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ABSTRACT 

In the present study, the maximum spreading diameter of a droplet impacting with a 

spherical particle is numerically studied for a wide range of impact conditions: Weber 

number 0–110, Ohnesorge number 0.0013–0.7869, equilibrium contact angle 20°–160°, and 

droplet-to-particle size ratio 1/10–1/2. A total of 2600 collision cases are simulated to enable 

a systematic analysis and prepare a large dataset for training of a data-driven prediction 

model. The effects of four impact parameters on the maximum spreading diameter are 

comprehensively and quantitatively analyzed, focusing on the low Weber number regime. A 

universal model for prediction of β*max is also proposed based on a deep neural network. It is 

shown that our data-driven model can predict the maximum spreading diameter well, 

showing an excellent agreement with the existing experimental results as well as our 

simulation dataset within a deviation range of ± 10%.  

 

Keywords: droplet impact; spherical particle; maximum spreading; multiphase flow; 

numerical simulation; artificial intelligence; deep neural network; data-driven prediction 
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I. INTRODUCTION 

 

Droplet-particle interaction, one of the most common phenomena in nature, can be found 

in diverse engineering applications across various industrial fields such as inkjet printing,1 

medical diagnostics,2 agricultural sprays,3 cooling,4 forensic analysis,5 self-cleaning 

surfaces,6 fluid catalytic cracking (FCC),7 tablet coating in pharmaceutical industries,8 to 

name a few examples. These fascinating collision phenomena are primarily driven by a 

complicated interplay and competition between capillary, inertial, and viscous forces during 

very small time and length scales.9,10 

Researchers have extensively studied the pertinent physics underlying droplet collision 

with a solid surface. The fundamental process of droplet impact with a solid surface (impact – 

spreading – recoiling and, in some cases, followed by bouncing)11,16 and roles of impact 

parameters (e.g., impact velocity and surface wettability, etc)15,17,18 on the spreading 

behaviors and outcomes have come to light. In particular, many studies have been devoted to 

the maximal wetting area (which is generally characterized by using the maximum spreading 

diameter) owing to its practical importance.11-15 Various prediction models for the maximum 

spreading including theoretical models19,20 and empirical relations11 have also been proposed 

and found to reproduce the experimentally observed maximum spreading diameters well for a 

wide range of impact conditions.19 

Although many studies have been presented for the maximum spreading upon droplet 

collision with a flat surface,11-14,19,20 few studies have focused on droplet impact with a curved 

surface (e.g., spherical particle), owing to the complex nature of the underlying physics.21,22 

Bakshi et al.,23 Zhu et al.,24 and Mitra et al.25 investigated how the film thickness changes 

during droplet collision with a particle. It has been shown that the non-dimensional film 
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thickness measured at the apex point can be collapsed onto a single curve during certain 

periods,23,25 and can be represented by a scaling expression.24 The characteristics of lamella 

have also been investigated.26-28 Banitabaei and Amirfazli26,27 studied droplet collisions with a 

stationary26 and a moving particle,27 and analyzed various effects of collision conditions (e.g., 

impact velocity, surface wettability, and so forth) on structures and dynamics of the lamella 

for a broad range of collision conditions. Vilela and de Souza36 used a machine learning 

approach to examine the effect of Weber number (We) and Reynolds number (Re) on the 

lamella structure. Yoon and Shin29 and Dalgamoni and Yong30 investigated droplet-particle 

collision, focusing on effects of Weber number, surface wettability and particle size on 

collision behaviors and impact outcomes. Seven collision scenarios mapped against the 

outcome regime maps,29 and a theoretical model for droplet rebound criterion30 have been 

presented. Malgarinos et al.,31,32 Mitra et al.,33 and Mitra and Evans,34 studied droplet 

collisions with a particle focusing on heat transfer and phase change behavior during a 

collision process. Various effects of impact conditions on collision phenomena have been 

investigated in the film boiling regime mainly based on numerical simulations.31-34 Even 

though these studies mentioned above have significantly shed light on our understanding of 

fundamental knowledge associated with droplet impact with a particle, they have mostly 

focused on the behaviors of film thickness, lamella structure, collision outcomes, heat 

transfer and phase change characteristics rather than on the maximal spreading of droplet-

particle collision. 

We now review recent work in the maximum spreading of droplet collision with a 

particle. Li and Wang,35 Liu et al.,36 Yoon and Shin,37 and Khurana et al.38 performed 

extensive parametric studies and analyzed effects of Weber number,35-38 particle size35-38 and 

surface wettability36-38 on the maximum spreading of droplet-particle collision. In their study, 

how impact conditions can affect dynamic characteristics of a droplet’s spreading and its 
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maximum values were analyzed for wide ranges of collision conditions. Several prediction 

models for the maximum spreading of droplet-particle collision have also been proposed.36,38-

42 Liu et al.,36 Khurana et al.38 and Mitra et al.39 proposed theoretical models based on energy 

analyses to predict the maximum spreading and their models considered various effects of 

collision conditions, e.g., Weber number, Reynolds number, droplet-to-particle size ratio and 

surface wettability. However, those models36,38 have been experimentally validated for only a 

very low liquid viscosity using a water droplet. Empirical models have also been proposed.40-

42 Khojasteh et al.40 modified the existing correlations which were originally developed for 

impacts onto a flat surface and Bordbar et al.,41 proposed an empirical model as a function of 

surface wettability and Weber number. However, they considered impacts only within a 

relatively narrow range of Weber number (5–30) on non-wettable surfaces (hydrophobic and 

super-hydrophobic).40.41 Recently, Yoon and Shin42 proposed an empirical correlation that can 

be applied to both a flat surface and a curved surface for a wide range of liquid viscosity, i.e., 

Ohnesorge (Oh) numbers up to the order of O(−1), but the effect of surface wettability was 

not incorporated. 

Even considering the various studies heretofore undertaken, it still remains difficult to 

grasp comprehensively how the maximum spreading of a droplet impacting with a particle 

can be affected by various impact conditions. In particular, most studies have considered a 

range of sufficiently high Weber number, i.e., on the order of O(1) or higher. This means that 

existing studies have mainly focused on the inertia-driven spreading regime. However, in 

some applications such as inkjet printing technology, impact conditions for printable ink can 

reach very low Weber numbers, i.e., on the order of O(0).30,43,44 A molten droplet can also 

undergo low Weber number collision in digital micro-fabrication technology to ensure a 

precise gentle deposition for fabrication of three-dimensional micro structures.45 Despite its 

importance, only a few numerical studies29,35,40,41,46 have considered droplet impact with a 
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particle for such a low Weber number regime (We ≤ 10).  The effects of various collision 

parameters (e.g., droplet-to-particle size ratio, surface wettability, liquid viscosity, etc) still 

remain unclear. This implies the need for a systematic analysis focusing on the low Weber 

number regime.  

Among others, it is difficult to predict the maximum spreading in a droplet-particle 

collision system using the existing prediction models36,38,40-42 particularly for a low Weber 

number regime, because the existing models have been validated only with limited impact 

conditions, i.e., at relatively high Weber numbers (We > 10),36,38,42 very low liquid 

viscosity36,38,40,41 or only on non-wettable surfaces.40-42 For example, some existing models40-

42 yield the value of zero for the maximum spreading where the impact velocity is zero (We = 

0), which is physically unrealistic since a droplet can wet a solid surface by purely capillary 

effects without initial (inertial) impact energy.13 It has been shown that the maximum 

spreading diameter of millimetric droplets can reach to about their initial droplet diameter, 

even though their impact velocities are zero.13 This highlights the need for the development 

of new prediction model for the maximum spreading of droplet-particle collision systems 

available for the low Weber number regime, and surely, it would be ideal to have a universal 

model that can be applied to both the low and high Weber number regimes.  

In this paper, we investigate the droplet-particle collision phenomena for both low and 

high Weber number regimes. To comprehensively understand how the maximum spreading 

differs from the high Weber number regime, various effects of important collision parameters 

(such as Weber number, surface wettability, liquid viscosity, and surface curvature of the 

particle) on the maximum spreading are systematically analyzed and quantitatively compared 

between those two regimes (i.e., low and high Weber number regimes). To propose a 

universal prediction model for the maximum spreading in droplet-particle collision systems 

that can be applied not only for both low and high Weber number regimes, but also for a wide 



 

8 

 

range of other important collision conditions, i.e., from low to high liquid viscosity, from a 

hydrophilic to a super-hydrophobic surface, and from a particle to a flat surface, a data-driven 

strategy is considered. The remainder of this paper is organized as follows: Section II briefly 

introduces the numerical methods used in the present study. Section III systematically 

analyzes the maximum spreading of a droplet colliding with a particle, and compares the 

effects of various collision conditions between two Weber number regimes. A data-driven 

prediction model is also proposed in this section. The key findings are summarized in Section 

IV. 
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II. NUMERICAL METHOD 

 

Since this paper focuses on understanding the physical behavior of a droplet colliding 

with a particle and since we have used the same numerical methods as in our previous 

studies42,47 here we briefly introduce the numerical formulations used in the current study. For 

more algorithm details and pertinent information on the numerical methods, readers can refer 

to the appendix and our previous papers.42,47–49 Note that our simulation methods have been 

extensively applied to many droplet impact problems with various solid surfaces, e.g., flat 

surfaces,50 cylindrical objects,51 spherical targets,29,37,42,47 and liquid pools.52 

As a single field formulation, the governing equations are applied to all phases (gas, 

liquid, and solid) and are solved on the fixed Eulerian grid for incompressible flows: 

 

  (1) 

 

  (2) 

 

where u is the velocity vector, P is the pressure, g is the gravitational acceleration, and ρ and 

µ are the density and the viscosity, respectively. F is the surface tension force which is 

considered only at the gas-liquid phase interface and can be described by the following 

formulation:  
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where σ is the surface tension coefficient and κH is the curvature field. The indicator function 

I has the characteristics of the Heaviside function and varies from 0 in one phase (droplet) to 

1 in the other phase (air). 

The physical properties of the gas (air) and liquid (droplet) can also be described using 

the indicator function I as follows:  

 

  (4) 

 

  (5) 

 

where the subscripts “d” and “a” stand for droplet and air, respectively. 

The level contour reconstruction method (LCRM)48-50 is an essential element of our 

numerical framework to represent and track the phase interface. The LCRM is a hybrid 

interface-tracking method that benefits from both the front tracking53 and the level set54 

methods. Although the interface is tracked using Lagrangian moving elements as in the 

original front tracking method for an accurate representation, each Lagrangian mesh element 

is naturally (implicitly) interconnected by reconstructing the elements based on the distance 

function. This reconstruction procedure eliminates the complexities in handling the element 

connectivity during the topology change of the phase interface (e.g., deformation, merging or 

pinch-off), which is the most well-known and significant shortcoming of the original front 

tracking, while keeping the advantage of the front-tracking method (i.e., interface 

representation using Lagrangian moving mesh elements). Since the reconstruction procedure 

is performed at the cell faces, mesh elements are implicitly connected after reconstruction 

without an additional treatment for linking the elements. More details about the LCRM can 

be found in Shin and Juric.48-50 

( )d a d Ir r r r= + -

( )d a d Iµ µ µ µ= + -
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Figure 1 shows the simulation geometry with boundary conditions applied in the present 

study. All simulations were performed in a two-dimensional axi-symmetric domain. The 

dimensions of the physical domain in the radial (r) and axial (z) directions are RL = 7.5 and 

ZL = 20 times the droplet radius, respectively. A droplet collides on a stationary, dry, spherical 

particle at an initial collision velocity Vini, and Dd and Dp are the diameters of droplet and 

particle, respectively, where the subscript “p” stands for the particle. Ω is defined as the 

droplet-to-particle size ratio (Ω = Dd/Dp). The axi-symmetric boundary condition is applied at 

the left boundary. At the upper, lower, and right boundaries, pressure boundary conditions are 

applied. The nondimensional spreading diameter (β*) is defined as β* = β/Dd where β is the 

wetted arc length of the droplet (red arrow in Fig. 1). Its maximal value, i.e., the maximum 

spreading diameter is denoted β*max. 
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III. RESULTS AND DISCUSSION 

 

Three dimensionless numbers, i.e., the Weber number (We = ρdVini2Dd/σ), the Ohnesorge 

number [Oh = µd/(ρdσDd)0.5], and the Reynolds number (Re = ρdViniDd/µd) are commonly used 

to characterize impact conditions for droplet collision with a solid surface. Since Oh can also 

be expressed using We and Re (Oh = We0.5/Re), we here choose two dimensionless numbers, 

i.e., We and Oh as impact parameters. In the present study, in addition, two other impact 

parameters, i.e., the droplet-to-particle size ratio Ω and the equilibrium contact angle θeqi 

(which characterizes surface wettability) are also considered to cover a wide spectrum of 

collision conditions. We, Oh, and Ω are controlled by varying the impact velocity Vini, liquid 

viscosity µd, and the particle diameter Dp, respectively. 

The diameter of the droplet (Dd) is fixed to be Dd = 2 mm. For the gas phase, the 

physical properties of ambient air are used (ρa = 1.2 kg/m3 and µa = 0.00018 N s/m2). The 

surface tension coefficient is set as σ = 0.0728 N/m and the density of the liquid (droplet) is 

set to be ρd = 998.2 kg/m3.  

Since a droplet can splash on a stationary particle if the Weber number is We ~ 150, we 

consider a range of Weber numbers below this splashing threshold.29,55 Seven We cases are 

considered for the low Weber number regime (We = 0, 1, 2, 4, 6, 8, and 10) and six cases are 

considered for the high Weber number regime (We = 20, 30, 50, 70, 90 and 110). Thus 13 

cases of initial impact velocity (Vini) are considered which vary from 0 to 2.003 m/s (0 ≤ Vini 

≤ 2.003) and thus varying the We number from 0 to 110 (0 ≤ We ≤ 110). To sufficiently cover 

the wide range of liquid viscosity, µd varies from 0.0005 to 0.3 N s/m2 thus varying the Oh 

number from 0.0013 to 0.7869 (0.0013 ≤ Oh ≤ 0.7869), as in our previous study.42 This range 

of Oh number almost covers many cases of practical interest across various engineering fields: 
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gasoline (Oh ~ 0.0018), water (Oh ~ 0.0026), ethyl alcohol (Oh ~ 0.0063), blood (Oh ~ 

0.0063), squalane (Oh ~ 0.05), and printable ink (Oh ~ 0.1–1.0) with the given droplet 

diameter (Dd = 2 mm).43,56 

The impact phenomena observed in droplet-particle collisions can be identical to that on 

a flat surface if the particle is sufficiently large. Because no notable difference in the 

maximum spreading diameter (β*max) between a flat surface and a particle was observed when 

the particle size is larger than 10 times the droplet size,36,42 it is assumed that the collision 

case where Ω = 1/10 produces an identical result to an impact with a flat surface.36,42 On the 

other hand, β*max cannot be defined since the droplet can completely wet the particle (the 

particle surface can be totally coated by the droplet) if the particle is sufficiently small. It has 

been shown that such complete coating can be observed near Ω = 1/1.5.29,38 Therefore, four 

cases of Ω (Ω = 1/10, 1/4, 1/3, and 1/2) are considered herein to investigate the effect of 

particle size on the maximum spreading characteristics covering the critical range of Ω. Five 

cases of θeqi are also considered to examine the effect of surface wettability from hydrophilic 

to super-hydrophobic surfaces, i.e., θeqi = 20°, 55°, 90°, 125° and 160°. As a result, a total of 

2600 collision cases (13 Weber numbers, 10 Ohnesorge numbers, 4 droplet-to-particle size 

ratios, and 5 surface wettabilities) are considered in our current simulations. This large 

dataset is used not only to understand how β*max changes across two regimes (low and high 

Weber number regimes) regarding the effects of other impact parameters (Oh, Ω, and θeqi) but 

also to train an artificial neural network to develop a data-driven prediction model for β*max as 

a universal predictor (a more detailed description of this artificial neural network is presented 

in Section III C).  

We assume that the surface is well-prepared thus the contact angle hysteresis is set as 

±2.5°. Since the Reynolds number is on the order of O(4) or smaller and this is too small to 

consider turbulence57, the flow is assumed as laminar flow. The deformation of the droplet 
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before collision can also be negligible.38 To set the desired impact velocity Vini before the 

impact, the droplet is accelerated artificially by solving the governing equations under an 

enhanced gravity field without interface advection.  

 

A. Validations 

 

While our numerical framework has been extensively validated for a wide range of 

collision conditions,29,42 additional validation tests have been performed to check that the 

numerical methods used herein can simulate the droplet-particle impact phenomena well 

focusing on the low Weber number regime. A water droplet (Oh=0.0026) is used to show our 

result hereafter for its versatility, unless otherwise mentioned.  

Figure 2(a) shows the temporal variation of the nondimensional spreading diameter (β*) 

for a flat surface (Ω = 1/10) when the initial impact velocity is zero. Two different surfaces, 

i.e. steel (θeqi = 61°, as a hydrophilic surface) and parafilm (θeqi = 110°, as a hydrophobic 

surface) are considered. As mentioned above, and as also shown by the experiment of Lee et 

al.,13 the droplet spreads over the solid surface by only the capillary effect, thus β*max yielding 

zero is physically unrealistic. Note that the interaction phenomena between droplet and 

particle is primarily governed by the capillary effect without the (initial) inertial effect under 

the given impact condition (We = 0).  The measured β*max in our simulations (marked by 

black and red crosses) show a good agreement with existing experimental results (indicated 

by two dashed lines).13  

We further compare our simulation result with the existing experimental result of Mitra 

et al.25 to check that our simulation method can reproduce the droplet spreading well on a 

curved surface, i.e., spherical particle. Note that low Weber number (We = 0.9) and high 

particle curvature (Ω = 0.83) are considered. In figure 2(b) and 2(c), the temporal evolutions 
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of β* and the apparent contact angle (θap) are compared with the existing experimental result, 

and our simulation result shows a good agreement with the experiments.25 Although a small 

discrepancy is observed due to the difficulties in ensuring the exact head-on collision in the 

experiment,25 we concluded that our numerical formulations perform reasonably well in 

simulating the droplet-particle collision problem for a low Weber number regime. Note again 

that our simulation framework has also been extensively validated in the high Weber number 

regime (We ~ 155.5),29 and for a wide range of Oh numbers (0.0013 ≤ Oh ≤ 0.7869).42  

 

B. Comprehensive analysis of the maximal spreading for low and high 

Weber number regimes 

 

We first examine how β*max differs for the low Weber number regime from that for the 

high Weber number regime, and how the Weber number and surface wettability affect β*max 

for each regime. In figure 3, β*max is plotted for the full ranges of We and θeqi considered 

herein (0 ≤ We ≤ 110 and 20° ≤ θeqi ≤ 160°). As expected, β*max basically increases with We 

due to its higher inertial (impact) energy. However, a clear difference is observed between the 

high and low Weber number regimes. When the Weber number is sufficiently high (We ≥ 30), 

the spreading is mainly governed by the inertial effect and β*max can be represented by the 

well-known scaling relation (β*max ~ We0.25, see green dashed line)12 for all considered 

surface wettabilities. Although β*max is still affected by θeqi because the capillary effect plays a 

non-negligible role near the maximum spreading state at which the velocity of the contact 

line decelerates and reaches zero,15 the effect of θeqi is minor and the scaling relation can 

approximate β*max well. Conversely, the scaling relation doesn’t hold for the low We regime. 

As We decreases, β*max diverges from the green dashed line depending on θeqi. Only β*max 

with the most non-wettable surface (θeqi = 160°) can be approximated by the scaling relation. 
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In particular, a significant effect of the surface wettability is observed for this regime, which 

signifies that the maximum spreading is primarily governed by the capillary effect due to the 

low impact inertial energy. Note that β*max with θeqi = 20° is almost double the case with θeqi = 

160°, if We = 1. Note also that β*max converge to non-zero values depending on the surface 

wettatilbites if We reaches zero. This highlights again the limitation of some existing 

prediction models40-42 that yield β*max = 0 when We = 0, for such a low Weber number regime. 

Next, we examine how the droplet-to-particle size ratio (Ω) affects β*max and how the 

effect of Ω on β*max depends on the Weber number. In figure 4, β*max is compared for the full 

ranges of We and Ω considered herein (0 ≤ We ≤ 110 and 1/10 ≤ Ω ≤ 1/2). If the Weber 

number is sufficiently high (We ≥ 30), as shown in many existing studies,24,35-36,38,40-41 β*max 

increases on smaller particles and can also be approximated well by the existing scaling 

relations12,42 (see two green dashed lines). Conversely, for the low We regime, the inverse 

trend is seen, i.e., β*max decreases on smaller particles (see We ≤ 4 for this case) whereas the 

effect of Ω on β*max almost disappears at the transition regime (see 4 < We < 6 for this case). 

We found that the transition regime is observed near 4 ≤ We ≤ 10 depending on the surface 

wettability and β*max is nearly independent of Ω in this transition regime. We note that such a  

trend shown in the transition and low We regime (We ≤ 10) is also consistent with the 

existing studies.29-30,35-36,58  

In figures 3 and 4, we analyzed the effects of We, θeqi and Ω on β*max where the droplet is 

water (Oh = 0.0026). We now examine how those behaviors change if the liquid viscosity 

(i.e., Oh number) changes. In figure 5, the effect of surface wettability (θeqi = 20°, 90°, and 

160°) is compared for the full range of Oh considered herein (0.0013 ≤ Oh ≤ 0.7869). Two 

representative Weber number cases (We = 4 for the low We regime and We = 110 for the high 

We regime) are plotted for comparison. As expected, β*max basically decreases as Oh 

increases due to its higher viscous damping. For the high We cases (We = 110), β* is 
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apparently affected by θeqi at the low Oh regime since the physical mechanism for the 

termination of spreading is related to the capillary effect and surface wettability. For this case 

(i.e., high We and low Oh), the droplet spreading is driven by the inertia and terminated by 

the capillary limit (i.e., the droplet can spread over the surface until no more interfacial 

deformation is available).12,59 The effect of viscous damping on β*max can be minor for this 

case. However, as Oh increases, the viscous dissipation starts to play an important role, and 

for the cases with high We and high Oh, the droplet spreading is driven by the inertia and 

terminated by the viscous limit (i.e., the droplet can spread over the surface until no more 

kinetic energy is available).12,59 Since the physical mechanism is not strongly related to the 

capillary effect at this high We and high Oh regime, the effect of θeqi on β*max is minor. 

Conversely, for the low We cases (We = 4), β*max is always affected by θeqi and a significant 

effect of θeqi is still observed even for the highest Oh case considered herein (Oh = 0.7869 

which is 300 times more viscous compared to a water droplet). This means that the capillary 

effect and surface wettability play an important role in the droplet spreading for the low We 

cases, even though the liquid viscosity is significantly increased. 

In figure 6, the effect of droplet-to-particle size ratio (Ω = 1/10 and 1/2) is compared for 

the full range of Oh considered herein (0.0013 ≤ Oh ≤ 0.7869). At the low Oh regime, as 

shown in figure 4, three different effects of Ω on β*max are seen depending on the Weber 

number: (i) β*max increases with Ω for the high We case (We = 110), (ii) no effect of Ω on 

β*max appears for the transition regime case (We = 6), and (iii) β*max decreases as Ω increases 

for the very low We case (We = 1). For the high Oh regime, however, all of these effects of Ω 

on β*max become negligible as Oh increases since the deformation of the droplet itself is 

significantly suppressed due to its high viscous damping. 

With regard to the effects of Ω on β*max and associated physical mechanisms, our results 

shown in figures 4 and 6 are consistent with many previous studies.24,29-30,35-36,38,40-41,58 The 
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several underlying mechanisms, i.e., gravitational effect,36 reduced surface energy loss42 and 

reduced viscous dissipation,38,42 have been investigated and proposed to explain why β*max 

increases on smaller particles for the high We regime. However, no detailed explanation is yet 

available about the physical mechanism for the transition and low We regime, even though 

the same trend has been found in the several existing studies.29-30,35-36,58 In figure 7, we 

analyze how the surface energy and interfacial shapes are affected by Ω in more detail for the 

cases with We = 1. The surface energy of a droplet can be described as Es = σ[ALG - 

ALS·cosθeqi] if a droplet is in contact with a solid. Here, ALG and ALS are the liquid-gas 

interfacial area and the wetting area (liquid-solid contact area), respectively, thus the term 

σALG denotes the liquid-gas interfacial energy and the term σALS·cosθeqi is associated with the 

capillary effect acting in the vicinity of the contact line which essentially depends on the 

surface wettability. In figure 7(a), temporal evolutions of these two surface energy 

components, i.e., Es(L/G) and Es(L/S) with the total surface energy are plotted against the 

nondimensional time τ (defined as τ = tVini/Dd) for the two different sizes of target particles 

(Ω = 1/2 and 1/4). All components are normalized by the initial (total) surface energy Es, ini. 

For both cases, the droplets reach the maximum spreading state near τ ~ 0.63 (see green 

dashed line). The total surface energy is slightly increased on the smaller particle, and this 

can be attributed to the reduced viscous dissipation on the smaller target. Since the smaller 

target provides higher surface curvature, the liquid-gas interface of the droplet should be 

essentially more stretched. This explains why Es(L/G) increases on the smaller particle 

(compare two dotted lines). Therefore, Es(L/S), which shows basically the same trend as the 

wetting area and the maximum spreading diameter, decreases on the smaller particle under 

the given total surface energy state (compare two dashed lines). In figure 7(b), the liquid-gas 

interface and the liquid-solid contact interface are further compared for the same cases shown 

in figure 7(a). As depicted in the zoom-in of the dotted box, the liquid-gas interfacial area is 
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larger on the smaller particle (see blue line) compared to that on the larger particle (see red 

line) whereas the wetting area is smaller on the smaller particle (see yellow line) compared to 

that on the larger particle (see green line).  

We now compare temporal evolutions of the spreading characteristics between the high 

and low Weber number regimes. Two representative Weber number cases (We = 4 and 110) 

and Ohnesorge number cases (Oh = 0.0026 and 0.5246) are selected for comparison. In figure 

8(a) and (b), the temporal variations of β* against the nondimensional time τ for high (We = 

110) and low (We = 4) Weber number cases are analyzed, respectively. The maximum 

spreading time (τmax), assumed as the time at which the droplet attains 95 % of its maximum 

spreading (β*max), is marked by squares. As seen in figure 8(a), for the high We cases, 

although β*max and τmax are still affected by the surface wettability, their effects are relatively 

minor. It is interesting to observe the initial period (0 ≤ τ ≤ 1) at which the evolution of β* 

shows an identical profile regardless of θeqi, under the given Oh condition (see green area). At 

this period, no capillary effect appears due to the dominant effect of high inertia. Such a 

result is also consistent with existing studies23,25 that found that the nondimensional film 

thickness measured at the apex point shows an identical trend during certain initial periods, 

referred to as the ‘initial deformation period (0 ≤ τ ≤ 0.7)’. The effect of θeqi starts to play a 

role only after τ = 1 for both Oh conditions. Conversely, as seen in Figure 8(b), the effect of 

θeqi obviously appears during the entire spreading process for low We cases. No initial period 

at which β* shows an identical profile is seen. The effect of θeqi plays a significant role in both 

β*max and τmax. For example, for the cases with Oh = 0.0026, τmax on the hydrophilic surface 

(θeqi = 20°) is 1.17 which is more than double τmax (0.46) on the hydrophobic surface (θeqi = 

160°). 

In figure 9, interfacial morphologies of the droplets at the maximum spreading state are 

compared in detail. 4 cases shown in figure 8 above are selected for comparison (We = 4 and 
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110, θeqi = 20° and 160°, and Oh = 0.0026). For high We cases, as seen in the left side of 

figure 9, the thin liquid film of lamella is observed at the central part of the droplet (see the 

right side of the green dashed line) whereas the rounded rim is formed at the leading part near 

the contact line due to the surface tension force (see the left side of the green dashed line). 

The interfacial morphologies are globally comparable for both surface wettabilities and an 

almost identical shape is observed for the lamella part. No meaningful difference in the film 

thickness as well as in the lamella shape is seen depending on θeqi. For these high We cases, 

only the local shape of the rims is affected by θeqi. Conversely, for the low We cases, it is 

difficult to distinguish clearly between the lamella and rim. As seen in the right side of figure 

9, the interfacial shape is significantly affected by the surface wettability, across this entire 

part of the droplet. Relatively uniform film thickness is seen on the hydrophilic particle (θeqi 

= 20°) whereas the droplet shows a very thick and rounded shape on the non-wettable particle 

(θeqi = 160°). For this hydrophobic case (θeqi = 160°), a much reduced β*max is also seen 

compared to the case with θeqi = 20°. 

 

C. Data-driven prediction model for the maximum spreading diameter 

 

In Section III B above, we observed the highly complex nature of the physical process 

underlying the maximum spreading of droplet-particle collision. If the Weber number 

decreases below order of O(1), the existing scaling relations do not hold and the maximum 

spreading strongly depends on the surface wettability and the associated capillary effect even 

for the highly viscous cases (with high Oh numbers). In addition, the effect of the droplet-to-

particle size ratio changes across the Weber number, and in some cases, shows the inverse 

trend at the low Weber number regime. Those complex behaviors also change nonlinearly as 

the Ohnesorge number changes. Overall, inertial, capillary, and viscous effects and surface 
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wettability all play non-negligible roles in β*max and their effects are complicatedly 

interconnected showing nonlinear characteristics.  

A single correlation that can be applied to a wide range of collision conditions regarding 

all such complex effects from We, Oh,  θeqi, and Ω is extremely difficult to formulate, even 

for a flat surface, since the different physical spreading mechanisms should be 

simultaneously considered.15,19 Therefore, no single universal prediction model for the 

maximum spreading in the droplet-particle collision problem has yet been proposed. 

Recently, machine learning approaches have been widely applied to complicated fluid 

flow phenomena60-66 owing to their excellent ability as a universal correlator for non-linear 

relations between input and output data.61 In particular, deep learning which utilizes “deep” 

layers to represent complex and nonlinear relations that are generally difficult to capture by 

using traditional methods have been increasingly applied to multiphase flow problems66 (see 

Ref. 66 and references therein). In this section, we propose a data-driven prediction model for 

the maximum spreading of droplet-particle collision, using a deep learning approach.  

β*max can be basically modeled as a function of 4 collision parameters: 

 

 β*max = f (We, Oh, θeqi, Ω) (6) 

 

The multilayer perceptron (MLP),67 also called multilayer neural network, is used as a 

nonlinear regressor to represent the function f which is a complex relationship between input 

(We, Oh, θeqi, and Ω) and output (β*max) data in the present study. Figure 10 depicts the 

schematic architecture of the MLP considered in the present study, which consists of input 

layer, multiple hidden layers, and output layer. A number of neurons (also called nodes) exist 

in each layer. The input layer provides the input features (i.e., We, Oh, θeqi, and Ω in the 

current study) to the first hidden layer. In the first hidden layer, the linear combinations of the 
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input features are constructed and forwarded to the next hidden layer after nonlinearization 

by an activation function. This operation (so-called feedforward procedure) is continued over 

all of the layers and the last output layer predicts the final output value. The output value of 

the nth neuron in the mth layer can be described: 

 

  (7) 

 

where N denotes the number of neurons of each layer whereas wnl denotes the weight 

between the nth neuron of the current layer and lth neuron of the previous layer. b denotes the 

bias and the function g is the nonlinear activation function. More detailed information on the 

feedforward procedure can be found in the appendix B. 

A total of 2600 simulation cases are used to prepare the dataset: 13 cases of Weber 

numbers (We = 0, 1, 2, 4, 6, 8, 10, 20, 30, 50, 70, 90, and 110), 10 cases of Ohnesorge 

numbers (Oh = 0.0013, 0.0026, 0.0052, 0.0105, 0.0262, 0.0525, 0.1049, 0.2623, 0.5246, and 

0.7869), 5 cases of surface wettabilities (θeqi = 20°, 55°, 90°, 125° and 160°), and 4 cases of 

droplet-to-particle-size ratios (Ω = 1/10, 1/4, 1/3, and 1/2). The simulations have been 

efficiently performed with the help of a simple adaptive mesh refinement (AMR) technique.47 

From those simulation cases, 2600 data samples for input features (We, Oh, θeqi, and Ω) and 

output feature (β*max) are constructed. Afterward, the dataset is randomly divided into 3 parts: 

the training data (70 %, 1820 data samples), the validation data (15 %, 390 data samples), and 

the test data (15 %, 390 data samples). The training data is used to train the deep neural 

network model whereas the validation data is used to check if overfitting happens during the 

learning process. The trained model is finally tested using the test dataset. 

The adjustable coefficients, i.e., weights (w) and biases (b) of the MLP are optimized 
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during the learning process, by minimizing the loss function using the back propagation 

algorithm.68 In the present study, the mean square error (MSE) is defined and applied as a 

loss function: 

 

  (8) 

 

Where M denotes the number of data samples and β*max(p) denotes the predicted value of the 

maximum spreading diameter using the deep neural network. The number of hidden layers, 

the number of neurons at each layer, and the nonlinear activation function are called 

hyperparameters, and can usually be set by the user. In the present study, the rectified linear 

unit function, i.e., ReLU function is used as the activation function since the ReLU is known 

as the best candidate for deep neural networks.69 The ReLU function is described as: 

 

 g(x) = ReLU(x) = max(x, 0) (9) 

 

Based on a ‘trial and error’ approach, a 2 × 30 (2 hidden layers and 30 neurons in each hidden 

layer) structure is selected as our MLP network. The training is performed by using the 

ADAM70 optimization algorithm due to its well-known performance for deep learning 

applications.71 All implementation for the training is performed in the open-source software 

library TensorFlow72 and Keras.73 Further detailed information about the MLP and its training 

techniques can also be found in Nielsen.74 

The training of the neural network is performed until the MSE obtained from the 

validation dataset convergences to a steady state. After 4500 training epochs, the training and 

validation MSE reach a steady state at about 6.5 × 10-4 (training) and 2.5 × 10-3 (validation), 
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respectively. The final MSE of the test dataset is 9.7× 10-4. 

Figure 11 compares the maximum spreading of droplet-particle collision predicted by 

our deep neural network with the measured values (true values) from our numerical 

simulations. 390 data samples of the test dataset are used for comparison (see black circles). 

As seen, β*max predicted by our deep neural network model shows an excellent agreement 

with the true (measured) data (R2 = 0.9968). Note that only 1 of 390 cases falls outside a 

deviation range of ± 10%. We also plot 4 existing results together, i.e., two experimental 

results for the droplet-particle collisions,25,38 the semi-empirical model11 and the scaling 

model12 for collisions with a flat surface for comparison. For droplet collision with a flat 

surface, the semi-empirical model of Mao et al.11 is known as one of the most accurate 

models75 and our data-driven prediction result also shows a good agreement with their model 

except for some cases (see red inverse triangles). This discrepancy is caused by the existing 

model’s own limitation11,75 that tends to somewhat overestimate the maximum spreading for 

the cases where the liquid viscosity is small thus the surface tension plays an important role. 

Since a viscosity-free model is more appropriate14 for such impact conditions (i.e., low liquid 

viscosity), we compare our result again with the well-known viscosity-free model of Clanet et 

al.12 and an excellent agreement is observed (see yellow squares). Our predicted β*max is also 

consistent with two other existing results for droplet collisions with a particle (see blue 

crosses and green triangles).25,38 Note that all the data shown in figure 11 has not been used 

for the training of our deep neural network. This means that our data-driven prediction model 

can predict β*max well without overfitting. Note also that the current model is not a fully 

optimized version because detailed fitting and optimization of the deep neural network are 

beyond the scope of the present study. Indeed, we performed several model tests and found 

that the prediction performance can also be further improved using a ‘deeper’ network. 

However, we concluded that the current model is sufficiently reasonable in terms of its 
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accuracy and simplicity. Further optimization can be considered in future studies with 

additional larger datasets. The trained coefficients, i.e., weights (w) and biases (b), and more 

detailed feedforward procedure for the prediction of β*max using the current MLP model are 

presented in the appendix B for readers. 
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IV. CONCLUSION 

 

In this study, we investigate the maximum spreading diameter (β*max) of droplet impact 

with a spherical particle for a wide range of impact conditions, i.e., from the low Weber 

number regime dominated by capillary effects to the high Weber number regime dominated 

by inertial effects (0 ≤ We ≤ 110), from nearly inviscid liquid to highly viscous liquid (0.0013 

≤ Oh ≤ 0.7869), from hydrophilic to super-hydrophobic surfaces (20° ≤ θeqi ≤ 160°), and from 

a flat surface to a small particle (1/10 ≤ Ω ≤ 1/2). A total of 2600 collision cases are simulated 

not only to enable a systematic analysis, but also to prepare a large dataset for the training of 

a data-driven prediction model based on a deep neural network. 

The effects of four impact conditions (We, Oh, Ω and θeqi) on β*max are comprehensively 

analyzed and quantitatively compared for both high and low Weber number regimes. For the 

low We regime, β*max cannot be predicted by the existing scaling relations, and strongly 

depends on the surface wettability (θeqi) and the associated capillary effect even for the highly 

viscous cases (with high Oh numbers). In addition, the effect of the droplet-to-particle size 

ratio (Ω) changes depending on the Weber number, i.e., β*max increases with Ω for the high 

We regime whereas β*max shows the inverse trend for the low Weber number regime. Those 

complex behaviors also nonlinearly change depending on the Ohnesorge number. The 

dynamic profile of β* as well as interfacial shapes also significantly differ from those for the 

high We regime. 

Finally, to consider all such complex and inter-related effects from four impact parameters 

(We, Oh, Ω and θeqi) simultaneously, a universal model for prediction of β*max is proposed 

based on a deep neural network. It is shown that our data-driven model can reproduce β*max 

well, showing an excellent agreement with the existing experimental results as well as our 
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simulation dataset. 
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APPENDIX A: Details of numerical method 

 

We describe the essential parts of our numerical framework here, e.g., the calculation of 

the surface curvature, interface advection, and the modeling of the dynamic contact angle. In 

Eq. (3), the curvature field κH can be obtained as follows: 

 

  (A1) 

 

  (A2) 

 

  (A3) 

 

Here, xf is the position of the moving liquid-gas interface Γ(t), which is tracked by the 

Lagrangian mesh elements. κf is also the curvature of the phase interface but is calculated 

using the Lagrangian elements directly. nf is the unit normal vector from the phase interface, 

and δ(x-xf) is the Dirac delta function, which is non-zero only at the interface (x = xf). ds is 

the length (in a two-dimensional simulation) of each interface element and is calculated 

directly from the interface elements.  

The Lagrangian mesh elements are advected in time by integrating: 

 

  (A4) 
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where uf is the velocity of each interface element. The second-order Runge-Kutta method is 

utilized for integrating Eq.(A4). For an element which is not in contact with a contact line, uf 

is obtained using an appropriate interpolation scheme from the velocity field. Conversely, if 

an element is in contact with a solid surface, the element is advected by the Navier-slip 

condition to prevent a stress singularity which arises at the solid surface. In such a case, the 

velocity of the contact line (UCL) on the surface is obtained by: 

 

  (A5) 

 

where λ is the proportionality slip constant and a quarter of the size of a grid cell is applied in 

the present study.  ¶u/¶n is the shear strain rate on the wall.  

The dynamic contact angle θdyn is modeled as in Yokoi et al.:76 

 

  (A6) 

 

where θeqi is the equilibrium contact angle and Ca is the capillary number (Ca = µUCL/σ). The 

contact angle hysteresis can be represented by the difference between the allowable 

maximum (θmda) and minimum (θmdr) dynamic contact angles. q1 and q2 are constants which 

can be experimentally measured. The same values as in Yokoi et al.76 (q1 = 9.0 ´ 10−9 and q2 

= 9.0 ´ 10−8) are used in the current study. 
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APPENDIX B: Feedforward procedure and the 

coefficients of the neural network model  

 

The input data a0 is first provided from the input layer in the form of a 1 ´ 4 matrix 

containing four input features (We, Oh, θeqi, and Ω). At the first hidden layer, the matrix 

multiplication between a0 (1 ´ 4 matrix) and the weights of the first hidden layer w1 (4 ´ 30 

matrix), i.e., a0 ´ w1 is performed, followed by adding the biases of the first hidden layer b1 

(1 ´ 30 matrix). The output of this procedure is nonlinearized by the rectified linear unit 

(ReLU) function before transmission to the next layer. The output of the first hidden layer a1 

can be expressed as a1 = ReLU [(a0 ´ w1) + b1] and has the form of a 1 ´ 30 matrix. 

At the second hidden layer, the same procedure is applied. The matrix multiplication 

between a1 (1 ´ 30 matrix) and the weights of the second hidden layer w2 (30 ´ 30 matrix) is 

performed, followed by adding the biases of the second hidden layer b2 (1 ´ 30 matrix) and 

nonlinearization by the ReLU function. The output of the second hidden layer a2 can be 

expressed as a2 = ReLU [(a1 ´ w2) + b2] and has the form of a 1 ´ 30 matrix. 

At the output layer, the same procedure is applied but the nonlinearization is not applied. 

The matrix multiplication between a2 (1 ´ 30 matrix) and the weights of the output layer w3 

(30 ´ 1 matrix) is performed, followed by adding the biases of the output layer b3 (1 ´ 1 

matrix). The output of the output layer a3, which is essentially the prediction result, can be 

expressed as a3 = (a2 ´ w3) + b3. 
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TABLE B.1. Weights of the first hidden layer w1i,j (4 ´ 30 matrix). 

 i = 1 i = 2 i = 3 i = 4 
j = 1 1.9061 -1.2706 0.0059 -1.5021 
j = 2 2.4251 0.079 -0.0469 -4.0555 
j = 3 -1.1888 0.1675 0.0157 -1.1465 
j = 4 -2.3407 0.0191 0.0032 10.0215 
j = 5 1.1278 -0.1337 0.0628 4.8798 
j = 6 -0.2123 -0.1366 -0.0261 3.4507 
j = 7 3.8299 0.0024 -0.0468 -19.7693 
j = 8 1.4675 0.007 -0.0025 -36.5083 
j = 9 0.1276 -0.0879 -0.3978 0.2503 

j = 10 0.9491 -1.7436 0.0185 -0.6988 
j = 11 -0.3328 -0.2501 -0.3118 0.0356 
j = 12 0.3453 0.0053 -0.0739 0.3906 
j = 13 0.1566 -0.3271 -0.236 0.0934 
j = 14 0.8228 -0.4258 0.0497 -4.1911 
j = 15 -0.2457 -0.2498 -0.1976 0.3705 
j = 16 -2.7326 -0.0792 0.0164 -1.6066 
j = 17 4.4666 -0.0969 0.0141 2.9657 
j = 18 -0.1839 -0.2803 -0.3558 0.3828 
j = 19 -4.678 0.0082 0.0005 -5.5569 
j = 20 0.1821 -0.4191 -0.0108 -2.9936 
j = 21 -0.2881 -0.395 -0.0686 -0.1405 
j = 22 1.9539 0.02 -0.003 -17.0311 
j = 23 -6.5675 0.0344 -0.0017 2.8008 
j = 24 -1.7524 -0.4745 -0.0399 1.2429 
j = 25 3.4064 -0.0234 0.0057 -1.134 
j = 26 -0.233 -0.1278 -0.0119 0.3623 
j = 27 -0.326 0.0482 -0.2477 -1.5248 
j = 28 0.4041 -0.394 -0.3417 -0.1744 
j = 29 -7.8626 0.007 -0.0177 1.5665 
j = 30 -1.9185 0.044 -0.0435 4.8126 

 

TABLE B.2. Weights of the second hidden layer w2i,j (30 ´ 30 matrix). 

 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 
j = 1 -0.0584  0.0718  0.2475  0.0422  0.0454  0.1838  0.2414  -0.1151  -0.2737  -0.1176  
j = 2 0.0529  -0.0258  0.0089  -0.9330  -0.0879  0.1044  0.1184  -0.0830  -0.2109  0.1977  
j = 3 -0.2396  0.0825  0.1115  0.1123  -0.3201  -0.0084  -0.1659  -0.0628  -0.0216  0.3037  
j = 4 -0.4419  -0.4217  -0.0042  -0.0672  0.1651  -0.3884  0.1228  0.0901  -0.0971  0.0053  
j = 5 0.1150  0.1003  0.2479  0.0020  -0.0917  -0.1650  -0.3353  0.0285  -0.0873  -0.0083  
j = 6 -0.0404  -0.0245  -0.3185  0.2116  -0.8259  -0.0288  -0.1734  -0.0133  -0.5656  0.2325  
j = 7 -0.0901  0.8309  -0.1453  0.8865  0.2757  0.2737  -0.0079  -0.1245  0.1366  0.1269  
j = 8 -0.2214  -3.0984  -0.5174  -0.0558  0.2873  1.6477  0.0322  1.1222  0.6048  0.9131  
j = 9 -0.1482  -0.0498  0.1908  -0.0228  0.2889  -0.1832  -0.3038  -0.3103  0.1912  -0.1617  
j = 10 -0.3268  0.1031  -0.1708  0.4585  -0.2645  -0.3463  -0.3095  0.0986  0.1533  -0.2898  
j = 11 -0.1602  -0.1897  0.1841  0.1298  0.2105  0.2729  -0.2597  0.0426  0.2721  -0.0004  
j = 12 -0.1329  0.2737  -0.0467  -0.0258  -0.0219  -0.1008  0.2646  -0.0749  0.0759  0.1992  
j = 13 0.2740  0.1452  0.2861  0.2451  0.0176  0.2099  0.0153  -0.1957  0.0268  0.0510  
j = 14 -0.0955  0.2419  0.3990  0.0432  0.1711  -0.0813  -0.2527  -0.0466  -0.0407  -0.0395  
j = 15 -0.2838  0.1437  -0.0143  -0.2083  -0.2008  0.1287  0.1910  -0.1617  0.0298  0.1815  
j = 16 -0.0071  0.1291  0.2715  -0.1079  -2.1132  -0.0679  0.1791  0.0402  -0.1417  -0.0061  
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j = 17 -0.3664  -0.2941  -0.2582  0.1567  -2.4899  -0.0622  -0.0288  -0.2283  0.0675  0.0412  
j = 18 0.0212  -0.1016  0.0143  -0.1632  0.1984  0.0467  -0.2130  -0.0380  0.2914  -0.1037  
j = 19 -0.2418  0.1894  0.0864  -0.3889  0.0108  -0.0090  -0.3493  0.3966  -0.1945  0.1584  
j = 20 -0.1646  0.0489  -0.5014  0.0302  -0.4817  -0.0126  -0.2973  -0.1877  -0.1952  -0.2024  
j = 21 0.1894  0.2982  -0.1912  0.0147  0.1079  0.2432  -0.2127  0.1859  -0.1631  -0.2170  
j = 22 -0.3818  0.3228  0.1250  -0.0418  0.0109  -0.2663  0.0535  -0.1296  -0.0266  0.4135  
j = 23 -0.3439  -0.2162  -0.0614  -1.5111  0.0650  -1.7652  0.1159  0.1065  0.4084  -0.2060  
j = 24 0.0940  -0.2438  0.6905  0.4834  -0.4044  0.2717  0.1450  -0.0211  -0.0090  0.0589  
j = 25 0.0346  -0.1357  0.0440  -0.0988  -1.1211  -0.7743  -0.0203  -0.1804  -0.0668  0.0028  
j = 26 0.1791  0.2591  0.0849  0.2750  0.2171  0.0728  -0.0531  0.2146  -0.2378  -0.2453  
j = 27 -0.1144  -0.0830  0.1123  -0.2800  -0.0248  -0.0387  0.0937  -0.2302  -0.1153  -0.2550  
j = 28 -0.2115  -0.0842  0.3041  -0.0350  -0.0238  0.0328  0.2844  0.2160  -0.1506  0.2875  
j = 29 -0.4142  -0.1317  0.7627  -1.3978  0.2875  -0.4755  -0.2014  0.1141  0.1727  0.0097  
j = 30 -0.0873  0.1265  0.1539  0.0743  0.4703  -0.0707  -0.1966  0.2529  0.0575  -0.2148  

 

 

TABLE B.2. Weights of the second hidden layer w2i,j (30 ´ 30 matrix). (cont.) 

 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 
j = 1 0.0018  -0.3680  0.2100  -0.1413  -0.0941  0.3079  0.0119  1.4304  0.2026  -2.4157  
j = 2 0.1829  -0.1163  0.1285  -0.4309  0.0592  -0.9747  0.0120  0.2111  -0.8030  -2.2476  
j = 3 -0.1398  -0.2171  -0.1992  -0.0077  0.0862  -0.4991  -0.0838  -0.5078  -1.3951  -0.7515  
j = 4 -0.2955  0.2533  -0.2147  0.0971  -0.1827  -0.4714  -0.2871  -2.7332  0.4485  -0.2451  
j = 5 0.1257  -0.1972  -0.2881  -0.2317  -0.0797  0.2369  -0.1035  0.0799  0.0710  -0.4256  
j = 6 -0.3602  0.0169  -0.1359  0.7169  0.1530  -1.1324  -0.0290  -1.3050  -0.2134  -1.0745  
j = 7 -0.0094  -1.1140  -0.1507  -0.0812  -1.6024  -2.2698  -0.2644  -0.0592  -0.0528  1.1621  
j = 8 -0.2903  1.1746  -0.0657  0.6708  -0.2682  2.6619  -0.4020  0.6715  0.0859  0.2993  
j = 9 -0.2562  0.3160  0.1353  -0.2243  -0.1446  0.0211  0.1829  0.1785  -0.0839  0.0068  
j = 10 -0.3612  0.0059  -0.0039  -0.0358  0.1358  -0.0712  0.1213  0.1408  0.1321  0.1547  
j = 11 -0.1126  0.0308  -0.2838  0.0418  -0.2965  0.2425  -0.1659  0.1687  -0.2153  -0.2515  
j = 12 0.2791  0.0080  -0.1812  0.0669  -0.1985  -0.0639  -0.0982  -0.2457  0.1775  0.1153  
j = 13 0.0262  -0.1379  0.2698  0.1862  -0.0840  0.2259  0.1124  0.0750  -0.1167  0.0838  
j = 14 -0.1939  -0.1262  0.1914  -0.4919  0.1224  -0.0493  -0.0279  0.5224  0.4039  0.3652  
j = 15 0.2592  0.0569  0.2471  0.2245  0.3123  0.2851  -0.0104  0.0409  -0.2375  0.1408  
j = 16 0.0205  0.1193  0.0836  -0.0345  -0.0011  -0.1187  0.1719  -1.4886  -1.8825  -0.0352  
j = 17 -0.3142  0.0201  -0.0675  -0.7679  0.3374  0.6984  0.1933  -3.0315  -0.5357  -1.9421  
j = 18 0.2417  0.0366  0.0844  -0.1786  0.1661  -0.1431  -0.2633  0.0105  0.0235  0.1804  
j = 19 -0.3457  0.7069  -0.0265  -0.1147  -0.3306  0.6932  -0.0191  0.1606  -0.3685  -0.5070  
j = 20 0.0372  0.4800  -0.0723  -0.0059  -0.2654  -0.1362  -0.2128  -0.3559  0.6531  -0.3776  
j = 21 -0.1244  0.0961  -0.2842  -0.1403  0.2916  0.0443  -0.1030  0.1440  -0.3110  0.0991  
j = 22 -0.3081  0.0507  0.0896  -0.1104  -1.4292  0.1928  -0.3120  0.5701  -0.1939  0.5848  
j = 23 0.2008  -0.5347  -0.3241  -0.2851  0.1529  -0.3383  -0.1496  -1.0224  -1.8450  -0.1005  
j = 24 -0.0075  -0.2411  0.2319  0.2705  -0.1313  -2.0425  -0.0188  -1.4552  -0.1578  -0.6020  
j = 25 -0.4318  -0.2362  -0.2397  -0.4148  0.0286  -0.0834  -0.1091  -0.4103  -0.5102  -0.0914  
j = 26 -0.0020  0.1536  0.2922  0.0867  0.2047  0.0240  -0.0319  0.1272  0.0410  0.2805  
j = 27 -0.0200  0.3192  -0.0367  0.0566  -0.0514  -0.3162  -0.2420  0.0775  0.0237  -0.2905  
j = 28 0.0613  0.2910  -0.0079  0.0689  0.2698  -0.0405  0.2807  0.2494  0.0460  -0.0794  
j = 29 0.1287  0.3261  -0.0980  0.1626  -0.2209  -3.6606  -0.4734  0.3828  -0.5779  0.8639  
j = 30 0.1403  -0.2346  -0.0689  -0.1871  0.1808  -0.0210  0.2546  0.3281  -0.0671  0.3024  
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TABLE B.2. Weights of the second hidden layer w2i,j (30 ´ 30 matrix). (cont.) 

 i = 21 i = 22 i = 23 i = 24 i = 25 i = 26 i = 27 i = 28 i = 29 i = 30 
j = 1 0.0869  0.0387  0.4551  -0.0359  -0.1926  -0.2417  0.2354  -0.0448  0.0214  0.3209  
j = 2 -0.1841  0.0527  -0.0992  -0.0558  0.1502  -0.1861  0.1139  0.1223  -0.1205  -0.0131  
j = 3 -0.2566  0.0535  -0.0594  0.0209  -0.3954  -0.0155  -0.1939  0.1719  -0.2129  0.3484  
j = 4 -0.1690  -0.2609  -0.2549  -0.0851  -0.3848  -0.0134  0.1353  0.1017  0.0601  0.2062  
j = 5 -0.0851  -0.1582  -0.2104  -0.0673  0.0911  -0.1537  -0.1686  0.0161  -0.0502  -0.2230  
j = 6 0.0426  0.0963  0.3194  -0.1196  -0.0039  -0.2038  0.1850  -0.0903  0.1215  0.2001  
j = 7 0.2266  0.2895  0.2393  -0.1636  -0.0081  0.1253  -0.7818  0.9140  -0.2862  0.1758  
j = 8 -0.0580  1.0213  0.3030  -0.9736  0.7444  0.0134  -0.7905  -0.9841  -0.0146  -0.6309  
j = 9 0.2768  -0.0908  -0.1599  -0.2834  0.0135  -0.2507  0.0143  0.1389  0.0044  -0.1064  
j = 10 -0.1300  -0.1723  0.1180  0.0378  0.1364  -0.2209  0.5092  -0.0285  -0.0638  -0.1679  
j = 11 0.1052  0.1965  0.0482  -0.1289  -0.1618  0.1928  0.1919  0.1674  -0.0473  0.0637  
j = 12 0.1436  0.1183  0.2206  -0.2024  0.1258  0.2298  -0.1916  -0.2192  -0.0378  -0.1465  
j = 13 0.2079  -0.1247  -0.0326  0.0926  0.2724  0.2880  0.1897  0.0002  -0.0852  -0.2514  
j = 14 0.2611  -0.0273  0.3781  -0.0094  -0.4060  0.0764  -0.2543  0.0122  0.2847  -0.3051  
j = 15 -0.1571  0.2923  0.1963  0.1600  0.1253  0.0024  -0.1707  -0.2829  -0.0127  0.1590  
j = 16 0.0678  0.1820  -0.2898  0.0351  -3.5119  0.2366  -0.0178  -0.0396  -0.1544  -0.1436  
j = 17 -0.2678  -0.1883  -1.2206  -0.1182  -1.3145  -0.2448  0.0571  -0.0084  0.0008  0.9046  
j = 18 -0.0951  0.2709  -0.1425  -0.0410  -0.0377  0.2074  -0.1492  0.1614  -0.3085  -0.1445  
j = 19 0.0235  -0.2800  -0.1302  -0.1531  -0.2068  -0.4006  -0.3529  0.0069  -0.2070  0.1246  
j = 20 -0.1484  0.1757  0.1663  -0.1993  0.2246  -0.2242  0.0460  -0.0969  -0.1247  0.5174  
j = 21 -0.2637  -0.1279  0.0838  0.0747  -0.2897  -0.1745  0.0305  0.0390  -0.0674  -0.2028  
j = 22 -0.3099  0.4254  0.6193  0.0379  0.2141  0.0287  0.5318  0.0214  -0.0525  -0.3993  
j = 23 -0.1177  -0.0647  0.0991  -0.2402  -0.4760  -0.1553  -0.6934  0.2604  -0.0352  -0.4313  
j = 24 -0.0850  0.2562  0.1537  0.0891  -0.3783  -0.0210  0.5584  -0.3127  -0.2128  0.0318  
j = 25 -0.0645  0.2279  -0.0181  -0.1425  0.1057  -0.5575  -0.1670  0.1717  -0.3330  -0.0789  
j = 26 0.0294  -0.2920  0.0172  -0.2095  -0.0259  0.1946  0.0233  -0.0056  -0.0558  -0.3027  
j = 27 -0.2644  0.2442  0.2604  0.1276  0.0486  0.0006  0.0868  0.2102  -0.2184  -0.0073  
j = 28 0.2741  0.0570  0.1332  -0.2582  0.1392  -0.2367  -0.2972  -0.1669  0.1820  0.1558  
j = 29 0.0127  0.1388  0.0053  -0.1195  -3.4818  -0.3500  -0.8159  0.1197  -0.3818  -0.9309  
j = 30 0.1058  -0.1209  0.0105  0.0180  0.0733  0.0078  -0.1221  -0.1254  -0.0267  -0.3089  

 

TABLE B.3. Weights of the output layer w3i,j (30 ´ 1 matrix). 

 j = 1 
i = 1 -0.0238  
i = 2 0.0758  
i = 3 -0.0922  
i = 4 -0.1659  
i = 5 0.0635  
i = 6 0.1569  
i = 7 -0.1470  
i = 8 0.0456  
i = 9 0.0518  

i = 10 0.1929  
i = 11 -0.0532  
i = 12 0.0664  
i = 13 0.1428  
i = 14 -0.0299  
i = 15 0.0625  
i = 16 -0.0568  
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i = 17 -0.0067  
i = 18 0.1170  
i = 19 0.0438  
i = 20 0.1290  
i = 21 -0.1040  
i = 22 0.0869  
i = 23 0.0455  
i = 24 0.0208  
i = 25 -0.1761  
i = 26 0.0826  
i = 27 0.0695  
i = 28 -0.0984  
i = 29 0.0046  
i = 30 -0.0685  

 

TABLE B.4. Biases of the first hidden layer b1i,j (1 ´ 30 matrix), second hidden layer b2i,j 
(1 ´ 30 matrix), and output layer b3i,j (1 ´ 1 matrix). 

 
 b1

i,j (i = 1) b2
i,j (i = 1) b3

i,j (i = 1) 
j = 1 -2.4199  -0.1980  0.9022 
j = 2 -0.2416  0.7119   
j = 3 -0.1135  -0.8390   
j = 4 -0.5961  -1.8977   
j = 5 -0.3848  -0.4000   
j = 6 -0.4754  -1.4210   
j = 7 -0.0649  -0.2164   
j = 8 0.5372  0.7572   
j = 9 0.0000  1.2333   

j = 10 2.4306  1.0627   
j = 11 0.0000  -0.1835   
j = 12 0.0000  0.3836   
j = 13 0.0000  -0.0603   
j = 14 -0.8687  0.5920   
j = 15 0.0000  1.3056   
j = 16 1.5574  -0.7386   
j = 17 -1.6345  -1.0443   
j = 18 0.0000  0.5531   
j = 19 1.7000  0.4785   
j = 20 2.1082  0.2225   
j = 21 0.0000  0.0000   
j = 22 1.4032  1.1514   
j = 23 -1.0942  0.8386   
j = 24 1.6302  -0.7953   
j = 25 -0.1536  0.1870   
j = 26 -0.0021  -0.2918   
j = 27 -0.3134  1.1543   
j = 28 0.0000  -2.0475   
j = 29 2.1984  -0.1549   
j = 30 -1.2092  -0.6425   
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Fig. 1. Simulation domain and boundary conditions for droplet-particle collision system. 
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Fig. 2. Benchmarking comparison between existing results and current simulation results. (a) 
Comparison with the experimental result of Lee et al.13 for droplet impact with a flat surface 
(We = 0). (b) Comparison of the nondimensional spreading diameter (β*) with the 
experimental result of Mitra et al.25 for droplet impact with a spherical particle (We = 0.9, Ω 
= 0.89, θeqi = 85°). (c) Comparison of the apparent contact angle with the experimental result 
of Mitra et al.25 All impact conditions are the same as Fig.2 (b). 
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Fig. 3. Effect of Weber number (We) and surface wettability (θeqi) on the maximum spreading 
diameter (β*max). The existing scaling relation of Clanet et al.12 is indicated by the green 
dashed line. Oh = 0.0026, Ω = 1/10. 
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Fig. 4. Effect of droplet-to-particle diameter ratio (Ω) on the maximum spreading diameter 
(β*max) for a Weber number range of 1 ≤ We ≤ 110. The existing scaling relations of Clanet et 
al.12 and Yoon and Shin42 are indicated by two green dashed lines. Oh = 0.0026, θeqi = 90°. 
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Fig. 5. Effect of surface wettability (θeqi) on the maximum spreading diameter (β*max) for an 
Ohnesorge number range of 0.0013 ≤ Oh ≤ 0.7869. The cases with We = 110 and We = 4 are 
plotted for the high and low Weber number regimes, respectively. Ω = 1/10. 
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Fig. 6. Effect of droplet-to-particle diameter ratio (Ω) on the maximum spreading diameter 
(β*max) for an Ohnesorge number range of 0.0013 ≤ Oh ≤ 0.7869. The cases with We = 110, 
We = 4, and We = 1 are plotted for the high Weber number regime, transition regime, and low 
Weber number regimes, respectively. θeqi = 90°. 
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Fig. 7. (a) Comparison of two different surface energy components, i.e., Es(L/G) and Es(L/S), and 
the total surface energy between Ω = 1/4 (red lines) and 1/2 (blue lines). All variables are 
normalized by the initial total surface energy Es,ini. The green dashed line indicates the 
maximum spreading state. (b) Comparison of liquid-gas interfacial shape between Ω = 1/4 
(red line) and 1/2 (blue line). Liquid-solid contact areas are also marked by green (Ω = 1/4) 
and yellow line (Ω = 1/2). 
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Fig. 8. Temporal evolution of the nondimensional spreading diameter (β*). (a) We =110. 
Green dashed line and green area indicate τ = 1 and the initial period (0 ≤ τ ≤ 1), respectively. 
At this initial period, β* shows an identical profile regardless of θeqi, under the given Oh 
condition. (b) We = 4. 
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Fig. 9. Comparison of interfacial morphologies at the maximum spreading state between We 
= 110 (left side) and We = 4 (right side). Green dashed line on the left side indicates the 
conceptual boundary between the lamella and rim.  
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Fig. 10. Schematic architecture of the multilayer perceptron (MLP) applied in the present 
study. 
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Fig. 11. Comparison of maximum spreading diameter of droplet β*max between measured 
(true) data obtained by our numerical simulations and predicted data using the deep neural 
network. The deviation range of ± 10% is indicated by the two dashed-black lines. 4 existing 
results of Mao et al.,11 Clanet et al.,12 Khurana et al.38 and Mitra et al.25 are also plotted for 
comparison. 
 
 
 
 
 
 
 
 
 
 


