 2,2")] ‘T:t,gzx,e:x’

‘/0 ]lAC(m,x’,u,t)(S) /Rdﬁt’m(s,t707y)v'bm(87x+y)(um’y(5,l‘+y) —u™ (8’0815( )))dyds‘

IN

t
+’ /0 ]lAC(:E,m’,V,t)(S) /Rd ﬁt@ (S,t, 0, y)v : bm(s,x/ + y) (um,l/(svx/ + y) —u™ (S’ 98 t( )))dy ds‘

IN

t
20|V - bn || Loe [[u™" || oo (o) /t [v(t — s)]%ds,
0
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by similar absorbing arguments previously performed; and finally

o 3l m,v
Cvz 22 |Ibl] oo s 1™ oo oy o7, (4.37)

7&6 / m
|R2 JAC (t,l‘,.’E )HT:t,ﬁ:m,ﬁ’:z/ < 1 T

which yields the same constraints as (4.36)).

4.2.5 Sum up on the constraints on aq, as

Recalling from ({4.36))
o — 2+
2 = 27 ’
7 ai2+7)
0 ! 4.38
< 3 2y (4.38)
and from (4.30)), that we recall
< 1
aq 579 .\
2(2-7)
1
ay > ——, (4.39)
2(2 - 7)
the second is satisfied by the choice as = 2+7 >0>— (2 ok
Next, combining (4.38)) with (4.39 -
g Y
— < < —. 4.40
23— <M <3 (4.40)

This possible if
1<2—v <= v<1,
which means that there is no possibility, with our strategy, to obtain a suitable Lipschitz control of
the solution u™"
Furthermore, we also need to suppose that

1

4.2.6 Choice of oy

Finally, we calibrate a; such that the “worst” contribution of v in the diagonal regime in (4.29)
matches with the off-diagonal one in (4.35)), namely

1 7 a(2+9)
_z 2—q)=-2 - — Y
9 + CVl( 7) 9 2a2 ’
as 1 — aléi;“”) = 4 — a7, we deduce
1
a = %_ (4.42)

We point out that the constraint (4.41)) is indeed satisfied.

Let us detail that, with the choice (4.42)), the conditions in are satisfied, namely that

< V(HV) < 3, the second inequality is direct as HJ <1 for any v < 1. In order to prove the

(2 )
first 1nequahty, we equivalently need to get I'(7y) := (2 — 'y)(l + 7) > 2. Differentiating this function

readily gives I'(y) = =1 — v +2 — v =1 — 27, hence inf ¢ 1) ['(y) = min,efo,13 T'(7) = 2.

Remark 6. The condition to have a diagonal regime is then ]a: —2| < y%(t — 8)224—7’7, which differs
from the usual parabolic scale where (a1, ) is replaced by (2, 2) but recalling that oy = 5 is not
allowed in . We do not seek for any parabolic bootstrap of regularity, unlike [CDRHMI18], our
goal is above all to control as sharp as possible the dependency on v.
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4.2.7 Comments on the necessity of using the norm ||| 1)

At this stage, we can justify why we upper-bound by the blowing-up term |[[u""|| 1y in the
diagonal regime, which is overwhelmed by the viscosity v but prevents to get uniqueness, see Remark
instead of the well-controlled ||u™" || o0 (o).

Let us rewrite one of the term of R‘{’g’g, (t,z,2") in r.hs. in (4.27),

t
[ 575,000 (0”4 9) = s+ 9) (07 50"+ ) = ™ (5, 075(6))) s

=t g=¢'=x

t
17 m
< Clo= bl [ 15 )ler [ vl = ) 47(5,8.0.5) x 19226) = o' = ydyds

¢ -1 1
< Clo=allbmll=er /0 (s, len ([t = )% + [t = )] 3o — 2’| ) ds

IN

t
Cla = o/ P bl s [ (5,
00,00 0

-1

x(t = s)lt e ([V(t — )T 4t —s)] 2t — s)om> ds
= Clz— x/WHbHLOO(B;f’OO)ml—i_B
t — —
X / [u™" (s, -)llc ((t - 5)(1_7)a2+%11/a1(1_7)+771 + yal—%(t _ S)w_%)ds.
0

Then the required, assumption on parameters is for this control

1
ar > =, ag > ——,
P Ty
which combined with the constraint on the off-diagonal regime (4.36]) is absurd.
We could consider the case a1 = %, but this case yields no viscosity contribution and make

the previous upper-bounds blowing up with m (except for the usual framework, i.e. for b Lipschitz
continuous); there is no possibility to obtain a regularisation by turbulence for such a choice.
If we suppose that b is v-Holder in space, in order to avoid any blowing-up in m, from (4.27)), we
can write
&€ /
|R71- (t,l‘,.’E )HT:t,ﬁ:{/:x

1_

¢
< Cla—aPlblieny [ 0™ (sl [ ol = )4G0, 0,0,9) % 025 a) = o/ ol s
0
t —1 1
< Ol bluser) [ ™ (s llor (It = )5 + it = ) Ha - ") ds
0
t —
< Ol blamier) [ ™ (s ller (It = )5 4755 = )3t = 5)7)ds,
0
which goes to +0o when v — 0, except if v = 1. In other words, we need to consider the norms
[bm | oo (1) and ||u™" || oo (1) on the one hand to smoothen the blowing-up in v and to get the suit-
able |z — 2/| which allows to overwhelm v in the diagonal regime.
Finally, we could rewrite the analysis performed before this current section without doing an
integration by parts in (4.19), and by upper-bounding with ||Vu™"|p~. We choose to keep this

separation of the remainder term defined in (4.19)) in order to track precisely where the regime helps
us to overuse the suitable a priori regularity of w™" in L*([0, T]; Cj (R4, R)).
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4.3 On the discontinuous freezing choice

Let us carefully point out that even if the solution ™" does not depend on the corresponding freezing
parameter &, the choice of ¢ in this section does depend on the current time variable of integration s.

Therefore, like for the approach developed in [CDRHMIS], the cut locus point yields an additional
contribution.

Previously, in the Hélder norm controls, we considered two points (x,2’) € RYx R?. Let us specify
how to write the solution u™"(t,z’) with the different choices of freezing parameter ¢’ depending on
the time variable of integration s. To do so, we first rewrite the theoretical representation of the
solution where the time horizon is r € [0, 7], and the initial function is replaced by u™"(r,z’),

u™ (t ') = PIVa (r ) + GV f(t, 1), (4.43)

where Pﬁ’” and G:?t’” stand respectively for the semi-group and the Green operator associated with
the Cauchy problem

™Y (t,x) + (b (t, ), VO™ (t, 2)) — vAV™Y (t,x) = f(t, ), (t,2) € (r,T] x R, (4.44)
o™ (r ) = W™ (r,x), x € R4, '
We also write
Wt 3) = BTG (t,2) + CIE f(t,2) + CTE (BRI, €] - V™) (¢, 2), (4.45)
where the operators are defined by
t
V(t,x) € (0,T] x R, GT* fn(t, ) := / / P (st 2, ) f (5,y)dy ds, (4.46)
r JRd
and
P,,T’fgm(t,x) = /Rd ﬁT’g(r,t,x,y)gm(y)dy. (4.47)
Let us define the transition time
_o L _a0ty) L2
to:=t—v @2lz—2|2=t—v 200 |z —2|%. (4.48)

_o B
Iftg <0<t <v 2|z —2a'|°z2, the off-diagonal regime is in force, then we pick £’ = 2’ and there
is no intricate choice of the freezing parameter.

_o1 B
However, if tg > 0 <t > v 22 |z—12|*2, we need to be more subtle to handle with the dependency
on s for the value choice of ¢ € R?. From now on, we suppose that ¢ty > 0.

We next differentiate (4.43)) w.r.t. r

0= 0, (PTSu™ (r,)) (t,2") + ,GT% fon(t,2") + 0, G (VR[7, €] - VU™ ) (¢, ). (4.49)
We integrate the variable r between [to,t] with the prozy parameter & € R?,

0 =um™¥(t,a') = [P w™ (to, )] (t,2') = G fn(t, ') = G (BR[7, €] - Vu™) (¢, @),
which yields for ¢ € [tg, T

u™ (t,2') = [PEE U™ (to, ) (t, 2') + GEE fnlt,a”) + GLE (DR [7, €] - Vu™) (¢, z). (4.50)
Next, we integrate in time between [0, t9] with a different freezing parameter ¢ e R,
0 = [BrSu™ (to,))(t,2") = B g (@) + GLF fnlt,a!) = G5€ fin(t,2')
G (BRIT, € - Vu™) (8, ) — GpE (BRIT, €] - Vu™) (¢, x).
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Hence,
Wt 2’y = [PIE W™ (b, )] (6 a') + GRF f(tat) + GRE (BRI, €] - Va™) ().
—[Pt? U™ (to, N (t,2') + BT g (@) — GLE oty 2) + G fin(t,2)
—GTE (VR [7, €] - Vum™) (¢, 2) + GRE (bR [T, €] - Vu™Y) (8, ).

Defining /
WY, 2) € 0,1 x RE, G5 fn(t, 2) /t /R (5. 6.2, 9) [ (5, y)dy ds, (4.51)
we can write
u™ (t, ")
= [P (1o, )]t a') — (BT um (10, )(t,2!) + GRF f(t,2) (4.52)
+GTE (BRI €] Vum) () + BT g (') + GES fn(t, ') + CS (VR [T, €] - Va™) (¢, ).

There is an extra contribution [Ptg’élum7”(to, I, 2" — [Pt:)’g/umv”(to, I)](t, 2’) due to the discontinuous
freezing choice, the others terms match with the ones appearing our above computations.
4.4 Extra contribution [Pto’g u™Y (to, )| (t, 2") — [Ptg’5 u™ (to, )| (t, z")
Thanks to a change of variables, we readily obtain
[P um™ (t0, )] (¢, 2') — [P u™ (to, )} (¢, 2')

= / P (to, t 2, y)u™ (to, y)dy — / P (to, t, 2, y)u™” (to, y)dy
R4 RA
t t
— /dﬁ(to,t,m’,y) {um’”(to,y —i—/ b, (s,HST (f’))d§)dy — um”’(to,y +/ bm (87987_ (f’)d§))]dy,
R

to to

recalling that p(tg, ¢, 2’,y) stands for the usual heat kernel defined in (4.15). Therefore,

’[PT’Elum’V(to Nt z") — [pT’gumW(to, CED

IN

[[w"™" || oo oy / |6 (3, 07(€))) — b (3, 07%(£)|d5

IA

”Um’VHLOO(C’l)’bmHL‘X’(C’l)/t ’92,17'(5/) _eng(f’)|d§.
0

We have, see Lemma, [2[in Appendix Section for any (z,2) € R? x R%:

Jup 107 () - 07, < o =2 exp (|[bml|oe(c1)7)-
se|0,7

We then deduce for (7,&, ') = (t,z,2') that

[P u™ (to, (k) = [P ™ (1o, )] (¢, )|

(€ &)=(t.aa")

t
’um’VHLOO(Cl)HbmHLOO(CI)/t |2 — &' exp (|[bm | oo (1 t) d
0

IN

IN

™ || oo () [1bm| oo o1y |2 — 2| (£ = to) €xp ([|b]| oo (o) dS.
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Consequently,

A

PG um™ (to, (8, 2!) = [P ™ (1o, )] (2, 2|

(7»5/75/):(t7x’z/)
< PO () Bl i — (¢ — to) exp ([l ). (1.5

Because |z — 2'| = v (t — t9)*, we get

A

(P wm (o, )t ') — [P ™ (to, )] (¢ )|

to to

(T,g/,él):(t,x,z/)
0 (1 — 1) exp (bl e c1)1)

D% exp (m ]

IN

|z — m’|7m1+ﬂ0m(t)Hb”Loo(B;ffoo)

< gUmaztliy _ 2/ i1 HB0,, (1)

|b||Loo(Bo_ol?oo) B;o'?oo)t)’

as we have supposed that tg > 0. Taking,

(a1, 0) = 1+y 2+7
1,2) = 472’7 )

we finally derive,

[Pt:)’g um,l/(to7 .)](t7 ;cl) — [P;’g Um’y(t[)a ‘)](tu x/)‘

(r€ &)=(taa")

1—92 (A=) (2+v)
Yy - +1

< yTi ot 2 |z — a:'WmH'ﬁOm(t)||b||LOO(B;O{300) exp (HbmHLoo(Cl)t)
192 0=mMCty) 4

= vt »n - x'W’mHﬂOm(?t)HbHLOO(BgO;;zOO). (4.54)

From definition of O,,(t) in (4.28]), we obtain the vanishing condition
1+
A=m)@ty) | __4 m N0 oo s T
v (m1+677T S +1) 172 exp ( -8 1 L (2300’00) (4.55)
-7
4.5 Justification of the freezing point change
For any (t,z,2') € [0,T] x R% x R and (7,&,&,€") € [0,T] x R3, we write from (4.52),
Wt ) —u (G a) = [P gt ) = P g (t,0!)] + [GTS fn(t @) — GTS it )]

+ |63, ) = GEF fm(t )]
+ |G VAL € - Vur] (@) - GTS bR 7, €] Tu] (t,01)|
+[Ggs, BRI €] Vum () — Gy [ [, ) - Va1, 2)|

PGS ™ (t0, )] (8, 2') =[BRS w™ (fo, )] (t,2').
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Because the Lh.s. of the first equality does not depend on (&,&’), we can get the infimum over these
freezing points, namely

u™(t, ) —u™(t2) = . ;I%’fE]R { [PT’ggm(t, z) — P g0 (t, :1:')} + [Gzogt m(t,x) — C;’ZO% I (t, x')]

+ (G35 mlts) = GER fn(t )]
+ |G VAT € - Vur] (@) - GTS b1, €] um] (t,21)|
+ G35, R I €] - Tum ] (t2) = G b8 [ €] V] (8, 2))|

HIPTE W™ (b, )] (¢, ') — [BEE u™ (to, ->1<t,x'>}.

However, we aim to control the source functions term only in the diagonal regime, see Section
below for details. )

From definitions (£.25)), ([@-26)), [#-33) and [@&34), we have G™¢' f,, (¢, 2') = G 't fm(t x )+Gt0 1tfm(t x),
and we can rewrite,

[étTftfm(tvx) - étT(ft m(t, 1‘/)} + [Ggfofm(ta ) — GgfofM(tﬂf,)}
= [ lti) = O fnlt )]+ [ GE il 2) — G 1,21,

which readily gives

Wt T) — ™ (ta!) = inf {[PT’ggm(t,m)—PT’élgm(t,ﬂ)] + [Gf Flt ) — G€ fm(t,x')}
§¢E'ER

+ [G“' fm(t,2") — GT{; fm(t, x')]
+ [Gto  BRI7.€) - Vum] (L) — G5 DR [ €] - V] (t,x/)]
+[GEf, Rl €] - V] (t.2) — GRF 8, €1 - Vur] (1)

HPL e (to, ) (8, ') — (B m”(toj')](t,l")}- (4.56)

Hence, taking (7,&,¢,€') = (t,x,2', x) yields the previous terms already controlled with a new extra
contribution [@gg fm(t,2') — G’gg fm(t, x’)} .

4.5.1 Control of the new extra contribution [G’&f;fm(t,x’) Otofm(t x )]

This last extra term is tackled similarly as the first one in Section

[ o8 fn(t,a') = GFS funlt, )}
/Ofo /Rdﬁ(s,t,:c',y) [fm(s,er/s m (8,082 (€))d3) — f(s,y + /Stb (3,07, (f/)d§))}dyds.

We readily obtain,

‘GO tofm(t $) ()tofm(t $)
to t B
nllion || [ 050260 = b5, 020 a5

to _
< Nmllzoeen) IBmllzeon) /0 / 67 (€) — O (€| d.

IN

A
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We know that, for any (z,2') € R? x R%:

Sup. 105 (2) = 07 (2")] < Ja — @' exp (||bml| L~ (01)T),
se|0,7

see Lemma [2] in Appendix Section [A.4]
We then deduce for (7,&',¢') = (¢,x,2') that

(GT5 it = G5, fnlt )]

(r€ &)=(t,z,a")

to
HmeLoo(Cl)Hbm||Loo(Cl)/0 / |z — 2 exp ([|bm]| oo (c1)t) d5 ds

1 -
§m1 7HfHLOO(CW)mH_ﬁ||bHLoo(B;oﬂ?oo)|$ - x,‘tQ exXp (m1+6||b||L°°(Bgo€oo)t)' (457)

From the definition of tg in (4.22)), |z — 2| = v (t — tp)**, we get

IN

IN

G (1,0 = G5, funlt, )|

(1€ &)=(t,z,a")
(1=7)on p(1=7)aa+2

v _

m2+5 7||f”L°°(C'V) HbHLOO(Bo_o[?oo)tZ exp (mlJrBHbHLoo(B;l?oo)t)

2
1—92 (A=7)(2+v)
v t 2 +2

2
Hence, the vanishing constraint is

< Jz—-2

= o2 B o ol sy X0 (bl e ).

m N o 58 ) T
1—12

7)(
v < (m2+5‘7T

P2 o Bl e s ) exp ). (458)

4.5.2 Comments on the choice of freezing point for the source functions terms

It is crucial to fix the same freezing point for the terms associated with source functions. In our con-
text, it may be unavoidable. To fully explain this choice, let us develop the computations associated
with these terms for the same choice of £ and & as for A in the off-diagonal regime, i.e. £ = z and
EI — .flfl.

To deal with the semi-group, we can consider an analysis of the type (or equivalent controls),

1P g (t, 2) — P™8gm (¢, 2)|

T:t7£:I7£/ :x/

= ’/Rd[ﬁﬂg((Ltaxay) _ﬁ776/(0,t,x/,y)]gm(s,y)dy

T=t,{=x,f'=x’
- ’ /Rd (01,0, y) [gm (£, 007 (x) + ) = gm (¢, 0o, (") + y)] dy
< (gl |05 (x) — 6.

Similarly for the Green operator,

\GTE frn(t, @) — GTE frn(t, 2]

=t £=¢/=x

B ‘/ /Rd (st w,y) = 7 (st 7 )] fn s, y)dyds’

=t =z £'=x'

- ‘// p(5,t,0,9)[fm(s, 053 (x) +y) — fm(s, 05 (x ’)—i—y)]dyds’

A

< 1l e /0 167, () — 67 (2! [ds.
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In other words, we can seen in both above controls that we only upper-bound by the flow associated
with b,, which is a priori not controlled uniformly on m in a suitable spatial Hélder space.

4.5.3 Final Holder control

Gathering (4.29) and (4.35)) with

(14 24y
(a1, 02) = <4 o ) (4.59)

we have from the final Duhamel formula (4.52) combined with the estimates of each contribution
stated (4.29)), (4.31)), (4.35)), (4.37), (4.54)), (4.57):

[™ 7 (L, e

1?2 )2 (=) 1447
< Ul + gy + CUBl sy POm(2) (v 7 £ 4 2535

148

m y(A—v)
O™ T bl e sy 167 e )

14+

T e bl ey X0 (0B )
-2 A=+
1?0y 4y

‘v 4t 2

%_

00 5z €5 (Bl eny), (4.60)
where we recall that
On(t) = (tllfmllzery + lgmllcr) exp (m 2l s )

O (m* 2 llzm(on + [9h)) exp (m* P40l ot )-

IN

Then for v < T and because % > @ we obtain

Jum* (¢, ler < Il + o)y
(@ 24y m,v
IOl ety (1T Om@D L+ [l (on) + 0 e o) )

+Cv
For a “small” s € (0,1), we choose
S 2 D)
V< KT (1 +Om> b s )) , (4.61)
which yields by circular argument

[[u™"(, )l
y1—v)

—1 N2ty
< (1=5) (UFlzmion + lgh + Cv T M e s T 0RO+ [ llzecm)).

Finally, we also impose a given “small” & € (0,1),

a4 )2y o=
v < B (O bl ey T O A+ I fllpeony))
4
W2+7

4 9 B R
= R (szw\!b\\Lm(Bw:;w)T = (m! 7(?foHLoo(cw)Jr[g]v))(lJrHfHLoo(@x)))

8Tn}+#3j“HbH[;w(ngin

¥(1 =)

xexp| —

D), (4.62)
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which obviously implies condition (4.61)) for x = &.
Under assumptions (4.61)) and (4.62)), we deduce for any (k, &) € (0,1)?

[ [ zeo(cmy < (1= R) TN fllzoe (e + laly + 7, (4.63)

the required Holder control ([3.1)) is then established when &, k" — 0 and (m,v) — (400, 0) according
to conditions (3.2), up to a convergence argument developed in Section

4.6 Another control of uniform norm

In this section, we provide another way to get uniform control without stochastic representation; these
computations lead some dependency on m overwhelmed by v and can be useful in other contexts.

For the L, control we choose the freezing point as for the diagonal regime, i.e. (7,§) = (t,z).
The terms associated with the source functions are dealt easily:

P gt )| _, < lol~. 167 mlto)l| <t

)

T=t,{=x

The remainder terms are controlled in a very similar way as previously in Section

t
[ ) (b5, 02€0) = b)) - V™ s,y
0 JRd

(ro)=(t.2)
t
< 20|bm oo (o) I VU™ || Sup/ / P (s, by m, )|y — 07 ()] dy ds
z€R? /0 JR? T=t,{=x
t J
< Cm ] s IV i [ (0= 9)
by (2.9)), and we conclude by (4.28) that
t
[t ) (b5, 85(6)) = b(s.0)) - V™ (s, )y s
0 JRd _
(r.6)=(t.2)
mlitBl+3 5
< C’Om(t)ﬁuﬂ\blle(B;{iw)-

4.7 Compactness arguments
4.7.1 Mild vanishing viscous

In order to pass to the limit m — +o00, ¥ — 0, according to the vanishing condition , we consider
a subsequence given by the usual Arzela-Ascoli theorem. However, this former result is available for
uniform continuous function in a compact space. From the lack of continuity, uniformly on v, in space
of u™"(t,-) (only y-Hoélder continuous, v < 1), we are stuck at a convergence in a compact subset
of R?. For instance, the analysis performed in [Hon22] to get rid of the compactness convergence
criterion for quasi-linear equations does not work here as there is no hope to obtain any strong
formulation of the PDE (1.1J).

We do not succeed to obtain any positive regularity on ¢, and so we cannot exploit uniform con-
tinuity in time to get a convergence of a sub-sequence of u™" in [0, T] x R%. Thus the convergence
at any given time in all compacts set of the mild vanishing viscous solution in Theorem

Nevertheless, we still can include a truncation procedure into a weak formulation in order to

obtain a convergence in a distributional meaning and not a point-wise one as for the mild vanishing
viscous solution.
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4.7.2 Truncation procedure

The method is highly inspired by the one in [Hon22|, we also consider a smooth cut-off ¥, p € D
supported in a ball By(y, R) = {z € R% |z — y| < R}, y € R? and defined by

Uy.r(x) = Fy(3), (4.64)
where ¥, : R? — [0, 1]¢ is function lying in C§°(R?, RY) s.t.
w5 EE TS
The corresponding truncated function is, for any (¢,z) € [0,7T] x R,
u;rfg(t,x) = u""(t,9y,r(x)). (4.65)

We highlight the particular case
Uy (L) = u™" (L, ). (4.66)
The above truncation solution (4.65)) naturally appears when we write a weak formulation of the
parabolic equation (2.12)).

4.7.3 Weak solution of the parabolic approximating equation

For any smooth function ¢ supported on B;(0, R), a d-ball of radius R > 0 and center (0,...,0) €
R?. We consider a weak formulation of the parabolic solution u™", for any (t,z) € [0,T] x R®:

[ { ot s + onts.u)bns.). 9um () + vins,pp™ (s.) ey ds

t
= [ ent0ngntis— [ entpumieaar+ [ [ ontsa) fuls s

where in Lh.s. the limit of the first order term, (b,,(s,y), Vu™"(s,y)), has a priori no point-wise
limit neither in term of the usual distributional meaning of Schwartz. Indeed, as already enunciated
in Section the usual distribution theory does not provide any interpretation of a product of
distributions, to get any limit result we have to thoroughly use the PDE.

By the cut-off definition, we equivalently have

t
[ L {ouents. i s, + om0 s, D' s, + vl ) (5.9) s
t
= / Pr(s,y)ug (s,y)dy — / ¢r(0,9)gm(y)dy + / / ©r(5,Y) fm (s, y)dy ds.
R R 0 Jrd
(4.67)
Now, from compact argument developed in Section we have that ug '}, (s, -) converges in C) (K, R?),
m, v

K = B,4(0, R), towards a function ug g(s,-) when ) = (400,0) and the condition (3.2)) is satis-
fied. In other words, ug r(s,-) is a mild vanishing viscous solution of (L.1)).

4.7.4 Mild-weak solution of the transport equation

To get a mild-weak solution we have to pass to the limit in the weak formulation (4.67)) of the mollified
parabolic equation (2.12). In equation (4.67)), up to a sub-sequence selection, except for the first order
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term (s, y)(b(s,y), Vug'p (s,y)), each contribution obviously has the good converge property by the
Arzela-Ascoli theorem. In particular, from (4.4), we have

t
1// Apr(s,y)ug g (s, y)dy ds 0. (4.68)
0 JRI ’ (m,v)—(400,0)

To deal with the drift part, we write by integration by parts

/R<bm(t,y)7VUS?E(t,y)>90R(t7y)dy

d
= | Vertta) bt e ndy+ [ ont )bt o)y

. BB, ) (169)
By the Besov duality property, see Proposition |1} we can write
B1l < [l I VR e (4.70)
and
1Bal 11V - bunll e s | 0RG R 155 (4.71)

m,v
Control of |[Vogruy, ||LOO(B§1)
Let us prove that [|[Verug'y || Leo(p? ) is controlled uniformly in (m, v). By the thermic represen-
) 1,1
tation of the Besov norms ([2.4)), we have
HV‘PRUG,?}RVHLoo(Bﬁl) = HV(PRUE)TT};HD + HVSDRUSTEVHL@(B&)

1
1 B
IVorul™ s + / Lot /
’ 0 v Rd

The first contribution in the r.h.s. above is obviously bounded uniformly in (m,v) by
IVeorug I < IVerllllug il < CIVeRl L (TN flle + llgllze),

by uniform estimate (4.4)).
For the second one, we need to deeply use the already known regularity of ugl}z”. By cancellation

and by triangular inequality, we obtain

1
m,v 1 1—é m,v m,v
||VSORUO,R ||Loo(Bfl) > /0 ;U 2 /Rd /Rd Ihy(z —y) - {[UQ,R (t,y) — Uy R (t,2)][Ver(t.y)

+ugs (£, 2)[Ve(t,y) — Ve(t, 2)] }dy‘dz dv

1q
B
,Ul—a
o v Re | JRd

1
+ug' (t,2)(y — 2) - / D*op(t,z + uly — Z))du}dy’dz dv,
0

[ Oul( = y)ug'i (1,9) Vol y)dy|dz do.

A

IN

Ouho(z = y) - {[ug 7 (t,y) — ug ; (8, 2)]Vor(t,y)

by Taylor expansion. Next, with the exponential absorbing property (2.9)),

HV(pugj},{HLoo(Bfl)

1
y 1 _s
< Ol e / L / / homto(z — 9)ly — 2 \Veor(t, y)\dy dz dv
’ o v Rd JRd
m,v "1 s ! 2
Ol oo / L4 / / hom1o(z — y)ly — 2| x | / D2on(t, = + uly — =))duldy d= do
o v R4 JRd 0
1 1
v 1 +-8 v 1 1-8
< Ol o IVrl o / 0T o+ Cllugy o | Dor] / L,
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which is finite if 5 < 7.
m,v
Control of |¢rug 5 HLOO(BE{B)
The analysis is similar as before, replacing 5 by 1 + 8 and Vg by ¢gr:
\\apRug’jg\\Lm(B#) = lerug g 1 + HSORUS%HLOO@HW
We readily get

lerug i llcr < lerllpllugy e < lerll (TIfllLe + llgllz=),

and

1 Y1 s
lorugi oty < Clugillimenlleals [ o™ AP P T
0 0

this is finite if 1 + 8 < v <= [ < —1 + . Let us carefully notice that if there is the incompressible
assumption V - b = 0, then By = 0 and this former constraint disappears. Thus the different cases
considered in Theorem 2

The Bolzano-Weierstrass theorem then yields the result.

4.7.5 weak solution

The difficulty for the usual weak solution, here, is to prove that, up to a subsequence extraction,

T
im_ [ / ). Vg entt oy dt = [ [ 0t0), Fuan(tn)enttv)dy i

m—r0o0

T
_ /0 /R ((t,v), Vult,)en(t v)dy d,
(4.72)

where b € L>([0,T7; BO_OB (R4, )) is the drift of the initial Cauchy problem and coincides with
the limit of b, in L*°([0,T7; BOOOO (R%4,R)) for any 0 < e when m — oo; also u(s, ) € C}(K,R),
K = B4(0,R), is the limit of u"(s,-), up to a subsequence extraction possibly depending on the
current time s, in C;_E(Rd, R) for any 0 < € < 7, see Section

Let us recall that Bo_f o is the closure space of C}° in BO_0007 from Appendix Section EI, we still
can take the regular sequence (by,)m>1 defined in to approximate b in L*([0, T]; Bo s (R%, R)),
for any 0 < e; whereas the considered solution u(s,-) may depend on the choice of mollification. In
other words, we have:

o = Bl e prozey < C MmUY b = V- Bl oy 162y = 0 (4.73)
For all m > 0, ¢t € [0, T], we write by integration by parts that
| [t Vgt etedy = [ (b(t0), Tuanlt et n)dy
< ’/Rd bl (t, y)u™" (t,y) - Vthydy‘Jr(/ (t, y)[u —u™"](t,y) - chRtydy’

+’ V- b — (L, y)u™" (t, y)¢r(t, y)dy’ + ’ / V- b(ty)lu —u™"](t,y) or(t, y)dy’
R4 Rd

=: Bl +BQ+B3+B4. (4.74)
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To deal with the first contribution, we aim to use (4.73). We have by the Besov duality result of
Proposition )
By < ||bm — b[\LOO(B;O{aO_OE)Hum”’chRHLoo(Bﬁa), (4.75)

it then remains to control ||u"™" Vgl Loo (B Similar computations as in Section [4.7.4] yields that
1,1

Humv”V@RHLw(Bﬁe) is finite if B <y —e.
Also for the third term, which is null if V - b = 0, we have that

BZS < ||v by, — V- bHLoo(Bgoﬁ;E)Hum’VSDRHLoo(BlﬁJ{E)a (476)

is finite if B < —1+ v —¢.
Hence, from (4.73)), we obtain

B B2 .0 and By — B2 (4.77)
(m,v)—(+00,0) (m,v)—(4+00,0)

Now, let us handle with the second term in (4.74]). We aim here to use the convergence of v (s, )
towards u(s, -) in the ball By(0, R).
Again by the Besov duality result of Proposition [, we have:

By, = ’/Rd b(t, y)[u —u™"](t,y) - Vor(t,y)dy
< ‘|b“LOO(B;{3OO)“(Um’V—U)V(pRHLOO(Bfl). (4'78)

By Arzela-Ascoli theorem, we have

v 3-2)
IVor(u™” —u)|Lee < |[Vrl|peo||(w™” = )| Loe ——=—=—-0,
(m,v)=(+00,0)

For the homogenous part of the Besov norm, we also mimic the analysis in the previous section
replacing u"™" by (u"™" — u), for any € € (0,7):

H(um7 )VQORHLOO 3151
myw 1 s
< O™ — )| pen- e>/ ot [ e =l I Ven(t )y dz o
U R4 JRI
+C|[(u™" — HLOO/ fug/ / ho-1,(z —y |y—z|><|/ D*pp(t, 2 + p(y — 2))du|dy dz dv
Rd

1 1
1 y-e-s 1 15
< O )l oI Vealns [ o b+ Ol o)l Dl | 0 d,
0 0

which is finite as soon as § < v —¢ < 0, also by Arzela-Ascoli theorem, we have the converging result
B2)

0. Therefore, we even get
(m,v) = (400,0)

[ (™Y = w)]| oo (cr-e)

- B2
0

Bs (4.79)
(m,v)—(4+00,0)

The last contribution By, null if V - b = 0, is similar replacing Vg by ¢r and 8 by 8+ 1. Namely,
we have

By < [IVbl o 6™ = ) ol o,
= 1Bl e iy (1™ = 0ol + 1™ — w)Rll e, (4.80)
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with
Iw™ —werll < lu™ = ull lrlls,
and

(™" —u)or|l; (B1%5)

1 1+B
= / '™ / Ovho(z — y)(u™” = u)(t, y)er(t, y)dy|dz dv
Rd | JRd
m,v "1 y= m,v "1 =8
< O —ulmerollenls | oo T o O e | Dol [0 e,
which is finite if § < —1 4+ v — ¢; and by Arzela-Ascoli theorem, we deduce
By 0 (4.81)

(m,v)—(+00,0)

Hence, from (4.74)), (4.77)), (4.79)) and (4.81)) we conclude that the limit result (4.72)) is true.

4.7.6  Control of [|Ou(t, )| z-14~

If b € L°°([0,T]; C“(R%,RY)), 0 < 1 — v < a, we derive an upper-bound of ||0sul(t, )HB‘H‘* by the
equation ([1.1) and by para-product result. But first of all, let us precise how point- Wlsely we have,
with the viscous condition (3.2)),

lim vAu™"(t,) = 0. 4.82
(m,v)—(+0,0) ( ) ( )

In Appendix Section we establish that

V2 (8, Yo < (M2 (EF e o Hgh ) +Ctm™ b o s Om(®)) expltm™ 2ol s )
(4.83)
Hence, for

v < (m? (T + [g) + OTm* bl s Om(®)  exp(=Tm' Pb] e s ),
we deduce (4.82)).

We can take the limit of equation (2.12]), up to sub-sequence selection defined in the Arzela-Ascoli
theorem, for any t € (0,7

lim o™ (t, ) = lim by (L, ), V™ (t,-)) + f(t, ). 484
(m,v)—(+00,0) t ( ) (myv)— (400, O)< ( ) ( )> f( ) ( )

But from paraproduct (3.5), we know that (b (t,-), V™" (t,-)) € Bod (R4 R), the result then
follows.

5 Inviscid Burgers’ equation

The controls (3.1) of the vanishing viscous solution(s) of the PDE (1.1)) being independent on the
first order term b, we can expect to obtain some fixed-point argument to consider that b being the
solution w itself in dimension 1|
This Cauchy problem thus defined is called the inviscid Burgers’ equation,
Owu(t, ) + u(t, )ozu(t,x) = f(t,z), (t,x) € Ry xR, (5.1)
u(0,z) = g(z), x € R. ‘
Replacing b by u in the different definitions of solution in Section we establish the second
result of this paper.

$The analysis can adapted for a more general dimension d > 1 up to some reformulation of (u(t,z), Vu(t, z)).
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Theorem 3 (Existence of Holder solution of the inviscid Burgers’ equation). For v € (0,1) be
given. For all f € L>=([0,T]; C{ (R,R)) and g € C} (R,R), there is a mild vanishing viscosity solution
we L=(0,T); CJ (R, R)) of (1) satisfying

T fll oo (cmy + 9l
T flle + llgllzes, (5.2)

HUHLOO(C’Y)

<
[ullzee <

the condition on the vanishing viscosity is for a given constant C depending only on (v, d),

(1=7)(2+7)
Umpemsd gy

5 ep (4™ e+ loll)T)

_ T 12
v < (mT 1l o (T e + lglizse)) 7 exp T

24y

9 R
v < (sz(THfHLooJngHLoo)T 2 (ml_’y(T”fHLOO(CV)‘i‘[9]7)>(1+”fHLOO(CW))>

xexp (- 8mT (T fl1~ + ||g||Loo>).

(1 =) (5:3)

If v > % then the considered mild vanishing viscosity solution is also a mild-weak and a weak solution
also if

-1 _
v (THf||L°° + [9]7) (m2 T+ CTm2+B||b||Loo(BgO€OO)> eXp(*QTmH_BHbHLoo(B;O/?OO)), (5'4)

then dyu(t,-) € Boad (RY,R).

Let us remark that the last additional condition in Theorem [2]is satisfied if the considered a priori
regularity of the solution is strong enough (a priori not the first condition as u is not incompressible,
except if u is also solution of the Euler equation), as we have —y < =1+ v <= ~v > %

Furthermore, the condition on the viscosity changes here comparing with Theorem [2| replacing
”b”LOO(B*ﬁ ) by an upper-bound of ||u||~ by Feynman-Kac formula.
Remark 7. Without considering he reqularity condition v > % to get a weak solution, we may have
pathologic situation. Specifically, let us consider steady-state the non-linear problem

u(zh () = oam(a),

whose x +— \/|x| is solution which is as expected %—H(')'ldeT continuous. In other words, if v = %,

can find v-Hélder steady-state solution of the inviscid Burgers’ equation with source function being in
Bgo’oo(]R,]R) but Cp° almost everywhere and being the limit of a Cp° function, e.g. tanh.

we

Remark 8. With our current approach, we cannot provide any Lipschitz control of a solution of the
inviscid Burgers’ equation for the same reason as for the transport equation . This is not
surprising by the well-known blowing-up of the gradient of a solution of the inviscid Burgers’ equation
E-1).

Actually, from the mild vanishing viscous solution, we see that for any t € [0,T], the solution
u(t,-) given by the limit of a sub-sequence of u™"(t,-) depends on the mollification choice, moreover
the sub-sequence choice also depends on the current time t. In other words, we can expect that u(t,-)
can avoid the time of blowing-up thanks to a different choice of sub-sequence at each considered time.

Sketch of the proof of Theorem[3. To establish this result, we consider the mollified version of Burg-
ers’equation for all m € Ry and v > 0:

{Gtum”’(t,a:) +um” (t, ©)0pu™" (t, x) — vOZ ™ (t,x) = f(t,z), (t,x) €[0,T) x R, (5.5)

um(()?x) = g(l‘), z € R,
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where

W () = /R ()™ (y)dy. (5.6)

It is direct from Theorem 3 in [Hon22| that there is a smooth solution of (5.5)).

We can then perform the same computations as for the transport equation, where 5 = 0 and we
change in the viscous condition HbHLOO(B—ﬁ ) by an upper-bound of |ul| Lo, namely by T'[| f[| Loo () +

lg]y given by Feynman-Kac formula. Finally, we can take the limit, thanks to a compact argument,
of a suitable sub-sequence yields the result.
O

A A priori controls for the parabolic approximation
A.1 Gradient estimates
Let us precise the control previously used:

IVt lgee < (T loeiery + 9™ lle ) exp (Cm bl o)) = Om(®). (A1)
We directly have from Duhamel formula:

V()
< (HIVF e + 19" 1)

t
[Vt (5, 625(€) ~ b, )] - V™ (s, )y
0 JRd

(T.9)=(t,x)
< (ISl + 19" 1 )

t
1
+C[bml| oo o1y /O /Rd[u(t — )] 727 (s, b, 2, y) |07 (€) — y| [ VU™ (s, )| oo dy ds)

(T.8)=(t,z)
By absorbing property (2.9)), we derive
|Vu™"(t, x)|
< (ISl + V9™ 2 )

t
+Om b e ps /0 /Rd P (st y)[Vu™ (s, )| e dy dS’

(1.6)=(t,2)
t
< (U9 e + 199 ) + O bl s /0 IV (s, Yp=ds.  (A2)

The Gronwéll lemma yields the result.

A.2 Hessian estimates

We perform a similar argument, but for the second derivatives we have to put a second derivative on
(b (5,0:(€)) — b (5,9)] - Vu(s, y). Indeed, if we twice differentiate p™¢(s,t, x,y) there is no possibility
to smoothen the blowing up in the contribution of v by Holder control (or even Lipschitz).
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We obtain by Leibniz rules

|V2u™ (t, )|
t
< (U2l + 192" ) + | /O [ V5 (5ot )Vb(5,) - Vi, y)dy ds|
&=z
t
| [t ) (5,826 = b )] V(s ) s
E=x

< mP (U fll pee (o) + L9ly)

e / [ = 957 st )85 (6) — IV V™ (5, e oy ds
Rd
FOlmlien [ [ 0 9150t )02 92, s,

Next, with Leibniz rules and absorbing property (2.9),

VA (t, )|

< M2 (U f oo + g )+Cm2+5HbHLoo(B o / / (5,1, 2,9) | Vu™ (s, )| ooy ds
+Cm1+5HbHLoo(B;‘?oo)/o V2™ (s, -)|| oo dis

<

2 (] f ey + [91s) + Cm* bl s [V 1
t
R Py P BT

We finally get by the Gronwéll lemma and by identity (A.1)

V2™ (2, ) | o

< (m2*V (N Fll ooy + [g)y) + Ctm2+’8HbHLw(B;éoo)Om(tD exp(tm" o]l oo g ))-

We can also write by exponential absorbing property:
92 (1, )| < Cm® (1 f | oe(cm + [9ha) exp(Ctm P [b] o ms ) = OP ().

We insist on the fact that the above inequality does not depend on v.
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A.3 Third derivatives estimates

In this section, we detail how to control the third derivatives of «™". We use the same method as
for the Hessian, the additional derivative is also put on [by, (s, 0:(§)) — b (s, y)] - Vu(s,y).

|V3um’”(t, x)]

IN

IN

IN

t
(97 e+ 19° =) + | [ V3ot Vbl - Vs, gy

E=x

t
A [ 9 tn ) Vs, - V(s )y |

E=x

A [ T st b5, 025(9) = b )] T, )y ds
Rd

E=x
Cm> ™V (t)| fllzoo oy + 9l)

*C//Rd v(t = )] 72 (5.2, )07 () — )

(19 V™ (5, Yy + [V - 2™ 5, | o))y s
+Olbmlimiony [ [ e = o) S ot )05 ©) — IV o) ey s
ConS (Ul + lgh) + COmP bl ) [V

t
+Ctm2+ﬁubum<go—fm>u S e [ IV (50 1w

Eventually, by Gronwéll lemma, identities and -

175 (1, )| (A7)
< C(mF (W flzmieny + o) + tmF bl o (MOm(1) + mOR (1)) ) expltm bl )
< CmP (1 f (e + loby) exp(Com ] ya ), (A8)

by exponential absorbing property.

A.4 Flow controls

This section is devoted to the regularity of the flow

O ta) =+ [ b0 ().

Lemma 2. For any (z,2') € R? x R%:

~Sl[ép] 07 (x) =07 ()] < |z —a'|exp (||bmll poe(onyT)-
se|0,7

By defintion, we have

|6

Z,LT('%') - 9;?7-(35/”

IN

x—xr+\/ 07 (@)~ b5, 07, ()|

& — &)+ [[boll o 01 / 67 () — 07 (2)|d3,

IA
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which is not the suitable inequality to apply directly Gronwall’s lemma. To do so, we use a sup
formulation, namely for any r» < 7, we can write similarly to above

sup |07 (x) — 07 ()] < |z —a'| + / By, 67 (2)) — by, 67 (2')) s
s€[0,r]

< o=@/l + bmll (o /0 07, (@) — 07 (x)|d3
< o Pl [ sup (65 () - 7 (o) ds.
0 3€0,5]

We are now in position to use Gronwall’s lemma, for r = 7

Sup 105 (2) = 05 ()] < fo — 2| exp (|bm]| Lo (01)T)-
se|0,7

B Convergence of the mollified distribution

Proposition 4. For any ¢ € C7(R4,R), v € (0,1], we have for all ¥ € N& and 0 € Ny s.t. [9] =0,
that h,,—2 « D1 € Cy° converges towards D% in Boo oo @5 M — F00. More precisely, we have:

12 % D% — D"l g0 < Cp]ym ™, (B.1)

and D% € Bgo_go In particular, if [0 = 0, h,,—2 %1 € C;° converges towards v in L™ as m — 400,
and:

[Pz % 9 = [ Lo < Cliplym™7. (B.2)

Remark 9. Actually, v & {0,1} is not a restrictive condition as changing 9 into U e Ng such that
|9 = 9| + 1 yields the same result.

In particular, Proposmon is available for the Dirac distribution § € BOOOO regarded as the
distributional derivative of the sign function (also regarded as the derivative of the absolute value),
and for any derivative of the Dirac distribution by the same argument.

Proof of Proposition[{ Let us write ¢ = D%, with ¢ € C7

-2 %0 = ¢llgo = 1D A2 xv =¥l g0
= sup 012 |Gy * DV [hy2 1) — ]| oo
’UER+
o 1—=% 9
= sup v 2 [[0,D Ry K (A2 %9 = Pl Lee,
vERL

by integration by parts in convolutions. Next, we can explicitly write,

2% —¢lgo = sup w77 0y D’ hy(2 = Y) 2 (y — 2) [ () — P (y)dz dy
’ vER,, zER R? JR?
< C[]y sup / / 1y Yhp—2(y — )|z — y|"dx dy
v€R+, 2€Rd JRE JR?

< Cllym™  sup / / hety(z — )by (y — ©)da dy,
R4 JRA

veERy, z€R4

by exponential absorbing property (2.9). Integrating in space finally yields
iz % = pll o < Cllym™.

Inequality (B.2) is direct with similar arguments. O
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Corollary 5. For any 1) € B oo(R%R), v € (0,1] we have, for all ¥ € N& and 0 € Ny s.t. |9] =0,
that hy,—2 x D% € CX(RYR) converges towards D%y in BT (R R), for any e € (0,1) s.t
0—~v+¢e>0, as m — +oo. More precisely, we have:

12 % D" = D[ p—o—e < C[p]ym ™" (B.3)
Proof of Corollary[3. We still use the thermic representation, and by convolution property we have:

[Pz % 0 — @IIB%M

—0+

= sup v T [|Bphy x DY 2+t — ]| ooy

’UER+

—0+ 5

= sup v’ 2 [[0,D hy * [z % — Y] oo ey

U€R+
= sup ol TET / D (2 — y)hp—2(y — ) [(x) — Y(y)|da dy|.

vER,, z€ERY Rd JRRd

For a given v € (0, +00), we compare the regular contribution v with the mollification contribution.
In other words, we consider two possibilities.

o If m~2 < v, then:

—0+ 5

VT | Oyho DY By % ) — ]| oo (e
= sup T / 0, DRy (2 — y)h-2(y — ) () — ¥ (y)|dz dy

z€R4
< Cllw 2 sup/ / 192 = Y)hp—2(y — )|z — y|"dx dy

zeRd JRE JRA
< C[¢]’Y” ’YSUP/ / 1o Y)hy—2(y — z)dz dy
zcRd JRE JRA

< Cllym™ (B.4)

_ —O0+~y—¢
VT |0k % D [hyy2 %0 — ]| oo (may

_ —O0+~y—¢
— swp o | / Dbz = 1) D hyy2(y — @)b() — v(y))da dy
z€R4 R4
< C’[@[}]szvg 7 sup/ / 1y Yhe-1m-1(y — x)|z — y|"dz dy
zE]Rd Rd JRd
< Clulm® T FE sup / / heto(z = Yy (y — 2)da dy
z€Rd JRE JRA

< cmwm-é (B.5)

The result follows from and (| - O

Proposition [4] and Corollary [5] are more precise forms of the well known convergence in the
distributional sense.

Proposition 6. For any 1 € Bl oo(R%R), v € (0,1] we have for any 9 € N that h,,—» x D% €
Cgo(Rd,R) converges towards D% in distributional sense as m — +00. More precisely, we have for
any n € C (R4, R):

sup
zCcRd

[ 1@ =) 2 D*0t) = D] dy] < Clitlm ™ (B.6)
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Remark 10. We precise that n is not supposed to be a Gaussian kernel, as in Proposition [}

Proof. We directly write by convolution property:

sup | [ (o= )2« D00) - Do)y = sup | [ Do = ) e 5 0l) — 00)] ]
z€ERI R4 z€eR4 R4
< Cm™[¢], sup / | DVn(x — y)\dy‘
zeRe ' JR4
S Cm—’Y[w]’y’
the penultimate inequality is consequence of inequality (B.2)). O

C Properties of derivatives of Besov distributions

Proposition 7. For any ¢ € S'(RY) such that Vo € Bxd'(RY), v € (0,1), there is a constant
C > 1 such that:

IVl i < Cllelgn, -
Proof of Proposition[7. We first write by the thermic representation of the Besov norm and by inte-
gration by parts,

=ity
1 2

Vel =  sup v /Rdavm(zy)w(y)dy\

veER Y, z€RC

V- Ouhu(z = y)lip(y) - o(=))dy|,

3=y
= sup v 2
veER, z€RC

by absorbing property (2.9) we derive

R4

- 3
IVelyorr < Clgly sup 0T / v R ho1y(z — y)ly — 2['dy
o9nee veER, , z€RY R
< Clgly, sup /hC—lv(Z_y)dy
vER4, z€Rd JRE
< Clgly.

We also derive the corresponding inequality for the inhomogeneous case.

Corollary 8. For any ¢ € S'(R%) such that Vi € Bx'd/ (RY), v € (0,1), there is a constant ¢ > 1
such that:

HV‘P”B;{;LJ < CH‘PHBZO,OO'

Proof of Corollary[8 From inequality (2.7), we have ||Vl -1+ < %HV@HBAH. Moreover, it is
direct that ’ ’

lellgy = sup v D(|ouhy @l < l@llge  +supv™2)[|0,hy x| Lo
’ vER L ©0,00 v>1

< lellge _ + ol
= lelipy ..

In other words, we deduce by Proposition

C
IVellpoo = T IVellson < el . < Clielle .
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Remark 11. In all generality, the reverse inequality of the above results are not true. For example,
any constant function lies in B;’om but its derivative is 0, hence the Bgofy norm 1s null, and the
corresponding Besov norm equivalence obviously fails to be true.

For an equivalence version of this result, we need to consider extra Besov norms, see for instance
[KMMO7)] identity (3.54) for a Triebel-Lizorkin spaces version.

D On the freedom of the mollification choice

In this section, we detail why if there is a sequence of smooth function converging toward a Bgf 00
distribution then the mollification procedure (4.2 converges also toward the distribution. In other
words, if there is a sequence (b, ),>1 lying in L°°([0 T); C2° (R4, RY)) such that

S 16 = Bll oo zstey = 0, (D.1)
for any 0 < ¢, then
i {lom = Ol oo 5y = 05 (D-2)
where by, is defined in (4.2)) by:
bin(t, ) = b(t, ) * pm (),
2
with for any z € R?, p,,(2) := m9p(zm) for p(z) = ( 1)d e . Indeed, we readily write by triangular
2m)2

inequality:
[bm — bHLOO(Bc?oéotE) < [|bm — pm *BTLHLoo(BgOﬁ;‘;S) +lom *Bn - BnHLoo(B;fgof) + HBn - bHLoo(Bgo[j'O;E)' (D.3)
The firs term in the r.h.s. above write:
Hbm — Pm * BnHLoo(Bgoﬁ;;E) = ||pm * (b - l_)n)HLoo(B;f;f)'
Hence, we obtain

o = > Bl ey = o0 05 o x o (= B)le < = blgpizzes (D)

by triangular inequality.
Also, for the second term in (D.3)), let us deal with the corresponding homogeneous norm,

lpm > bn = ball o p=p—e) = l19(D)(pm + b = bn) | Loe + llom * br = bl oo ey
It is direct that
(D) (pim * b = )l Loe < Cllpm * by = bullzee < Cm™ || Dby v (D.5)
Next,

— sup ‘/ / pm(y — ) [bn(t, ) — by (t, y)]dx dy‘
vel0,1], te[0,T], zeRd R4 JRE

_ L'H—s
< |Dbuflp~ sup / / he-10(z = 4)pmly — )| — yld dy|
vel0,1], te[0,T], zeRd Rd JRd
T _ B+e
< O Dbyl sup / / 1z~ Ypc-t(y — o)de dyf
vel0,1], te[0,T], zeR4 Rd JRE
= || Dbyt (D.6)

Let us choose m > || Dby|| e which yields that lim, ;oo [|pm * by, — BnHLm(B_g—E) =0.
Finally, gathering identities (D.1)), (D.3)), (D.4)), (D.5) and (D.6|) yields the limit property (D.2).
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