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ABSTRACT

Most of previous semi-supervised methods that seek to obtain
disentangled representations using variational autoencoders
divide the latent representation into two components: the
non-interpretable part and the disentangled part that explic-
itly models the factors of interest. With such models, features
associated with high-level factors are not explicitly modeled,
and they can either be lost, or at best entangled in the other
latent variables, thus leading to bad disentanglement proper-
ties. To address this problem, we propose a novel conditional
dependency structure where both the labels and their features
belong to the latent space. We show using the CelebA dataset
that the proposed model can learn meaningful representations,
and we provide quantitative and qualitative comparisons with
other approaches that show the effectiveness of the proposed
method.

Index Terms— disentangled representation, variational
autoencoder

1. INTRODUCTION

It is a key challenge to learn disentangled representations
where variables of interest are independently and explicitly
encoded [1]. These representations allow to manipulate data
by modifying high level factors (e.g. removing or adding
glasses to a person’s face). Probabilistic generative mod-
els, such as Variational Autoencoders (VAE) [2] are popular
to learn such representations in the unsupervised [3, 4, 5],
(semi-)supervised [6, 7], and in the weakly-supervised [8]
cases. We focus hereafter on the semi-supervised case be-
cause supervision yields better disentangled models [9].

Most previous works [10, 6, 7, 11] divide the latent rep-
resentation into two components: the non-interpretable part
and the disentangled part corresponding to variables that ex-
plicitly model the factors of interest. Each factor of inter-
est is therefore associated to a latent variable of the same
type. As an example, if the label of interest refers to the
glasses (1 when the subject is wearing glasses, 0 otherwise),
there will be a categorical variable in the latent space that en-
codes the presence or absence of glasses. However, this vari-
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able does not allow to model the features of the glasses (e.g.
shape/size/color of the glasses), that can be either lost, or at
best entangled in the other latent variables.

To our knowledge, only [12] proposed to address this
problem. In [12], a feature is associated with each high
level factor. Moreover, the latent space no longer contains
the labels but their features (the label is used to condition
its associated feature). We propose here a novel conditional
dependency structure in which the latent space contains both
the labels and their features.Finally, we use an original archi-
tecture to build the decoder of the VAE. We show that AdaIN
[13] improves the quality of the reconstructed images and that
the use of learnable tokens [14, 15] improves disentanglement
properties of the model.

Finally, note that generative adversarial networks can also
be used to obtain disentangled representations: the meth-
ods proposed in [16] and [17] also allow to manipulate the
features related to high level factors. This is achieved by
swapping attributes between pairs of images. However, these
methods are only able to accomplish a small number of the
tasks that can be performed with VAE-based methods. As
[16] and [17], the proposed method can also swap the high
level factors and the related features of two images. However,
(i) it allows also to generate new images by sampling from
the model (without any other input or with high level factors
only), (ii) it allows also to modify the high level factors and
the associated features for a single image (by sampling), (iii)
it provides finally a classifier that estimates the high level
factors. Note also that the methods of [16] and [17] are fully
supervised whereas the proposed method handles arbitrary
supervision rates.

2. DISENTANGLEMENT OF LABELS AND THEIR
FEATURES FROM OTHER LATENT VARIABLES

2.1. Conditional dependency structure

For the sake of simplicity, we consider here that a unique label
(high level factor) is provided for an image. The extension to
several labels is straightforward. For the illustration, we con-
sider the binary case where the label is 1 (e.g. if the subject is
wearing glasses), or 0 otherwise.

Let x be an image, y its label, u the features related to



label y, and z the other latent variables that are supposed to
carry no information on y and u. The latent space is formally
composed of y, z and u. The generative process is inspired by
the previous work of [7], except that no feature u is defined in
[7]. It writes:

pθ(x, y, z, u) = pθ(x|y, z, u)p(u|y)p(y)p(z), (1)

where θ stands for the parameters of the decoder. A weak
prior is defined over z and y: z follows a zero-centered
multivariate normal distribution with unit variance (p(z) =
N (z; 0, I)) and y follows a uniform discrete distribution.
pθ(x|y, z, u) is modelled as a Gaussian distribution whose
mean is computed by a neural network (the decoder dθ of
parameter θ) that takes as input y, z and u. We have:

pθ(x|y, z, u) = N (x; dθ(y, z, u), vI), (2)

where v is a hyperparameter. Finally, a special care is needed
to model p(u|y). In our application, the feature vector u en-
codes the shape/size/color of the glasses. So as to favor dis-
entanglement properties of the model, the two prior distribu-
tions (one for each possible value of y) differ from each other.
Two different approaches denoted as PA1 and PA2 (proposed
approach 1 and 2) are considered:

• Case y = 1 (glasses). For both approaches, p(u|y = 1)
is a zero-centered multivariate normal distribution with
unit variance.

• Case y = 0 (no glasses). For PA1, p(u|y = 0) is a mul-
tidimensional Dirac delta function, enforcing the com-
ponents of u to be zero. For PA2, it is a zero-centered
multivariate normal distribution with a variance equal
to the identity matrix multiplied by 0.1, favoring the
components of u to be close to 0.

PA1 seems to be a better choice since images with no
glasses should all have the same value of u. We use PA2 to
show that the proposed modeling may work with a less infor-
mative prior.

The posterior pθ(y, z, u|x) is approximated by qϕ(y, z, u|x)
which can be factorized as:

qϕ(y, z, u|x) = qϕ(y|x)qϕ(z|x, y)qϕ(u|x, y), (3)

where ϕ stands for parameters of the encoder. In Eq. 3, we
assume that z and u are independent conditionally to x and
y. The distribution qϕ(y|x) is a discrete distribution whose
probabilities are provided by the softmax layer (See Fig. 1).
The distribution qϕ(z|x, y) is defined as a Gaussian distribu-
tion whose mean (resp. covariance matrix) is given by the en-
coder. For PA1 (case y=1 only) and for PA2, the distribution
qϕ(u|x, y) is defined in the same way as qϕ(z|x, y). For PA1
(case y=0), qϕ(u|x, y = 0) is modeled as a multidimensional
dirac delta function. Indeed, in this case, the prior distribution
p(u|y = 0) tells us that u is the null vector.
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Fig. 1. Model architecture. FC stands for fully connected
layer. For testing, if y is not known, y is set to the most likely
label (based on the output of the softmax layer that represents
qϕ(y|x)). z and u are set to µz and µu. For training (Sec-
tion 2.2), if y is not known, y is sampled from qϕ(y|x) us-
ing a Gumbel-softmax relaxation. z and u are sampled from
qϕ(z|x, y) and qϕ(u|x, y).

The proposed architecture is depicted in Fig. 1. We use
AdaIN [13] as a normalization method: it enables the infor-
mation carried by z to be transferred to each layer of the de-
coder (through a fully connected layer that is not shown in
Fig. 1). Moreover, we use one set of learnable tokens [14, 15]
per class. The set is then selected according to the value of
y. Each set is composed of five tokens (one scalar and four
images that are associated each one to a residual block of the
decoder). The first one (the scalar) is concatenated to u and z
to feed the first fully connected layer of the decoder. Then, for
each token (an image), we concatenate the token and the input
of its associated residual block along the channel dimension.
It allows the information provided by y to be transferred to
each input of the residual block.

Finally, for PA1, u is multiplied by y. It enables to con-
strain u to be a null vector if y is 0, and not to modify its value
otherwise (y = 1).

2.2. Parameter optimization

If y is known, the optimization of log p(x, y) can be achieved
by maximizing the ELBO (Evidence Lower BOund), that
writes: Ez,u∼qϕ(z,u|x,y)log(pθ(x, y, u, z)/qϕ(z, u|x, y)). As
in [7], we add a classification loss α log qϕ(y|x) to the ELBO
term. By using Eq. 1 and 3, we obtain the following criterion
(it is divided by the number of pixels N ):

βEz∼qϕ(z|x,y) [log(p(z))− log(qϕ(z|x, y))] +
βEu∼qϕ(u|x,y) [log(p(u|y))− log(qϕ(u|x, y))] +
1
NEz,u∼qϕ(z,u|x,y) [log(pθ(x|y, z, u))] +
β log(p(y)) + α log qϕ(y|x)

(4)
The two first terms are a Kullback–Leibler divergence

which can be computed analytically since the distributions
are Gaussian except for the second term in the case of PA1
with y=0. In this case, it vanishes to 0 since both distributions
are equal. Then, the third term is approximated by a Monte
Carlo estimate: we use the SGVB estimator and the reparam-



eterization trick [2] (with the notation of Fig. 1, we have:
(z, u) = (µz, µu) + (σz, σu) ⊙ ϵ, where ϵ ∼ N (0, I)). The
fourth term corresponds to the prior of the label y, that has
been set to 1/2. Without loss of generality, the variance v (Eq.
2) is set to 1 to compute the third term of Eq. 4 and the other
terms of the ELBO are weigthed by a factor β. Consequently,
two hyperparameters have to be set: α and β.

If y is not known (semi-supervised case), it has to be
treated as a latent variable. Marginalization can be performed
[7]. We sample y, as in [6], from the discrete distribution
qϕ(y|x) using a Gumbel-softmax relaxation.

3. EXPERIMENT

We experiment on the CelebA dataset [18], with an image size
of 128x128. The glasses label has been selected because it
leaves little room for subjectivity. The hyperparameters of the
methods have been set by using a cross-validation strategy on
the training set. Concerning the criterion (Eq. 4), α has been
set to 1 (the value of α has little influence on the results) and β
to 1e− 4. Since the second term of the ELBO (for y=1) leads
to degrade the results, its weight (for y=1) has been divided
by 100 (for both PA1 and PA2). We use the Adam optimizer
[19] with a learning rate equal to 1e − 4 and a batch size of
32. The sizes of z and u are set to 100 and 16 respectively.
The supervision rate has been set to 0.2.

We compare our method with CCVAE [12] and with the
model M2 of [7]. Two different architectures are used for CC-
VAE. We first use the implementation of the authors. Since
it is adapted to the processing of images of size 64x64, the
sizes of the input/output layers have been modified accord-
ingly. This method is denoted as CCVAE. For the second
method denoted as CCVAE2, we adapt the architecture of our
model to the conditional dependency structure of CCVAE. As
an example, y is no longer part of the latent space in CCVAE
so that it is no more used for estimating the reconstruction.
In the same way, we adapt the architecture of the proposed
model to the conditional dependency structure of M2. It leads
to the removal of u from the modeling. For all models, the
size of the latent space that models the attributes of the face
has been set to 100.

As mentioned in the introduction section, the VAE-based
methods allow to accomplish several tasks. For the sake of
simplicity, we will only consider three different tasks for com-
parison purposes: the classification task, the reconstruction
task, and the exchange of high level factors and of the related
features (if they exist) between two images. The latter task
enables us to clearly observe the disentanglement capability
of the model. Indeed, it enables to check that the model disen-
tangles not only the label but also the features (of the glasses)
from the face attributes z. To evaluate the quality of the re-
constructed images, we use Learned Perceptual Image Patch
Similarity (LPIPS) [20] that computes perceptual difference
between two images. The disentangled ability of the model

Table 1. Quantitatives results in terms of (i) success rates for
removing and adding glasses (SR(-) and SR(+)), (ii) LPIPS
between the original images and the reconstructed ones, and
(iii) balanced classification accuracy (BCA).

Model SR(-) SR(+) LPIPS BCA
CCVAE 99.38% 19.37% 0.4414 95.45%

CCVAE2 95.52% 47.68% 0.2549 94.26%
M2 80.34% 33.03% 0.2564 96.13%
PA1 96.31% 59.85% 0.2484 96.55%
PA2 94.98% 64.25% 0.2416 97.09%

Fig. 2. Attribute swapping for 5 pairs of images using PA1,
CCVAE2 and M2. For each line, the second, third and fourth
image should be Iw with the glasses of Ig . The three right-
most images should be Ig , but without the glasses.

is evaluated by computing the success rate of swapping. To
this end, we select random pairs of images composed of one
image with glasses (Ig) and one image without (Iw). Their
values of y and u are then exchanged. We consider that the
glasses are correctly removed from Ig (resp. added to Iw) if
the reconstruction (after the attribute swapping) is classified
as y = 0 (resp. y = 1) with an independent classifier based
on ResNet 50. We denote by SR(-) (resp. SR(+)) the success
rates for removing (resp. adding) glasses. Results obtained
with the different approaches are shown in Tab. 1. Since
SR(+) is not a perfect evaluation criterion for measuring dis-
entanglement properties of the models (it does not check that
the glasses added to Iw are those of Ig), Fig. 2 presents swap-
ping results for 6 pairs of images in the case of PA1 (PA2
provides similar results), M2 and CCVAE2.

First, all methods obtain good classification accuracy
(BCA) despite a supervision rate equal to 0.2.

Regarding the quality of the generated images (LPIPS), all
methods, except CCVAE achieve very similar results. This is
mainly due to the fact that the decoders of all the methods (ex-



cept CCVAE) are very similar. Moreover, we observed that
the removal of AdaIN leads to a substantial increase of LPIPS
(without modifying significantly the other evaluation crite-
ria). As an example, the removal of AdaIN for PA1 brings
the LPIPS criterion from 0.2484 to 0.3059. This clearly high-
lights the benefit of AdaIN: it allows to improve the recon-
struction of the images by transferring to each layer of the
decoder information carried by z.

With respect to the success rates of swapping (SR(-) and
SR(+)), results obtained with M2 are not very satisfactory,
thus illustrating the importance to model the features related
to the label. Since the glasses (for M2) are actually well-
reconstructed without any label/feature swapping, their fea-
tures may be entangled in the other variables z of the latent
space. This makes the addition of glasses difficult because
modifying y is not enough: other variables of the latent space
have to be modified to define some proper features of the
glasses to be added. Conversely, it appears that the removal
of the glasses is simpler (SR(-)>SR(+)) insofar as modifying
the label y is enough.

For CCVAE, results obtained for SR(+) and SR(-) do not
inform us about the disentanglement properties of the model
because the generated images are actually so blurred that it is
most of the time difficult to observe the glasses.

Results obtained with CCVAE2 are better than those ob-
tained with M2 in terms of SR(+) and SR(-), illustrating the
interest of modeling the features related to a label. However,
we observe Fig. 2 that the features of glasses cannot be trans-
ferred to other images. This means that two images with the
same values of u do not exhibit the same glasses. Since the
modification of u still leads to the modify the features of the
glasses, the features of the glasses are partially entangled in
the other latent variables with CCVAE2.

Finally, the proposed approaches (PA1 and PA2) achieve
a success rate for adding glasses that is superior to those ob-
tained with other models as well as a very high success rate
for removing glasses. Moreover, we can observe (Fig. 3) that
the proposed model (PA1) correctly extracts the features of
the glasses from the image Ig and is able to reconstruct them
reasonably well on another image, which shows that the la-
bel as well as the features of the glasses have been properly
disentangled from the attributes of the faces. Similar results
are obtained for PA2. Note that the results presented in Fig. 2
cannot be considered as representative: SR(+) is about 60 %
for PA1 but PA1 obtains good results for all pairs of images
of Fig 2. The proposed methods achieve actually very good
results (the glasses added to Iw match those of Ig and the
glasses are correctly removed from Ig) for many pairs of im-
ages. However, such results are extremely rare with CCVAE2
and M2. These results show the relevance of the proposed
conditional dependency structure, and in particular the bene-
fit of y being in the latent space. We have also noted that the
tokens favor the disentanglement properties of the model by
allowing the information provided by y to be transferred to

Fig. 3. Multiple attribute swapping with our method. We add
to the 3 images of the first column the beard associated with
the image which is located on the same line on the rightmost
and the glasses associated with the images of the first line.

each input of the residual block of the decoder. As an exam-
ple, for PA1, the removal of the tokens (y is then just used as
an input of the fully connected layer of the decoder) brings
SR(+) down from 59.85% to 47.23% (SR(-) is not modified
significantly).

Finally, the proposed method can easily be extended
to the case of several high level factors. In the case of
two factors, (y1, u1) and (y2, u2) can be considered as in-
dependent for the generative process. Then, for the vari-
ational approximation, we write qϕ(y1, y2, z, u1, u2|x) as
qϕ(y1|x)qϕ(y2|x)qϕ(z|x, y1, y2)qϕ(u1|x, y1)qϕ(u2|x, y2).
Results obtained with the glass and the beard labels are shown
in Fig. 3. They illustrate that the proposed model allows to
manipulate the attributes of beard and glasses separately.

4. CONCLUSION

The proposed approach compares favorably to other VAE-
based approaches, thus showing the interest of modeling both
the labels and their features in the latent space. Moreover, our
experiments illustrate the benefit of using AdaIn and learnable
tokens to build the decoder: the first one allows to improve the
quality of the generated images while the second one favors
disentanglement properties of the model. To further improve
the quality of the generated images and in particular to ob-
tain less blurry images, a perspective of this work could be to
replace the Gaussian prior on z by a categorical distribution
[21]. Better reconstruction may also favor a better disentan-
glement.
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