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Euclid meets Popeye: The Euclidean Algorithm for 2 × 2 Matrices

An analogue of the Euclidean algorithm for square matrices of size 2 with integral non-negative entries and strictly positive determinant n defines a finite set R(n) of Euclid-reduced matrices corresponding to elements of {(a, b, c, d) ∈ N 4 | n = ab -cd, 0 ≤ c, d < a, b}. With Popeye's help 2 on the use of sails of lattices we show that R(n) contains d|n, d 2 ≥n d + 1 -n d elements.

We denote by R the subset of Euclid-reduced matrices in P and by R(n) = R ∩ P(n) the subset of R corresponding to Euclid-reduced matrices of determinant n.

The main result of this paper describes the number ♯(R(n)) of elements in the set R(n) of Euclid-reduced matrices of determinant n: 

(2)

The map (a, b, c, d) -→ a c d b is a one-to-one correspondence between such solutions and elements in the set R(n) of Euclid-reduced matrices having determinant n.

All summands occuring in [START_REF] Arnold | Higher dimensional continued fractions[END_REF] are strictly positive and the last summand (corresponding to the trivial divisor d = n of n) equals n. We have therefore ♯(R(n)) ≥ n with equality for n > 1 if and only if n is a prime number. Our proof of Theorem 1.1 shows that solutions associated to a prime number p are in one-to-one correspondence with the p sublattices of index p in Z 2 which do not contain the vector [START_REF] Arnold | Higher dimensional continued fractions[END_REF][START_REF] Arnold | Higher dimensional continued fractions[END_REF].

Similarly, ♯(R(n)) = n + 1 if and only if n = p 2 is the square of prime number p.

Cardinalities of the sets R(1), R(2), . . . are given by the integer sequence It is perhaps worthwhile to note that non-negative integral solutions of n = ab + cd with min(a, b) > max(c, d) are also interesting: For n = p an odd prime there are (p + 1)/2 solutions. If p is congruent to 1 modulo 4, the number (p + 1)/2 of such solutions is odd and the action of Klein's Vierergruppe has a fixed point expressing p as a sum of two squares, see [START_REF] Bacher | A Quixotic Proof of Fermat's Two Squares Theorem for Prime Numbers[END_REF].

The sequel of this paper is organized as follows: Section 2 uses Moebius inversion in order to obtain the number of elements with coprime entries in R(n).

Section 3 recalls a well-known formula for the number of sublattices of index n in Z 2 . We give an elementary proof.

Unless stated otherwise, a lattice is always a discrete subgroup isomorphic to Z 2 of the Cartesian coordinate plane R 2 considered as a vector space.

Section 4 describes the sail of a lattice Λ contained in the Cartesian coordinate plane R 2 .

Section 5 is devoted to the proof of Theorem 1.1. Section 6 contains a few complements: An elementary proof for finiteness of the set R(n), a short discussion on matrices of larger size or of determinant 0. It ends with the description of a perhaps interesting variation over the ring of Gaußian integers.

Coprime solutions

Let R ′ (n) denote the subset of R(n) containing all Euclid-reduced matrices with coprime entries. Dividing all entries of matrices in R(n) by their greatest common divisor, we get a bijection between R(n) and

∪ d,d 2 |n R ′ (n/d 2 ) showing the identity ♯(R(n)) = d, d 2 |n ♯(R ′ (n/d 2 )
). Moebius inversion of this identity yields now the formula

♯(R ′ (n)) = d 2 |n µ(d)♯(R(n/d 2 )) (3) 
(where the Moebius function µ is defined by µ(n) = (-1) e if n is a product of e distinct primes and µ(n 3) is the analogue of the identity

) = 0 if n has a non-trivial square-divisor). Observe that R ′ (n) = R(n) if and only if µ(n) = 0. Cardinalities of R ′ (1), R ′ (
φ(n) = d|n µ(d)n/d (where φ(n) = d|n µ(d)n/d is the Möbius inversion of the trivial identity n = d|n φ(n)) for Euler's totient function φ(n) = n p|n 1 -1 p counting the number of invertible classes in Z/nZ.

Sublattices of finite index in Z 2

The following well-known result (see Remark 3.2 below) is a crucial ingredient for proving Theorem 1.1. We give an elementary proof for the comfort of the reader. Proof. Let Λ be a sublattice of index n in Z 2 . The order d of (1, 0) in the finite quotient group Z 2 /Λ is therefore a divisor of n and we have Λ ∩ Z(1, 0) = Z(d, 0). There exists therefore a unique element a {0, . . . , d -1} such that Λ = Z(d, 0) + Z(a, n/d). This shows that the lattice Z 2 has d different sublattices of index n intersecting Z(1, 0) in Z(d, 0) for every divisor d of n. Summing over all divisors yields the result. Remark 3.2. More generally, the number of enumerates sublattices of index n in Z d is given by

p|n e p + d -1 d -1 p (4) 
(see e.g. [START_REF] Gruber | Alternative formulae for the number of sublattices[END_REF] or [START_REF] Zou | Gaussian binomials and the number of sublattices[END_REF]) where p|n p ep = n is the factorization of n into primepowers and where

e p + d -1 d -1 p = d-1 j=1 p ep+j -1 p j -1
is the evaluation of the q-binomial

e p + d -1 d -1 q = [e p + d -1] q ! [e p ] q ! [d -1] q ! (with [k] q ! = k j=1 q j -1
q-1 ) at the prime-divisor p of n. Formula (4) boils of course down to d,d|n

d if d = 2.
4 The sail of a lattice Sails of lattices in R d , introduced and studied by V. Arnold, cf. e.g [START_REF] Arnold | Higher dimensional continued fractions[END_REF], are a possible generalization of continued fraction expansions to higher dimension. We define and discuss here only the case d = 2 corresponding to ordinary continued fractions.

We denote by Q I = {(x, y) |0 ≤ x, y} the closed first quadrant containing all points with non-negative coordinates of the Cartesian coordinate plane R 2 .

The sail S = S(Λ) of a lattice Λ ⊂ R 2 is the boundary with respect to the closed first quadrant Q I of the convex hull of all non-zero elements (Λ \ (0, 0))

∩ Q I of Λ contained in Q I .
The sail S of a lattice Λ is a piecewise linear path with vertices in Λ which intersects every 1-dimensional subspace of finite strictly positive slope in a unique point. Affine pieces of sails have finite strictly negative slopes. Any affine line intersecting a sail in two points has therefore finite strictly negative slope.

Each coordinate axis intersects a sail either in a unique point (this happens if and only if the coordinate axis contains infinitely many points of the underlying lattice Λ) or is an asymptote of the sail (if Λ contains no non-zero elements of the coordinate axis).

The sail S(Λ) of a sublattice Λ of index n in Z 2 is always bounded with endpoints (α x , 0), (0, ω y ) for two divisors α x and ω y of n such that α x ω y ≥ n.

Two distinct lattice elements u, v ∈ Λ on the sail S = S(Λ) of a lattice Λ are consecutive if the open segment joining u and v is contained in S \ Λ. Proof. Since all non-zero lattice points in Q I belong to the unbounded convex region of Q I \ S, the closed triangle ∆ = ∆(u, v) with vertices (0, 0), u, v contains no other element of Λ if and only if u and v are consecutive.

Pairs of consecutive points u, v generate Λ since ∆ ∪ (-∆) is a fundamental domain for the lattice spanned by u and v.

A sailbasis of a lattice Λ is a basis of Λ consisting of two consecutive elements in the sail S of Λ. Every lattice has a sailbasis.

Two linearly independent elements u, v in the the first quadrant Q I form a sailbasis of the lattice Zu + Zv generated by u and v if and only if the affine line containing u and v has finite strictly negative slope. Remark 4.2. Sails are generalisations of continued fractions: Given a real number θ, vertices of the sail for the lattice e -i arctan(θ) (Z + iZ) ∩ [0, ∞] + i[0, ∞] \ {0} correspond essentially to convergents of θ, see for example [START_REF] Arnold | Higher dimensional continued fractions[END_REF].

Proof of Theorem 1.1

A sailbasis u, v of a lattice is central if the open segment joining u and v intersects the diagonal line x = y. The two elements of a central sailbasis belong therefore to different connected components of R 2 \ R(1, 1). Every lattice has at most a unique central sailbasis.

A lattice Λ is bad if it has no central sailbasis. Equivalently, a lattice is bad if its sail S intersects the set Λ ∩ R(1, 1) of diagonal lattice-elements.

A sailbasis u, v of a bad lattice Λ = Proof. Bad lattices are in one-to-one correspondence with their normalized sailbases. We count them by adapting the proof of Theorem 3.1.

Zu + Zv is normalized if u in R(1,
Let u = (d, d) in Λ ∩ S be the diagonal element of a normalized sailbasis u, v generating a bad sublattice Λ = Zu + Zv of index n in Z 2 . The image of the element (1, 1) in the quotient group Z 2 /Λ is therefore of order d dividing n. Since u, v is a sailbasis, the coefficients v x , v y of the remaining basis element v = (v x , v y ) satisfy the inequalities 0 ≤ v y < d < v x . Since Λ = Zu + Zv is a sublattice of index n in Z 2 , the element v of N 2 belongs to the line (n/d, 0) + R(1, 1). We have therefore v = (n/d + a, a) for a suitable non-negative integer a.

If d < √ n, the trivial inequalities d < n/d ≤ n/d + a = v x imply v x > d
for all choices of a in N. The inequality v y < d implies that a = v y belongs to the set {0, 1, 2, . . . , d -1} of the d smallest non-negative integers. For every divisor d < √ n there are therefore d bad sublattices of index n containing

(d, d) in their sail. If d is a divisor of n such that d ≥ √ n the inequality d < v x = n/d + a implies a ≥ d -n/d + 1 ≥ 0. We have also a = v y < d leading to a in the set {d -n/d + 1, d -n/d + 2, . . . , d -1} containing n/d -1 elements.
Summing over all contributions given by divisors of n ends the proof. 6 Complements

Finiteness

We discuss in this Section a few finiteness properties of Euclid-reducedness. First, we give an elementary proof of finiteness for the number of Euclidreduced matrices in P of given determinant which does not make use of Theorem 1.1.

We consider then briefly the case of matrices of size larger than 2 and of square matrices of size two with determinant 0. 

An easy bound on entries of Euclid-reduced matrices

Finiteness for size larger than two

The obvious definition of Euclid-reducedness leads to infinite sets of Euclidreduced matrices when considering matrices of larger size:

The matrix

  4 + x 2 + x 1 + x x 1 + x 3 + x 1 + x 1 + x 2 + x  
has determinant 1 and is 'Euclidreduced' for any natural integer x.

An example of size 2 × 3 with columns generating Z 2 is given by is given by n 3 2 1 2 3 for n ≥ 5 such that n ≡ 4 (mod 5).

Finiteness for determinant zero

All square matrices of size two with (at least) three zero entries and an arbitrary entry in N are Euclid-reduced and every Euclid-reduced matrix with determinant 0 and entries in N is of this form: If a matrix M (of square size two with entries in N has determinant 0 then its rows (or columns) are linearly dependent. Subtracting the smaller row iteratedly from the larger one we end up with a matrix having a zero-row. Working with columns we get finally a matrix having a unique non-zero entry.

Requiring the entries of such a matrix to have a given non-zero greatest divisor ensures uniqueness up to the location of the non-zero entry. There are therefore exactly four Euclid-reduced matrices (of square size 2) with determinant 0 and and greatest common divisor of entries a given non-zero integer d ≥ 1.

Gaußian integers

We discuss briefly an analogue of R(n) over the ring of Gaußian integers (the case of integers in an imaginary quadratic number field is probably similar).

Given a non-zero Gaußian integer z, we define the set S(z) containing all solutions of ab + cd show that the sets S(z) are always infinite for z ∈ Z \ {0}. More generally, S(z) is infinite for every Gaußian integer z of the form z = nu 2 for n in N \ {0} a sum of two squares (i.e. containing no odd power of a prime congruent to 3 modulo 4 in its prime-factorization) and for u ∈ Z[i] \ {0} an arbitrary non-zero Gaußian integer.

Solutions can be fairly large as shown by the identity 2 + 3i = -(7 -18) 2 + (3 + 19i)(-15 + 12i) contributing to S(2 + 3i) which has seemingly only finitely many elements. There are obvious bijections between S(z), S(z), S(-z), S(±iz). Moreover, S(z) infinite implies S(sst 2 z) infinite for every non-zero Gaußian integers s, t in Z[i] \ {0}.

1 Introduction-1 0 1 .

 11 We denote by N = {0, 1, 2, . . .} the set of all non-negative integers and byP = { a b c d |a, b, c, d ∈ N,ad -bc > 0} the set of all square matrices of size 2 with entries in N and strictly positive determinant. The subset of matrices of determinant n in P is written as P(n). An elementary reduction of a matrix M is a matrix in {EM, E t M, M E, M E t } where E = 1 Elementary reductions of M subtract a row/column from the other row/column of M . A matrix M in P is Euclid-reduced if and only if P contains no elementary reduction of M . Equivalently, M = a b c d in P is Euclid-reduced if min(a, d) > max(b, c).

Theorem 1 . 1 .

 11 The number of elements (a, b, c, d) in N 4 such that n = ab -cd and min(a, b) > max(c, d) is given by d|n, d 2 ≥n d + 1 -n d .

For

  not yet recognized by The Online-Encyclopedia of Integer Sequences[START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF].Klein's Vierergruppe V (underlying the 2-dimensional vector space over the field of two elements) acts on solutions (a, b, c, d) by permuting the first two entries, the last two entries or the first two and the last two entries. We denote by O = {(a, b, c, d), (b, a, c, d), (a, b, d, c), (b, a, d, c)} the orbit of a solution (a, b, c, d) under the action of V. The following lists give lexicographically largest representants of all orbits for the sets of solutions associated to the prime numbers 11, 13 and 17: n = 12, 14, 15 we get ♯(S 12 ) = (4 + 1 -3) + (6 + 1 -2) + (12 + 1 -1) = 19, ♯(S 14 ) = (7 + 1 -2) + (14 + 1 -1) = 20, ♯(S 15 ) = (5 + 1 -3) + (15 + 1 -1) = 18. The associated lexicographically largest solutions in orbits are given by

Theorem 3 . 1 .

 31 The lattice Z 2 has d,d|n d different sublattices of index n.

Lemma 4 . 1 .

 41 Two distinct lattice elements u, v on the sail S(Λ) ∩ Λ of a lattice Λ generate Λ if and only if they are consecutive.

  1) is a diagonal element and v belongs to the open halfplan {(x, y) | x > y} below the diagonal line. Lemma 4.1 shows that a bad lattice Λ has a unique normalized sailbasis given by u = S ∩ R(1, 1) and by the unique consecutive element v in S ∩ Λ of u which lies below the diagonal line x = y. Proposition 5.1. The lattice Z 2 contains d, d 2 <n, d|n d + d, d 2 ≥n, d|n (n/d -1) bad sublattices of index n.

Proof of Theorem 1 . 1 .

 11 Solutions of ab -cd = n with min(a, b) > max(c, d) are in one-to-one correspondence with central sailbases (a, d), (d, b) generating sublattices of index n in Z 2 . The number of elements in R(n) is therefore obtained by subtracting the number d, d 2 <n, d|n d + d, d 2 ≥n, d|n (n/d -1) of bad lattices of index n in Z 2 given by Proposition 5.1 from the total number d,d|n d of lattices of index n in Z 2 given by Theorem 3.1. Simplification yields the result.

Proposition 6. 1 .

 1 Matrices in R(n) involve only entries in {0, 1, . . . , n}. Corollary 6.2. There are at most (n + 1) 4 matrices in the set R(n) of Euclid-reduced matrices of determinant n.We leave the obvious proof of the Corollary to the reader. Proof of Proposition 6.1. Let n = ab-cd with min(a, b) > max(c, d) be a solution corresponding to the Euclid-reduced matrix a c d b with max(a, b) maximal among entries occuring in elements of R(1), . . . , R(n). Up to exchanging a and b we can suppose that a ≥ b. Since n = ab -cd ≥ ab -(b -1) 2 > 0 we can assume c = d = b -1. Restricting ax -(x -1) 2 to x in [1, . . . , a] we can furthermore assume either x = 1 or x = a. In the first case we get n ≥ a • 1 -0 2 = a and in the second case we get n ≥ a 2 -(a -1) 2 = 2a -1 showing the inequality max(a, b) = a ≤ n in both cases.

  = z satisfying min(|a|, |b|) > max(|c|, |d|) with a, b, c, d in the set Z[i] of Gaußian integers. The two identities 2m + 1 = (2n + (2n 2 -m -1)i)(2n -(2n 2 -m -1)i) -(2n 2 -m) 2 and 2m = (2n+1+(2n 2 +2n-m)i)(2n+1-(2n 2 +2n-m)i)-(2n 2 +2n-m+1) 2

  2), . . . yield the integer sequence 1, 2, 3, 4, 5, 8, 7, 9, 9, 14, 11, 16, 13, 20, 18, 19, 17, 28, 19, 26, . . .

not yet contained in

[START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]

.
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Keywords: Euclidean algorithm, lattice, continued fractions. Math. class: Primary: 11A05. Secondary: 11H06, 11J70.

Acknowledged by his appearance in the title (he refused co-authorship on the pretext of a weak contribution due to a poor spinach-harvest).