
HAL Id: hal-03780440
https://hal.science/hal-03780440

Preprint submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An aspect of the turnpike property. Long time horizon
behavior

Martin Gugat, Jan Sokolowski

To cite this version:
Martin Gugat, Jan Sokolowski. An aspect of the turnpike property. Long time horizon behavior.
2022. �hal-03780440�

https://hal.science/hal-03780440
https://hal.archives-ouvertes.fr


An aspect of the turnpike property.

Long time horizon behavior

Martin Gugat ∗ Jan Sokolowski †

This work was supported by Deutsche Forschungsgemeinschaft
(DFG) in the Collaborative Research Centre CRC/Transregio 154,
Mathematical Modelling, Simulation and Optimization Using the
Example of Gas Networks, Projects C03 and C05, Projektnummer

239904186.

Abstract

The turnpike phenomenon concerns the structure of optimal controls
and the optimal state of dynamic optimal control problems for long time
horizons. The focus is regularly on the study of the interior of the time
interval. Classical turnpike results state how the solution of the dynamic
optimal control problems approaches the solution of the corresponding
static optimal control problem in the interior of the time interval.

In this paper we look at a new aspect of the turnpike phenomenon. We
show that for problems without explicit terminal condition, for large time
horizons in the last part of the time interval for large T the optimal state
approaches a certain limit trajectory that is independent of the terminal
time exponentially fast. Similarly also in the initial part of the time
interval for large T the optimal state approaches a certain limit state
exponentially fast.

1 Introduction

The turnpike phenomenon concerns properties of solutions to dynamic optimal
control problems for long time horizons. Usually the studies of the turnpike
phenomenon focus on results about the behaviour of the optimal trajectories in
the interior of the time interval. These results provide assumptions that imply
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that for long time horizons, in the interior of the time interval the solutions to
the dynamic optimal control problems are approximated by the solutions to the
corresponding static optimal control problem.

In this paper we focus on a different aspect, namely the limit trajectories
for large time horizons on the initial part and the terminal part of the time
interval. We consider dynamic optimal control problems with free terminal
state for long time horizons. We show the existence of a limit trajectory on the
last part of the time interval. It turns out, that with increasing time horizon
T , the terminal arc approaches the limit limit trajectory that is independent of
the time horizon exponentially fast. The corresponding limit states at the time
T − t only depend on the distance t to the terminal time T . Hence for long time
horizons the optimal state of the dynamic problem in the last part of of the
time interval approaches a limit trajectory that is independent of the terminal
time T . Moreover, also this convergence is exponentially fast.

We also show that on the first part of the time interval [0, T ], a limit tra-
jectory that is independent of T does exist such that the optimal state of the
dynamic problem approaches exponentially fast the limit trajectory with grow-
ing T .

Since there is a substantial amount of literature on the turnpike phenomenon,
here we only give a short review. An early reference is [17]. A monograph on the
turnpike phenomenon is [23] and an overview on discrete-time and continuous-
time turnpike properties in optimal control is given in [4]. The survey [6] with
a particular focus on the control of distributed parameter systems contains also
additional references. Measure and integral turnpike properties have been stud-
ied in [19]. The turnpike property for systems that are governed by semilinear
partial differential equations is studied in [7]. The relation of the turnpike
property and the receding-horizon method has been studied in [2]. Manifold
turnpikes are studied in [3].

To explain the point that we want to make further we start with a simple
example.

Example. Let real numbers yd ̸= 0, T > 0, γ > 0 and y0 be given. Consider
the dynamic optimal control problem{

minu∈L2(0,T )

∫ T

0
|y(τ)− yd|2 + γ |u(τ)|2 dτ

subject to y(0) = y0, y′(t) = y(t) + u(t).

The optimal state for the corresponding static optimal control problem

min
u∈R

|y − yd|2 + γ |u|2 subject to 0 = y + u.

is given by y(σ) = 1
1+γ yd. Define ω =

(
1 + 1

γ

)1/2

.

The optimality conditions imply that the optimal state ŷT is given by

ŷT (t) = y(σ) + y(σ)
1

ω − tanh(ωT )

sinh(ω t)

cosh(ω T )
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+
[
y0 − y(σ)

] (ω + 1) exp(ω(t− T )) + (ω − 1) exp(ω(T − t))

(ω − 1) exp(ω T ) + (ω + 1) exp(−ω T )
.

Simple calculations show

lim
T→∞

ŷT (t) = y(σ) +
[
y0 − y(σ)

]
exp(−ω t)

and

lim
T→∞

ŷT (T − t) = y(σ) +
1

ω − 1
y(σ) exp(−ωt).

For t > 0 define the initial limit trajectory yinit(t) = y(σ)+
[
y0 − y(σ)

]
exp(−ω t)

that is independent of T . Then limT→∞ ŷT (t) = yinit(t). If y0 = y(σ), we have
yinit(t) = y(σ).

Define the terminal limit trajectory yterm(t) = y(σ)+ 1
ω−1y

(σ) exp(−ωt) that
also does not depend on T . Then limT→∞ ŷT (t − t) = yterm(t). The limit
trajectory yterm can only be constant if y(σ) = 0. We have

lim
T→∞

ŷT (T ) = yterm(0).

Moreover both limits are reached exponentially fast.
Let t0 > 0 be given. For t ∈ (t0, T − t0) and T sufficiently large we have the

inequality

|ŷT (t)− y(σ)| ≤ 2
[∣∣∣yinit(0)− y(σ)

∣∣∣+ ∣∣∣yterm(0)− y(σ)
∣∣∣] exp(−ω t0)

which implies that in the interior of the time interval, the distance between
the static optimal state and the dynamic optimal state decays exponentially
fast. Note that by choosing t0 sufficiently large we can make the upper bound
exp(−ω t0) arbitrarily small.

This situation indicates that from a practical point of view it makes sense
to use a feedback rule in the first part of the time interval to control the system
to the optimal static state y(σ). If the feedback steers the system close to yinit
this approach causes almost no loss of optimality compared with the problem
for large time horizons.

Define HT (t) =
1
2 |ŷT (t)− y(σ)|2. We will show that HT has the meaning of

a Lyapunov function for the first part of the time interval where it is decreasing
exponentially fast. In contrast to the typical situation with Lyapunov functions,
in the last part of the time interval it is increasing. Since ŷ′′T = ω2(ŷT − y(σ))
we have

H ′′
T (t) = (ŷ′T (t))

2 + (ŷT (t)− y(σ))ŷ′′T (t) = (ŷ′T (t))
2 + 2ω2 HT (t).

Hence HT is convex. We have H ′
T (0) = (y0 − y(σ))ŷ′T (0) and

lim
T→∞

ŷ′T (0) = −ω(y0 − y(σ)) = y′init(0).

If T is sufficiently large and y0 ̸= y(σ) we obtain H ′
T (0) < 0. This implies that

in the first part of [0, T ], H is strictly decreasing.
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If t∗T > 0 is such that ŷ′T (t
∗
T ) = 0, we have H ′

T (t
∗
T ) = 0. At such a point

t∗T > 0, the function H ≥ 0 attains its minimal value. For t > t∗T , the value of
H(t) can increase again and if y(σ) ̸= 0 this is what happens in the last part of
the time-interval where t 7→ ŷT (T − t) approaches t 7→ yterm(t) for T → ∞. In
fact, since

lim
T→∞

ŷ′T (T ) =
ω

ω − 1
y(σ) = −y′term(0)

in this case we have

lim
T→∞

H ′
T (T ) = lim

T→∞
(ŷT (T )− y(σ))ŷ′T (t) = −(yterm(0)− y(σ))y′term(0) > 0.

The aim of this paper is to show that the situation that occurs in our example
is typical and can also be found in a general framework.

The structure of the paper. This paper has the following structure. In
Section 2 we define the optimal control problem that we investigate. We consider
a system that is governed by a semi–group of contractions. We define a linear-
quadratic optimal control problem.

In Section 3 we derive the optimality systems both for the dynamic optimal
control problem and the corresponding static optimal control problem. Then
we consider the difference between the dynamic and the static optimal solutions
and derive a system with an initial condition and a terminal condition that is
satisfied by this difference.

In Section 4 we show the existence of two limit trajectories for the boundaries
of the time interval. We have an initial limit trajectories for fixed times t > 0 and
a terminal limit trajectories for times T − t with a fixed distance to the terminal
time T . We derive representations of the long-time horizon limit terminal state,
the long-time horizon limit trajectory for the last part of the time interval and
the initial limit trajectory. We provide a representation in terms of the optimal
adjoint state for the static problem and show the convergence towards the limit
trajectory is exponentially fast.

In Section 5 we present examples with the transport equation and the wave
equation to illustrate our findings. At the end of the paper in Section 6 we point
out possible directions of future research.

2 The dynamic optimal control problem

Let U and X denote complex Hilbert spaces and Tt a strongly continuous semi–
group of contractions on X with generator A. Our setting is as in [20], Chapter
4. We consider a system that is governed by the differential equation

z′(t) = Az(t) +Bu(t) (1)

where B is an admissible control operator that is defined in U and controls
u ∈ L2

loc([0, ∞), U). Then for all t ≥ 0 we can represent the state in the form

z(t) = z(0) +

∫ t

0

[Az(s) +Bu(s)] ds
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(see Proposition 4.2.5 in [20]). We can also write

z(t) = Ttz(0) +

∫ t

0

Tt−sBu(s) ds.

Note that since B is an admissible control operator, for t ≥ 0 the operator

Φtu =

∫ t

0

Tt−sBu(s) ds

is bounded and ∥Φt∥ ≤ ∥ΦT ∥.
We assume that A is skew–adjoint, that is for all v, w in the domain of A

we have
⟨Aw, v⟩ = ⟨w, −Av⟩. (2)

Proposition 3.7.2 in [20] states that (2) is equivalent to the statement that both
A and −A are m-dissipative. Hence the Lumer-Phillips Theorem implies that
A is the generator of a semi-group of contractions.

Let an initial state z0 ∈ X and a desired state zd ∈ X be given. Let T > 0
be given. For u ∈ L2

loc([0, T ], U) we define the objective functional

JT (u) =

∫ T

0

∥z(s)− zd∥2X + ∥u(s)∥2U ds

where the state z is defined as the solution of the initial value problem

z(0) = z0, z
′(t) = Az(t) +Bu(t). (3)

We consider the dynamic optimal control problem

P(T ) : min
u∈L2

loc([0, T ],U)
JT (u). (4)

Note that since the objective functional is strongly convex, P(T ) can have at
most one solution. Moreover, our assumptions allow to prove the existence of a
solution of P(T ) using the direct method of the calculus of variations.

3 Optimality conditions

In this section we study the necessary optimality conditions for the dynamic
optimal control problem P(T ) and the corresponding static optimal control
problem. We also derive a differential equation for the difference of the dynamic
optimal state/control pair and the static optimal state/control pair. This system
is completed by an initial condition for the state and a terminal condition for
the adjoint state.
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3.1 Necessary optimality conditions for the dynamic op-
timal control problem

First we derive the necessary optimality conditions for the dynamic optimal
control problem P(T ). We introduce a variation δu of the control and the
corresponding variation δz of the generated state. Then we have the initial
condition δz(0) = 0 and the differential equation δz′ = Aδz + B δu. We intro-
duce an adjoint state µ with the same regularity as z and obtain the optimality
system

z(0) = z0, µ(T ) = 0 (5)

z′ = Az +Bu (6)

µ′ = −A∗µ+ z − zd (7)

u = B∗µ. (8)

We state the necessary optimality conditions in the following Lemma:

Lemma 1 The solution of P(T ) satisfies the necessary and sufficient optimality
conditions (5)–(8) with the adjoint state µ that satisfies (7) in the sense

µ(t) =

∫ t

T

[Aµ(s) + (z(s)− zd)] ds.

Proof. For all control variations δu, for the objective value we have

JT (u+ δu) =

∫ T

0

∥z(s) + δz(s)− zd∥2X + ∥u(s) + δu(s)∥2U ds

= JT (u) + 2

∫ T

0

⟨z(s)− zd, δz(s)⟩X + ⟨u, δu⟩U ds

+

∫ T

0

∥δz(s)∥2X + ∥δu(s)∥2U

≥ JT (u) + 2

∫ T

0

⟨z(s)− zd, δz(s)⟩X + ⟨u, δu⟩U ds

+ 2

∫ T

0

⟨δz′(s)−Aδz(s)−Bδu(s), µ(s)⟩X ds

Hence using (5), δz(0) = 0 and integration by parts we obtain the inequality

JT (u+ δu)− JT (u)

≥ 2

∫ T

0

⟨z − zd −A∗µ− µ′, δz⟩X + ⟨u−B∗µ, δu⟩U ds.

Hence the inequality
JT (u+ δu)− JT (u) ≥ 0 (9)

can only hold for all control variations δu, if (7) and (8) hold.
Note that if the optimality system holds, we also obtain the inequality (9),

hence the optimality conditions are also sufficient. □
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3.2 Necessary optimality conditions for the static optimal
control problem

The static optimal control problem corresponding to P(T ) is obtained by can-
celling the initial condition and the time dependence. We have the static optimal
control problem

S : min
u∈U

∥z − zd∥2X + ∥u∥2U subject to 0 = Az +Bu. (10)

Again the existence of a solution follows with the direct method of the calculus
of variations and the uniqueness follows from the strict convexity of the objective
functional. We denote the unique solution of S by (z(σ), uσ).

We introduce a variation δu of the control and the corresponding variation
δz of the generated state. Then we have 0 = Aδz + B δu. We introduce an
adjoint state µ ∈ X and obtain the optimality system

0 = Az +Bu (11)

0 = −A∗µ+ z − zd (12)

u = B∗µ. (13)

We state the necessary optimality conditions in the following Lemma:

Lemma 2 The solution of S satisfies the necessary and sufficient optimality
conditions (11)–(13) with the adjoint state µ.

Proof. For all control variations δu, for the objective value we have

∥z + δz − zd∥2X + ∥u+ δu∥2U
= ∥z − zd∥2X + ∥u∥2U + 2⟨z − zd, δz⟩X + ⟨u, δu⟩U
+ ∥δz∥2X + ∥δu∥2U
≥ ∥z − zd∥2X + ∥u∥2U + 2⟨z − zd, δz⟩X + ⟨u, δu⟩U
+ 2⟨−Aδz −Bδu, µ⟩X

Hence we obtain the inequality

∥z + δz − zd∥2X + ∥u+ δu∥2U − ∥z − zd∥2X + ∥u∥2U

≥ 2⟨z − zd −A∗µ, δz⟩X + 2⟨u−B∗µ, δu⟩U .

Hence the inequality

∥z + δz − zd∥2X + ∥u+ δu∥2U ≥ ∥z − zd∥2X + ∥u∥2U (14)

can only hold for all control variations δu, if (12) and (13) hold.
Note that if the optimality system (11)–(13) holds, we also obtain the in-

equality (14), hence the optimality conditions are also sufficient. □
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3.3 A system for the difference between the static and the
dynamic solution

Now we derive a system for ẑT −z(σ) and µ̂T −µ(σ) where (ẑT , µ̂T ) is the optimal
pair of state and adjoint state and ûT denotes the optimal control for P(T ) and
(z(σ), µ(σ)) is the optimal state and optimal adjoint state for S and u(σ) denotes
the optimal control for S. Due to (5)-(8) and (11)-(13) we have

(ẑT − z(σ))(0) = z0 − z(σ), µ̂T (T )− µ(σ) = −µ(σ), (15)

(ẑT − z(σ))′ = A(ẑT − z(σ)) +B(ûT − u(σ)), (16)

(µ̂T − µ(σ))′ = −A∗(µ̂T − µ(σ)) + (ẑT − z(σ)), (17)

ûT − u(σ) = B∗(µ̂T − µ(σ)). (18)

Due to (2), we can derive an explicit representation of the general solution
of the differential equation (16), (17) that takes into account (18). In addition,
we introduce the condition

BB∗ > 0 (19)

in order to derive some convergence results.

Lemma 3 Assume that A and BB∗ commute and that (19) holds. Due to our
assumptions, the operator

Λ = (BB∗)
1/2

(20)

is well–defined as the square root of a positive self-adjoint operator (see [1], [18],
[21]). The solution of

(z − z(σ))′ = A(z − z(σ)) + Λ2(µ− µ(σ)), (21)

(µ− µ(σ))′ = (z − z(σ))−A∗(µ− µ(σ)) (22)

can be written in the form

(z − z(σ))(t) = Λ exp(A+ Λ t) l+ + Λexp(A− Λ t) l−, (23)

(µ− µ(σ))(t) = exp(A+ Λ t) l+ + exp(A− Λ t) l−. (24)

where l+ and l− ∈ X are uniquely determined by (15).
We use the notation ẑT for the optimal state of P(T ). We have

lim
T→∞

ẑT (T ) = z(σ) − Λµ(σ). (25)

Proof. Let l+ ∈ X and l− ∈ X be given. For t ∈ [0, T ], we define

β±(t) = exp((A± Λ) t) l±, α
±(t) = ±Λexp((A± Λ) t) l±.

Note that our assumptions imply that Λ and A commute. Hence we have

∂tα
±(t) = (±ΛA+ Λ2) exp((A± Λ)t) l±

= Aα±(t) + Λ2 exp(A± Λ t) l±

= Aα±(t) + Λ2β±(t)
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and
∂tβ

±(t) = (A± Λ) exp((A± Λ) t) l± = α±(t) +Aβ±(t).

Thus (α+(t), β+(t)) and (α−(t), β−(t)) are solutions of the system of differential
equations (21), (22). If we insert the sum (α+(t) +α−(t), β+(t) + β−(t)) in the
initial and terminal conditions (15) we obtain the following system of linear
equations for (l+, l−).

α+(0) + α−(0) = Λ l+−Λ l− = z0 − z(σ), (26)

β+(T ) + β−(T ) = exp((A+ Λ)T ) l+ + exp((A− Λ)T ) l− = −µ(σ). (27)

Equation (26) implies
Λ(l+−l−) = z0 − z(σ). (28)

We have exp(−(A+Λ)T ) exp((A−Λ)T ) = exp((−A−Λ+A−Λ)T ) = exp(−2ΛT ).
Hence (27) implies

Λ l+ + exp(−2ΛT )Λ l− = −Λ exp(−(A+ Λ)T )µ(σ).

With (28) this yields

(I+exp(−2ΛT ))Λ l+− exp(−2ΛT )(z0 − z(σ)) = −Λ exp(−(A+ Λ)T )µ(σ).

Thus we obtain

Λ l+ = (I+exp(−2ΛT ))−1
[
exp(−2ΛT )(z0 − z(σ))− Λ exp(−(A+ Λ)T )µ(σ)

]
.

In the sequel, we use the notation l±(T ) for l± as a function of T because we
are interested in the convergence for T → ∞. On account of (2) and (19) this
implies in particular that we have limT→∞ ∥Λ l+(T )∥ = 0. Equation (28) implies

Λ l−(T ) = Λ l+(T )−(z0 − z(σ)).

Hence we have limT→∞ Λ l−(T ) = −(z0 − z(σ)). We introduce the notation ẑT
for the optimal state corresponding to the time horizon T . For t ∈ [0, T ] we set

ẑ
(+)
T (t) = Λ exp((A+ Λ) t) l+(T ), ẑ

(−)
T (t) = Λ exp((A− Λ)t) l−(T ). (29)

Then we have
ẑT (T )− z(σ) = ẑ

(+)
T (T )− ẑ

(−)
T (T ). (30)

Note that limT→∞ ẑ
(−)
T (T ) = 0. Due to the Neumann series we have

N (T ) = (I+exp(−2ΛT ))−1 =

∞∑
k=0

(−1)k exp(−2Λ k T ).

We also use the notation

Λ l
(1)
+ (T ) = N (T ) exp(−2ΛT )(z0 − z(σ)), (31)

9



Λ l
(2)
+ (T ) = N (T )Λ exp(−(A+ Λ)T )µ(σ). (32)

We have
Λl+(T ) = Λ l

(1)
+ (T )− Λ l

(2)
+ (T ) (33)

and
z
(+)
T (T ) = exp((A+ Λ)T )Λ l

(1)
+ (T )− exp((A+ Λ)T )Λ l

(2)
+ (T ).

Since Λ and A commute, we have

exp((A+ Λ)T )N (T ) exp(−2ΛT ) = exp((A− Λ)T )N (T ).

For the first term of z
(+)
T (T ) we obtain

exp((A+ Λ)T )Λ l
(1)
+ (T ) = exp((A− Λ)T )N (T )(z0 − z(σ)).

Hence for the limit we have

lim
T→∞

exp((A+ Λ)T )Λ l
(1)
+ (T ) = 0.

Since Λ and A commute, we have

exp((A+ Λ)T )N (T ) exp(−(A+ Λ)T ) = N (T ).

Thus for the next term in our representation of z
(+)
T (T ) we have

exp((A+ Λ)T )Λ l
(2)
+ (T ) = ΛN (T )µ(σ).

This yields the limit

lim
T→∞

exp((A+ Λ)T )Λ l
(2)
+ (T ) = Λµ(σ)

which implies
lim

T→∞
ẑT (T )− z(σ) = −Λµ(σ).

Now the assertion follows. □

4 The existence of two limit trajectories for the
boundaries of the time interval

Now we state our result on the limit trajectory on the last part of the time
interval. Let t0 > 0 be fixed and T > t0, We show that more generally than
in Lemma 3, in the last part of the time interval [0, T ] (that is in [T − t0, T ]),
the optimal trajectory approaches exponentially fast a limit-trajectory that is
independent of the time horizon and where the value at the time T − t only
depends on t.
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Theorem 1 Assume that A and BB∗ commute and that (19) holds. Let Λ be
defined as in (20). Let m > 0 denote a constant such that

∥Λx∥X ≥ m∥x∥X . (34)

Assume that

T ≥ 1

m
. (35)

For s ∈ [0, T ], define the limit trajectory

ζ(s) = z(σ) − Λ exp((A+ Λ)(s))µ(σ).

For t0 > 0 and all t ∈ [T − t0, T ] we have

∥zT (t)− ζ(t− T )∥X ≤ 2
[1 + exp(mt0)]

exp(mT )

[
∥z0 − z(σ)∥X + ∥Λµ(σ)∥X

]
. (36)

This means that for t ∈ [T − t0, T ] the optimal state ẑT (t) approaches the limit
trajectory ζ(T − t) exponentially fast with respect to T . Note that the point
ζ(T − t) only depends on the distance of the terminal time T .

Proof. We use the same notation as in the proof of Lemma 3, in particular let
Λ l+(T ) be defined as in (33). This implies the inequality

∥Λl+(T )∥X ≤ ∥N (T )∥∥ exp(−ΛT )∥
[
∥z0 − z(σ)∥X + ∥Λµ(σ)∥X

]
.

Due to (34) we have
∥ exp(−ΛT )∥ ≤ exp(−mT ).

Since for the operator norm of N (T ) we have

∥N (T )∥ ≤ 1

1− exp(−2mT )
,

we obtain the inequality

∥Λl+(T )∥ ≤ exp(−mT )

1− exp(−2mT )

[
∥(z0 − z(σ))∥X + ∥Λµ(σ)∥X

]
. (37)

This implies
∥Λl−(T )∥X ≤ ∥Λl+(T )∥X + ∥(z0 − z(σ))∥X (38)

≤ ∥(z0 − z(σ))∥X +
exp(−mT )

1− exp(−2mT )

[
∥(z0 − z(σ))∥X + ∥Λµ(σ)∥X

]
.

Note that (35) implies exp(−mT )
1−exp(−2mT ) ≤ 1. Similar as in (30), for all t ∈ [0, T ] we

have
ẑT (t)− z(σ) = ẑ

(+)
T (t)− ẑ

(−)
T (t). (39)
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For all t ∈ [T − t0, T ] have the inequality

∥ẑ(−)
T (t)∥X ≤ exp(−m(T − t0))∥Λl−(T )∥X

≤ 2 exp(−m(T − t0))
[
∥z0 − z(σ)∥X + ∥Λµ(σ)∥X

]
. (40)

We have

z
(+)
T (t) = exp((A+ Λ)t)Λ l

(1)
+ (T )− exp((A+ Λ)t)Λ l

(2)
+ (T ). (41)

Thus for the first term of z
(+)
T (t) we obtain

exp((A+ Λ)t)Λ l
(1)
+ (T ) = exp(At) exp(Λ(t− 2T ))N (T )(z0 − z(σ)).

Hence for all t ∈ [0, T ] we have the inequality

∥ exp((A+ Λ)t)Λ l
(1)
+ (T )∥X ≤ 2 exp(−mT )∥z0 − z(σ)∥X . (42)

Now we consider the next term in our representation of z
(+)
T (t). Since Λ and

A commute, we have

exp((A+ Λ)t)N (T ) exp(−(A+ Λ)T ) = exp((A+ Λ)(t− T ))N (T ).

Thus for the next term in our representation of z
(+)
T (t) we have

exp((A+ Λ)t)Λ l
(2)
+ (T ) = Λ exp((A+ Λ)(t− T ))N (T )µ(σ). (43)

Due to the Neumann series for the corresponding operator norm we have

∥N (T )− I∥ ≤ exp(−2mT )

1− exp(−2mT )
.

Hence for all t ∈ [0, T ] we have the inequality

∥ − exp((A+ Λ)t)Λ l
(2)
+ (T ) + Λ exp((A+ Λ)(t− T ))µ(σ)∥X

≤ exp(−2mT )

1− exp(−2mT )
∥Λµ(σ)∥X .

Thus with (41) and (42) we obtain the inequality

∥z(+)
T (t) + Λ exp((A+ Λ)(t− T ))µ(σ)∥X

≤ 2 exp(−mT )∥z0 − z(σ)∥X +
exp(−2mT )

1− exp(−2mT )
∥Λµ(σ)∥X .

With (40) for all t ∈ [T − t0, T ] this implies

∥ẑT (t)− z(σ) + exp((A+ Λ)(t− T ))Λµ(σ)∥X ≤

12



2 (1 + exp(mt0)) exp(−mT )
[
∥z0 − z(σ)∥X + ∥Λµ(σ)∥X

]
and (36) follows. □

Now we state our second main result. We show that also on the first part
of the time interval [0, T ] of the form [0, t0], where t0 > 0 is fixed for large
time horizons T the optimal trajectory approaches exponentially fast a limit-
trajectory that is independent of the time horizon T .

Theorem 2 Assume that A and BB∗ commute and that (19) holds. Let Λ be
defined as in (20). Let m > 0 denote a constant such that (34) holds. Assume
that (35) holds. For s ∈ [0, T ], define the limit trajectory

Ξ(s) = z(σ) + exp((A− Λ)s)(z0 − z(σ)).

With the notation ẑT for the optimal state corresponding to the time horizon
T for all t ∈ [0, t0] we have

∥ẑT (t)− Ξ(t)∥X ≤ 3 + 2 exp(mt0)

exp(mT )

[
∥z0 − z(σ)∥X + ∥Λµ(σ)∥X

]
. (44)

This means that for t ∈ [0, t0] the optimal state ẑT (t) approaches the limit
trajectory Ξ(t) exponentially fast with respect to T . Note that the point Ξ(t)
only depends on the distance to the initial time zero.

Proof. We use the same notation as in the proof of Theorem 1. Note that (35)

implies ∥N (T )∥ ≤ 2. We use the representation (39) of ẑT (t)−z(σ) with ẑ
(+)
T (t)

and ẑ
(−)
T (t) defined in (29). For all t ∈ [0, T ] we have (42) and (43) implies

∥ exp((A+ Λ)t)Λ l
(2)
+ (T )∥ ≤ 2 exp(−m(T − t0))∥Λµ(σ)∥X .

Thus we obtain the inequality

∥ẑ(+)
T (t)∥X ≤ 2[1 + exp(mt0)] exp(−mT )

[
∥z0 − z(σ))∥X + ∥Λµ(σ)∥X

]
.

We have

ẑ
(−)
T (t) + exp((A− Λ)t)(z0 − z(σ)) = exp((A− Λ)t)

[
Λl−(T ) + (z0 − z(σ))

]
= exp((A− Λ)t) Λ l+(T ).

With (37) this yields the inequality

∥ẑ(−)
T (t)+exp((A−Λ)t)(z0−z(σ))∥X ≤ exp(−2mT )

1− exp(−2mT )

[
∥(z0 − z(σ))∥X + ∥Λµ(σ)∥X .

]
.

Thus we obtain

∥zT (t)− z(σ) − exp((A− Λ)t)(z0 − z(σ))∥X

13



= ∥ẑ(+)
T (t)− ẑ

(−)
T (t)− exp((A− Λ)t)(z0 − z(σ))∥X

≤ ∥ẑ(+)
T (t)∥+ ∥ẑ(−)

T (t) + exp((A− Λ)t)(z0 − z(σ))∥X

≤ (3 + 2 exp(mt0)) exp(−mT )
[
∥(z0 − z(σ))∥X + ∥Λµ(σ)∥X

]
and (44) follows. □

Remark 1 For the optimal adjoint state we have the representation

µ̂T (t)− µ(σ) = exp((A+ Λ)t)l+(T ) + exp((A− Λ)t)l−(T )

= Λ−1ẑ
(+)
T (t) + Λ−1ẑ

(−)
T (t).

Hence results analogous to Theorem 1 and Theorem 2 hold for the optimal ad-
joint state µ̂T . We also find an initial limit trajectory and a terminal limit
trajectory for the optimal adjoint states. So we see that the situation for the
optimal adjoint state and the optimal control has the same structure. This is
similar as for the classical turnpike property, see [5].

5 Examples

In this section we discuss the phenomenon of initial and terminal limit trajec-
tories for large time horizons for two specific optimal control problems with
distributed parameter systems. We consider the transport equation and the
wave equation.

5.1 An Example with the transport equation

Let L > 0, T > L, γ > 0 and yd ∈ R be given. Let Q = [0, T ]× [0, L]. Let an
initial state y0 ∈ C([0, L]) be given. Consider the optimal control problem minu∈L2(0,T )

∫ T

0

∫ L

0
|y(t, x)− yd|2 dx dt+ γ

∫ T

0
|u(t)|2 dt

subject to y(0, x) = y0(x) for x ∈ [0, L], y(t, 0) = u(t) for t ∈ [0, T ] a.e.,
and yt + yx = 0 on Q.

The state on the triangle G = {(t, x);x ∈ [0, L], 0 ≤ t ≤ x} depends on the
initial state only and is not influenced by the control. Hence the contribution
from G to the integral over Q in the objective functions does not play a role for
the optimal control.

The state is constant on the characteristic lines that have the form t = x+ c
for a real constant c. The values of the state on the different characteristic lines
corresponding to different values of c are independent of each other. Thus we can
decompose the problem in the family of optimization problems corresponding
to the different characteristic lines that appear on Q.

For a constant c ∈ [0, T ] let Lterm(c) ∈ [0, L] be such that the characteristic
curve corresponding to c is contained in Q for all x ∈ [0, Lterm(c)]. If c ≤ T −L
we have Lterm(c) = L and if c > T − L we have Lterm(c) = T − c.
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The optimization problem for the characteristic curve corresponding to c is{
minu(c)∈R

∫ Lterm(c)

0
|y(s+ c, s)− yd|2 ds+ γ|u(c)|2

subject to y(c, 0) = u(c) and y(s+ c, s) = y(c, 0) for all s ∈ [0, Lterm(c)].

Since for all s ∈ [0, Lterm(c)] we have y(s+ c, s) = u(c) the solution is equal
to the minimum of the polynomial

pc(ν) = Lterm(c) |ν − yd|2 + γ |ν|2

that is given by

ûT (c) =
1

1 + γ
Lterm(c)

yd.

Hence for all t ∈ [0, T − L] we have the optimal control

ûT (t) =
1

1 + γ
L

yd

and the optimal state
ŷT (t, x− t) = ûT (t). (45)

So we see that in this example for all t ∈ [0, T−L] the state ŷT (t, ·) is independent
of T . Hence for all t ∈ (L, T − L] and z ∈ [0, L] we have

yinit(t, z) = lim
T→∞

ŷT (t, z) =
1

1 + γ
L

yd.

For t ∈ (T − L, T ] the optimal control is

ûT (t) =
1

1 + γ
T−t

yd

and the optimal state is given by (45). So we see that ûT (t) only depends on
T − t. For t ∈ (0, L) and z ∈ [0, t] for the limit for T → ∞ we have

yterm(t, z) = lim
T→∞

ŷT (T − t, z) =
1

1 + γ
t

yd.

Moreover, we have
yterm(0, 0) = lim

T→∞
ŷT (T, 0) = 0.

The static optimal control problem is{
minu∈R

∫ L

0
|y(x)− yd|2 dx+ γ|u|2

subject to y(0) = u and yx = 0 on [0, L].

Hence we obtain the static optimal state

y(σ) =
1

1 + γ
L

yd
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and the optimal control u(σ) = y(σ). Thus for all t ∈ (L, T − L] and z ∈ [0, L]
for the limit state we have

yinit(t, z) = y(σ).

The state for t ∈ [0, L] is also independent of T since the values on the triangle
G are independent of T .

So we see that in this example, we obtain explicit representations of the
optimal state that show that on the interior time interval (L, T − L) we have
ŷT (t, x) = y(σ) and ûT (t) = u(σ). Thus in this example, the optimal static state
is reached exactly in finite time. This is similar as in the finite-time turnpike
phenomenon that is described in [12]. However, in [12] this situation is enforced
by non-smooth tracking terms.

The structure of the solution in the example is similar as in the numerical
examples in [9] where the boundary control of a linear hyperbolic 2× 2 system
with space dimension 1 is studied. A related application is studied in [14],
namely optimal control problems with the two–dimensional transport equation
that are used for optimal treatment planning in radiotherapy.

5.2 An example with the wave equation

Similar as in [11] as an example we consider an optimal control problem for
a system that is governed by the wave equation. We can write the second
order system as a system of first order differential eqations with a skew–adjoint
operator A, see [20]. In this example, different from [11] we consider the energy
as a part of the objective functional.

Let Ω ⊂ RN be a bounded domain with a piecewise C1 boundary. Let y0 ∈
H2(Ω) ∩H1

0 (Ω) be given. Let T > 0 and γ > 0 be given. Define Q = [0, T ]×Ω
and Σ = [0, T ]× ∂Ω. Let a desired state yd ∈ H2(Ω) ∩H1

0 (Ω) be given.
Consider the optimal control problem

minu∈L2(Q)

∫
Q

[
|yt|2 + ∥∇(y − yd)∥2RN + γ|u|2

]
subject to y(0, x) = y0(x), yt(0, x) = 0 for x ∈ Ω a.e.,
y(t, x) = 0 for (t, x) ∈ Σ a.e.,
and ytt = ∆y + u on Q.

For results on the well-posedness of the corresponding initial boundary value
problem see [16]. Theorem 1 and Theorem 2 imply that for the optimal state
t 7→ ŷT (t) for t > 0 there exist an initial limit trajectory t 7→ limT→∞ ŷT (t) and
a terminal limit trajectory t 7→ limT→∞ ŷT (T − t).

Assume that (φj)
∞
j=1 is a complete orthonormal sequence of eigenfunctions

of the Dirichlet-Laplacian A0 = −∆, with the homogeneous Dirchlet boundary
conditions on ∂Ω. So for j ∈ {1, 2, 3, ...} we have −∆φj = λjφj with λj ≥
λmin > 0. Assume that

1

4 γ
< λmin. (46)
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We can find real coefficients βj and ηj such that
∑

|βj |2 < ∞,
∑

|ηj |2 < ∞,
yd =

∑∞
j=1 βj φj and y0 =

∑∞
j=1 ηj φj . We can represent the state y(t, x) in

the form y(t, x) =
∑∞

j=1 αj(t)φj(x) and the objective functional in terms of
the coefficients αj(t). We obtain

∞∑
j=1

∫ T

0

|α′
j(t)|2 + λj |αj(t)− βj |2 + γ |α′′

j (t) + λjαj(t)|2 dt.

So the spectral representation yields a sequence of optimal control problems for
j ∈ {1, 2, 3, ...}:

min
αj∈H2([0,T ])

∫ T

0

|α′
j(t)|2 + λj |αj(t)− βj |2 + γ |α′′

j (t) + λjαj(t)|2 dt

subject to αj(0) = ηj , α
′
j(0) = 0.

For t ∈ [0, T ], the optimality conditions yield the differential equation

α
(4)
j (t) +

(
2λj −

1

γ

)
α
(2)
j (t) + λj

(
λj +

1

γ

)
αj(t) = λj

1

γ
βj

with the boundary conditions

αj(0) = ηj , α
′
j(0) = 0, α

(3)
j (T ) =

(
1

γ
− λj

)
α′
j(T ), α

′′
j (T ) = −λjαj(T ).

Define the characteristic polynomial pj(z) = z4 +
(
2λj − 1

γ

)
z2 + λj

(
λj +

1
γ

)
.

Due to (46) we have pj(z) = (z − ωj)(z + ωj)(z − ω̄j)(z + ω̄j) where ±ωj and
±ω̄j denote the roots of pj . We have |ωj |4 = λj(λj +

1
γ ), Re(ω2

j ) = −(λj − 1
2γ )

and |Im(ω2
j )| = 1

γ

√
2γ λj − 1

4 . Moreover we have

|Re(ωj)| ≥
1

2
√
γ
. (47)

For the sake of simplicity we consider the case yd = 0, that is βj = 0.
We obtain the representation for t 7→ αj(T ; t) with fixed T :

αj(T ; t) = Aj(T )[(ω̄
2
j + λj) cosh(ωj(T − t))− (ω2

j + λj) cosh(ω̄j(T − t))]

+Bj(T )

[
ω̄j

(
ω̄2
j + λj −

1

γ

)
sinh(ωj(T − t))− ωj

(
ω2
j + λj −

1

γ

)
sinh(ω̄j(T − t))

]
where the coefficients T 7→ Aj(T ), T 7→ Bj(T ) have to be chosen such that
αj(T ; 0) = ηj and α′

j(T ; 0) = 0. Note that the corresponding Wronski-matrix is
regular. Define the denominator

Nj(T ) = |ωj |2
[
4λj

γ +
(

4λj

γ − 1
γ2

)
cosh(ωjT ) cosh(ω̄jT )

]
+λj

(
4λj

γ + 1
γ2

)
sinh(ωjT ) sinh(ω̄jT ).
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Condition (46) implies Nj(T ) > 0. We have

Aj(T ) = −ηj
|ωj |2

[(
ω̄2
j + λj − 1

γ

)
cosh(ωjT )−

(
ω2
j + λj − 1

γ

)
cosh(ω̄jT )

]
Nj(T )

,

Bj(T ) = −ηj
−ωj(ω̄

2
j + λj) sinh(ωjT ) + ω̄j(ω

2
j + λj) sinh(ω̄jT )

Nj(T )
.

The representations of Aj(T ) and Bj(T ) allow for the asymptotic analysis
for T → ∞. Due to (47) we have

lim
T→∞

Aj(T ) = 0, lim
T→∞

Bj(T ) = 0.

For t > 0 this yields
lim

T→∞
αj(T ;T − t) = 0.

For yd = 0 the optimal static state is zero and it is attained with the minimal
control cost zero. Hence it does not reduce the control cost and thus the value
of the objective functional if towards the end of the time interval the control
deviates from the optimal static control. Thus the optimal control stabilizes
the state towards zero until the end of the time interval [0, T ]. Note that the

values |α(T )
j (T − t)| decay exponentially fast with growing T with the order

exp(−|Re(ωj)|T ) and hence at least with the order exp(− 1
2
√
γ T ).

6 Conclusions

We have shown that under non-restrictive assumptions, for large time horizons
the optimal states approach limit trajectories both in the first part of the time
interval and in the last part of the time interval. The limit trajectories are
independent of the time horizon T .

We have shown the results for linear quadratic optimal control problems
with distributed parameter systems. We expect that our results can be gen-
eralized in several directions. A generalization to the case of convex objective
functionals similar as in [8] is possible. In [8] also additional control constraints
and state constraints are considered that are independent of the time horizons.
Constraints of this type can also be integrated in the turnpike analysis of initial-
and terminal limit trajectories.

The generalization of the results to the case of semilinear systems is also a
topic of future research. If the nonlinear source term is of a dissipative nature,
the proofs should have a similar structure but the linearization of the nonlin-
ear source term appears in the adjoint equation in the necessary optimality
conditions. Moreover, additional smallness assumptions for the initial state in
appropriate function spaces are in general require to guarantee that the system
is well-posed. Assumptions of this type are also required in the case of quasilin-
ear systems. However, in order to guarantee that the solutions remain regular
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also for large time horizons, additional constraints are necessary. In [10] state
constraints with respect to the C1-norm are included in the optimal control
problem. The constraints assure that the system state is a classical solution of
the partial differential equation and no shocks can occur.

Also a generalization to games is of interest, We refer to [22] for the study
of the classical turnpike phenomenon for discrete time games and to [13] for the
definition of a networked boundary control game with the wave equation. The
optimal control of the wave equation with measure valued controls has been
studied in [15]. It is an interesting question for future research whether also for
this problem a similar turnpike structure occurs for large time horizons.
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[4] T. Faulwasser and L. Grüne, Turnpike properties in optimal control,
in Handbook of Numerical Analysis, E. Trelat and E. Zuazua, eds., 2022.

[5] T. Faulwasser, L. Grüne, J.-P. Humaloja, and M. Schaller, Infer-
ring the adjoint turnpike property from the primal turnpike property, in 2021
60th IEEE Conference on Decision and Control (CDC), 2021, pp. 2578–
2583.

[6] B. Geshkovski and E. Zuazua, Turnpike in optimal control of pdes,
resnets, and beyond, Acta Numerica, 31 (2022), p. 135–263.
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