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Abstract

1 An analogue of the Euclidean algorithm for square matrices of size
2 with integral non-negative entries and strictly positive determinant
n defines a finite set R(n) of Euclid-reduced matrices corresponding
to elements of {(a, b, c, d) ∈ N

4 | n = ab − cd, 0 ≤ c, d < a, b}. With
Popeye’s help2 on the use of sails of lattices we show thatR(n) contains
∑

d|n, d2≥n

(

d+ 1− n
d

)

elements.

1 Introduction

We denote by N = {0, 1, 2, . . .} the set of all non-negative integers and by

P = {
(

a b
c d

)

|a, b, c, d ∈ N, ad − bc > 0} the set of all square matrices

of size 2 with entries in N and strictly positive determinant. The subset of
matrices of determinant n in P is written as P(n).

An elementary reduction of a matrixM is a matrix in {EM,EtM,ME,MEt}
where E =

(

1 −1
0 1

)

. Elementary reductions ofM subtract a row/column

from the other row/column of M .
A matrix M in P is Euclid-reduced if and only if P contains no elemen-

tary reduction of M . Equivalently, M =

(

a b
c d

)

in P is Euclid-reduced

if min(a, d) > max(b, c).
We denote by R the subset of Euclid-reduced matrices in P and by

R(n) = R∩P(n) the subset of R corresponding to Euclid-reduced matrices
of determinant n.

The main result of this paper describes the number ♯(R(n)) of elements
in the set R(n) of Euclid-reduced matrices of determinant n:

1Keywords: Euclidean algorithm, lattice, continued fractions. Math. class: Primary:
11A05. Secondary: 11H06, 11J70.

2Acknowledged by his appearance in the title (he refused co-authorship on the pretext
of a weak contribution due to a poor spinach-harvest).
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Theorem 1.1. The number of elements (a, b, c, d) in N
4 such that n =

ab− cd and min(a, b) > max(c, d) is given by

∑

d|n, d2≥n

(

d+ 1− n

d

)

. (1)

(2)

The map (a, b, c, d) 7−→
(

a c
d b

)

is a one-to-one correspondence between

such solutions and elements in the set R(n) of Euclid-reduced matrices hav-
ing determinant n.

All summands occuring in (1) are strictly positive and the last summand
(corresponding to the trivial divisor d = n of n) equals n. We have therefore
♯(R(n)) ≥ n with equality for n > 1 if and only if n is a prime number. Our
proof of Theorem 1.1 shows that solutions associated to a prime number
p are in one-to-one correspondence with the p sublattices of index p in Z

2

which do not contain the vector (1, 1).
Similarly, ♯(R(n)) = n + 1 if and only if n = p2 is the square of prime

number p.
Cardinalities of the sets R(1),R(2), . . . are given by the integer sequence

1, 2, 3, 5, 5, 8, 7, 11, 10, 14, 11, 19, 13, 20, 18, 24, 17, 30, 19, 31, . . .

not yet recognized by The Online-Encyclopedia of Integer Sequences [4].
Klein’s Vierergruppe V (underlying the 2-dimensional vector space over

the field of two elements) acts on solutions (a, b, c, d) by permuting the first
two entries, the last two entries or the first two and the last two entries.
We denote by O = {(a, b, c, d), (b, a, c, d), (a, b, d, c), (b, a, d, c)} the orbit of a
solution (a, b, c, d) under the action of V. The following lists give lexicograph-
ically largest representants of all orbits for the sets of solutions associated
to the prime numbers 11, 13 and 17:

a b c d ♯(O)

11 1 0 0 2
6 2 1 1 2
4 3 1 1 2
5 3 2 2 2
5 4 3 3 2
6 6 5 5 1

11

a b c d ♯(O)

13 1 0 0 2
7 2 1 1 2
5 3 2 1 4
4 4 3 1 2
5 5 4 3 2
7 7 6 6 1

13

a b c d ♯(O)

17 1 0 0 2
9 2 1 1 2
6 3 1 1 2
5 4 3 1 4
7 3 2 2 2
5 5 4 2 2
7 6 5 5 2
9 9 8 8 1

17
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For n = 12, 14, 15 we get

♯(S12) = (4 + 1− 3) + (6 + 1− 2) + (12 + 1− 1) = 19,

♯(S14) = (7 + 1− 2) + (14 + 1− 1) = 20,

♯(S15) = (5 + 1− 3) + (15 + 1− 1) = 18.

The associated lexicographically largest solutions in orbits are given by

a b c d ♯(O)

12 1 0 0 2
6 2 0 0 2
6 2 1 0 4
4 3 0 0 2
4 3 1 0 4
4 3 2 0 4
4 4 2 2 1

19

a b c d ♯(O)

14 1 0 0 2
7 2 0 0 2
7 2 1 0 4
5 3 1 1 2
4 4 2 1 2
6 3 2 2 2
5 4 3 2 4
6 5 4 4 2

20

a b c d ♯(O)

15 1 0 0 2
5 3 0 0 2
5 3 1 0 4
5 3 2 0 4
8 2 1 1 2
4 4 1 1 1
6 4 3 3 2
8 8 7 7 1

18

It is perhaps worthwhile to note that non-negative integral solutions of
n = ab + cd with min(a, b) > max(c, d) are also interesting: For n = p
an odd prime there are (p + 1)/2 solutions. If p is congruent to 1 modulo
4, the number (p + 1)/2 of such solutions is odd and the action of Klein’s
Vierergruppe has a fixed point expressing p as a sum of two squares, see [2].

The sequel of this paper is organized as follows:
Section 2 uses Moebius inversion in order to obtain the number of ele-

ments with coprime entries in R(n).
Section 3 recalls a well-known formula for the number of sublattices of

index n in Z
2. We give an elementary proof.

Unless stated otherwise, a lattice is always a discrete subgroup isomor-
phic to Z

2 of the Cartesian coordinate plane R2 considered as a vector space.
Section 4 describes the sail of a lattice Λ contained in the Cartesian

coordinate plane R
2.

Section 5 is devoted to the proof of Theorem 1.1.
Section 6 contains a few complements: An elementary proof for finiteness

of the setR(n), a short discussion on matrices of larger size or of determinant
0. It ends with the description of a perhaps interesting variation over the
ring of Gaußian integers.

2 Coprime solutions

Let R′(n) denote the subset of R(n) containing all Euclid-reduced matrices
with coprime entries. Dividing all entries of matrices in R(n) by their great-
est common divisor, we get a bijection between R(n) and ∪d,d2|nR′(n/d2)
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showing the identity ♯(R(n)) =
∑

d, d2|n ♯(R′(n/d2)). Moebius inversion of
this identity yields now the formula

♯(R′(n)) =
∑

d2|n

µ(d)♯(R(n/d2)) (3)

(where the Moebius function µ is defined by µ(n) = (−1)e if n is a product
of e distinct primes and µ(n) = 0 if n has a non-trivial square-divisor).

Observe that R′(n) = R(n) if and only if µ(n) 6= 0.
Cardinalities of R′(1),R′(2), . . . yield the integer sequence

1, 2, 3, 4, 5, 8, 7, 9, 9, 14, 11, 16, 13, 20, 18, 19, 17, 28, 19, 26, . . .

not yet contained in [4].

Remark 2.1. Formula (3) is the analogue of the identity

φ(n) =
∑

d|n

µ(d)n/d

(where φ(n) =
∑

d|n µ(d)n/d is the Möbius inversion of the trivial identity

n =
∑

d|n φ(n)) for Euler’s totient function φ(n) = n
∏

p|n

(

1− 1
p

)

counting

the number of invertible classes in Z/nZ.

3 Sublattices of finite index in Z
2

The following well-known result (see Remark 3.2 below) is a crucial ingredi-
ent for proving Theorem 1.1. We give an elementary proof for the comfort
of the reader.

Theorem 3.1. The lattice Z
2 has

∑

d,d|n d different sublattices of index n.

Proof. Let Λ be a sublattice of index n in Z
2. The order d of (1, 0) in

the finite quotient group Z
2/Λ is therefore a divisor of n and we have Λ ∩

Z(1, 0) = Z(d, 0). There exists therefore a unique element a {0, . . . , d − 1}
such that Λ = Z(d, 0) + Z(a, n/d). This shows that the lattice Z

2 has d
different sublattices of index n intersecting Z(1, 0) in Z(d, 0) for every divisor
d of n. Summing over all divisors yields the result.

Remark 3.2. More generally, the number of enumerates sublattices of index
n in Z

d is given by

∏

p|n

(

ep + d− 1
d− 1

)

p

(4)
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(see e.g. [3] or [5]) where
∏

p|n p
ep = n is the factorization of n into prime-

powers and where

(

ep + d− 1
d− 1

)

p

=

d−1
∏

j=1

pep+j − 1

pj − 1

is the evaluation of the q-binomial

[

ep + d− 1
d− 1

]

q

=
[ep + d− 1]q!

[ep]q! [d− 1]q!

(with [k]q! =
∏k

j=1
qj−1
q−1 ) at the prime-divisor p of n.

Formula (4) boils of course down to
∑

d,d|n d if d = 2.

4 The sail of a lattice

Sails of lattices in R
d, introduced and studied by V. Arnold, cf. e.g[1], are a

possible generalization of continued fraction expansions to higher dimension.
We define and discuss here only the case d = 2 corresponding to ordinary
continued fractions.

We denote by QI = {(x, y) |0 ≤ x, y} the closed first quadrant containing
all points with non-negative coordinates of the Cartesian coordinate plane
R
2.
The sail S = S(Λ) of a lattice Λ ⊂ R

2 is the boundary with respect
to the closed first quadrant QI of the convex hull of all non-zero elements
(Λ \ (0, 0)) ∩QI of Λ contained in QI.

The sail S of a lattice Λ is a piecewise linear path with vertices in Λ
which intersects every 1-dimensional subspace of finite strictly positive slope
in a unique point. Affine pieces of sails have finite strictly negative slopes.
Any affine line intersecting a sail in two points has therefore finite strictly
negative slope.

Each coordinate axis intersects a sail either in a unique point (this hap-
pens if and only if the coordinate axis contains infinitely many points of
the underlying lattice Λ) or is an asymptote of the sail (if Λ contains no
non-zero elements of the coordinate axis).

The sail S(Λ) of a sublattice Λ of index n in Z
2 is always bounded with

endpoints (αx, 0), (0, ωy) for two divisors αx and ωy of n such that αxωy ≥ n.
Two distinct lattice elements u, v ∈ Λ on the sail S = S(Λ) of a lattice

Λ are consecutive if the open segment joining u and v is contained in S \Λ.

Lemma 4.1. Two distinct lattice elements u, v on the sail S(Λ) ∩ Λ of a
lattice Λ generate Λ if and only if they are consecutive.
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Proof. Since all non-zero lattice points in QI belong to the unbounded con-
vex region of QI \S, the closed triangle ∆ = ∆(u, v) with vertices (0, 0), u, v
contains no other element of Λ if and only if u and v are consecutive.

Pairs of consecutive points u, v generate Λ since ∆ ∪ (−∆) is a funda-
mental domain for the lattice spanned by u and v.

A sailbasis of a lattice Λ is a basis of Λ consisting of two consecutive
elements in the sail S of Λ. Every lattice has a sailbasis.

Two linearly independent elements u, v in the the first quadrant QI form
a sailbasis of the lattice Zu + Zv generated by u and v if and only if the
affine line containing u and v has finite strictly negative slope.

Remark 4.2. Sails are generalisations of continued fractions: Given a real
number θ, vertices of the sail for the lattice e−i arctan(θ)(Z + iZ) ∩ [0,∞] +
i[0,∞] \ {0} correspond essentially to convergents of θ, see for example [1].

5 Proof of Theorem 1.1

A sailbasis u, v of a lattice is central if the open segment joining u and v
intersects the diagonal line x = y. The two elements of a central sailbasis
belong therefore to different connected components of R2 \ R(1, 1). Every
lattice has at most a unique central sailbasis.

A lattice Λ is bad if it has no central sailbasis. Equivalently, a lattice is
bad if its sail S intersects the set Λ ∩R(1, 1) of diagonal lattice-elements.

A sailbasis u, v of a bad lattice Λ = Zu+Zv is normalized if u in R(1, 1)
is a diagonal element and v belongs to the open halfplan {(x, y) | x > y}
below the diagonal line. Lemma 4.1 shows that a bad lattice Λ has a unique
normalized sailbasis given by u = S ∩R(1, 1) and by the unique consecutive
element v in S ∩ Λ of u which lies below the diagonal line x = y.

Proposition 5.1. The lattice Z
2 contains

∑

d, d2<n, d|n

d+
∑

d, d2≥n, d|n

(n/d− 1)

bad sublattices of index n.

Proof. Bad lattices are in one-to-one correspondence with their normalized
sailbases. We count them by adapting the proof of Theorem 3.1.

Let u = (d, d) in Λ∩S be the diagonal element of a normalized sailbasis
u, v generating a bad sublattice Λ = Zu+ Zv of index n in Z

2. The image
of the element (1, 1) in the quotient group Z

2/Λ is therefore of order d
dividing n. Since u, v is a sailbasis, the coefficients vx, vy of the remaining
basis element v = (vx, vy) satisfy the inequalities 0 ≤ vy < d < vx. Since
Λ = Zu+Zv is a sublattice of index n in Z

2, the element v of N2 belongs to

6



the line (n/d, 0) +R(1, 1). We have therefore v = (n/d+ a, a) for a suitable
non-negative integer a.

If d <
√
n, the trivial inequalities d < n/d ≤ n/d+ a = vx imply vx > d

for all choices of a in N. The inequality vy < d implies that a = vy belongs to
the set {0, 1, 2, . . . , d− 1} of the d smallest non-negative integers. For every
divisor d <

√
n there are therefore d bad sublattices of index n containing

(d, d) in their sail.
If d is a divisor of n such that d ≥ √

n the inequality d < vx = n/d + a
implies a ≥ d − n/d + 1 ≥ 0. We have also a = vy < d leading to a in the
set {d− n/d+ 1, d − n/d+ 2, . . . , d− 1} containing n/d− 1 elements.

Summing over all contributions given by divisors of n ends the proof.

Proof of Theorem 1.1. Solutions of ab − cd = n with min(a, b) > max(c, d)
are in one-to-one correspondence with central sailbases (a, d), (d, b) generat-
ing sublattices of index n in Z

2. The number of elements in R(n) is therefore
obtained by subtracting the number

∑

d, d2<n, d|n d+
∑

d, d2≥n, d|n(n/d− 1)

of bad lattices of index n in Z
2 given by Proposition 5.1 from the total num-

ber
∑

d,d|n d of lattices of index n in Z
2 given by Theorem 3.1. Simplification

yields the result.

6 Complements

6.1 Finiteness

We discuss in this Section a few finiteness properties of Euclid-reducedness.
First, we give an elementary proof of finiteness for the number of Euclid-

reduced matrices in P of given determinant which does not make use of
Theorem 1.1.

We consider then briefly the case of matrices of size larger than 2 and of
square matrices of size two with determinant 0.

6.2 An easy bound on entries of Euclid-reduced matrices

Proposition 6.1. Matrices in R(n) involve only entries in {0, 1, . . . , n}.

Corollary 6.2. There are at most (n + 1)4 matrices in the set R(n) of
Euclid-reduced matrices of determinant n.

We leave the obvious proof of the Corollary to the reader.

Proof of Proposition 6.1. Let n = ab−cd with min(a, b) > max(c, d) be a so-

lution corresponding to the Euclid-reduced matrix

(

a c
d b

)

with max(a, b)

maximal among entries occuring in elements of R(1), . . . ,R(n). Up to
exchanging a and b we can suppose that a ≥ b. Since n = ab − cd ≥

7



ab − (b − 1)2 > 0 we can assume c = d = b − 1. Restricting ax − (x − 1)2

to x in [1, . . . , a] we can furthermore assume either x = 1 or x = a. In
the first case we get n ≥ a · 1 − 02 = a and in the second case we get
n ≥ a2− (a− 1)2 = 2a− 1 showing the inequality max(a, b) = a ≤ n in both
cases.

6.3 Finiteness for size larger than two

The obvious definition of Euclid-reducedness leads to infinite sets of Euclid-
reduced matrices when considering matrices of larger size:

The matrix





4 + x 2 + x 1 + x
x 1 + x 3 + x

1 + x 1 + x 2 + x



 has determinant 1 and is ’Euclid-

reduced’ for any natural integer x.
An example of size 2× 3 with columns generating Z

2 is given by is given

by

(

n 3 2
1 2 3

)

for n ≥ 5 such that n 6≡ 4 (mod 5).

6.4 Finiteness for determinant zero

All square matrices of size two with (at least) three zero entries and an
arbitrary entry in N are Euclid-reduced and every Euclid-reduced matrix
with determinant 0 and entries in N is of this form: If a matrix M (of square
size two with entries in N has determinant 0 then its rows (or columns) are
linearly dependent. Subtracting the smaller row iteratedly from the larger
one we end up with a matrix having a zero-row. Working with columns we
get finally a matrix having a unique non-zero entry.

Requiring the entries of such a matrix to have a given non-zero greatest
divisor ensures uniqueness up to the location of the non-zero entry. There
are therefore exactly four Euclid-reduced matrices (of square size 2) with
determinant 0 and and greatest common divisor of entries a given non-zero
integer d ≥ 1.

6.5 Gaußian integers

We discuss briefly an analogue of R(n) over the ring of Gaußian integers (the
case of integers in an imaginary quadratic number field is probably similar).

Given a non-zero Gaußian integer z, we define the set S(z) containing all
solutions of ab + cd = z satisfying min(|a|, |b|) > max(|c|, |d|) with a, b, c, d
in the set Z[i] of Gaußian integers.

The two identities

2m+ 1 = (2n + (2n2 −m− 1)i)(2n − (2n2 −m− 1)i) − (2n2 −m)2

and

2m = (2n+1+(2n2+2n−m)i)(2n+1−(2n2+2n−m)i)−(2n2+2n−m+1)2
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show that the sets S(z) are always infinite for z ∈ Z \ {0}.
More generally, S(z) is infinite for every Gaußian integer z of the form

z = nu2 for n in N \ {0} a sum of two squares (i.e. containing no odd
power of a prime congruent to 3 modulo 4 in its prime-factorization) and
for u ∈ Z[i] \ {0} an arbitrary non-zero Gaußian integer.

Solutions can be fairly large as shown by the identity

2 + 3i = −(7− 18)2 + (3 + 19i)(−15 + 12i)

contributing to S(2 + 3i) which has seemingly only finitely many elements.
There are obvious bijections between S(z),S(z),S(−z),S(±iz). More-

over, S(z) infinite implies S(sst2z) infinite for every non-zero Gaußian inte-
gers s, t in Z[i] \ {0}.

References

[1] Arnold, V. I. (1998), Higher dimensional continued fractions. Regul.
Chaotic Dyn. 3(3): 10–17.

[2] Bacher, R., A Quixotic Proof of Fermat’s Two Squares Theorem for
Prime Numbers, submitted.

[3] Gruber, B. (1997), Alternative formulae for the number of sublattices.
Acta Cryst. A53, 807–808.

[4] The On-Line Encyclopedia of Integer Sequences, http://oeis.org

[5] Y.M. Zou, Y.M. (2006), Gaussian binomials and the number of sublat-
tices, Acta Cryst. A62, 409–410.

Roland BACHER,
Univ. Grenoble Alpes, Institut Fourier,
F-38000 Grenoble, France.

e-mail: Roland.Bacher@univ-grenoble-alpes.fr

9


