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ABSTRACT

Segmentation is an important problem for music analysis,
performance, perception, and retrieval. There is often more
than one way to segment a piece of music, as reflected in
the multiple interpretations of a piece of music. Here, we
present an algorithm that can generate multiple hierarchi-
cal segmentations of a music sequence based on approxi-
mate repeated patterns. A relation between music objects
defines this approximation to generate an adapted correla-
tive matrix (ACM). Correlative matrices are data structures
for representing repeated patterns that can overlap; ACMs
constrain patterns to not overlap. We propose an algorithm
that extracts meaningful information from ACMs to iden-
tify segmentations in a hierarchical way. Changing the re-
lation produces alternate hierarchical segmentations of the
same sequence. The algorithm iteratively selects patterns
based on their distinctiveness, i.e. if other patterns begin
with the same starting note or immediately after it. We
apply this method to various musical objects: a sequence
of notes, chords, or bars. In each case, we define differ-
ent relations on these musical objects and test the method
on musical examples to produce multiple hierarchical seg-
mentations. Given a segmentation, the relation that pro-
duces that segmentation then gives a possible explanation
for that segmentation.

1. INTRODUCTION

Segmentation is an important problem for music analysis,
performance, perception, and retrieval. It consists of di-
viding up a musical sequence into non-overlapping seg-
ments. Music segmentation has been studied in the au-
dio and symbolic domain. However, compared to work
on audio sources, there has been comparatively less work
on segmentation in the symbolic domain [1]. Segmen-
tation tasks with symbolic sources focus on the musical
score (i.e. the composition). Lerdahl et al. proposed the
Generative theory of tonal music (GTTM) [2], where they
started to model segmentations in a hierarchical way. This
was expanded to include aspects of harmonic tension in
Tonal Pitch Space [3]. Separate to this, computational ap-
proaches based on the GTTM rules were developed [4].
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Other algorithms, such as Chew’s Boundary Search Al-
gorithm, were based on tonality, using key boundaries to
create segmentations [5]. More recently, the Correlative
Matrix was used to first detect and classify patterns, then
determine the best segmentation using a score function [6].

Building on these prior work, we develop an algorithm
that generates hierarchical segmentations of a musical se-
quence. Our approach differs from traditional ones in that
it provides multiple hierarchical segmentations. These hi-
erarchical segmentations have the potential for explaining
different interpretations of the same music which lead to
several ways to segment a piece [7, 8]. This kind of ap-
proach thus has applications to expressive music perfor-
mance, and for explaining different perceptions of the same
piece.

The multiple hierarchical segmentations generate by our
algorithm are based on a chosen approximation. This ap-
proximation is defined by a relation between music objects
which generates the Adapted Correlative Matrix (ACM),
a data structure introduced in this paper to represent re-
peated patterns without overlaps. Our algorithm iteratively
selects repeated patterns based on a notion of their dis-
tinctiveness, that is to say if other repeated patterns be-
gin at the same time than the starting note (reinforcing the
beginning boundary) or immediately after it (reinforcing
the end boundary). The distinctiveness criterion exploits
the ACM’s structure by ensuring that the selected pattern
is compatible with other repeated patterns in a hierarchi-
cal way. Assuming that the beginning and the end of re-
peated patterns influence the segmentation of a musical se-
quence [9], our algorithm iteratively creates boundaries to
obtain hierarchical segmentations.

We apply this method to different musical genres and mu-
sic objects: a sequence of notes, chords and bars. In each
case, we define several relations between music objects
which yield different hierarchical segmentations. Finally,
we visualise the results obtained as a tree and discuss the
results. The remainder of this article is structured as fol-
lows. Section 2 generalises the existing definition of the
Correlative Matrix (2.1) and introduces the Adapted Cor-
relative Matrix (2.2) in order to work with non-overlapping
repeating patterns. Section 3 describes the proposed algo-
rithm which extracts meaningful information of the ACM
to generate hierarchical segmentations. Section 4 illus-
trates this method with various music objects, starting with
a sequence of notes (4.1), then a sequence of chords (4.2)
and also with a sequence of bars (4.3). Finally, Section 5
concludes this paper.
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Figure 1. Correlative matrix generated by the sequence
T = (7, 8, 9, 7, 8, 9, 7, 8, 9).

2. DEFINITION OF THE ADAPTED
CORRELATIVE MATRICES

2.1 Correlative Matrix

The Correlative Matrix was first introduced in music pro-
cessing in [10, 11] in order to detect exact repeating pat-
terns in a sequence of pitches. For a given sequence of
pitches (p1, . . . , pn) of length n, the first definition of the
correlative matrix was an n × n matrix, where the coef-
ficient of the ith row and the jth column is set to one if
pi = pj . Moreover, if pi = pj and pi+1 = pj+1, mean-
ing there is one or more repeated patterns of length two,
the coefficient of the i + 1th row and the j + 1th column
is set to two. By following this process, the value of each
coefficient of the correlative matrix indicates the length of
a repeating pattern. Compare to the self-similarity matrix
used in audio-based music segmentation [12], the correla-
tive matrix allow us to easily detect the longest repeating
patterns with the maximal coefficients. Later, the correla-
tive matrix has also been defined to allow for a sequence
of intervals or a combination of pitch contours and note
durations [6]. Therefore, the coefficient of the correlative
matrix was modified to compare if two elements of the se-
quence were equal (with regard to pitch) [10, 11] or below
a similarity threshold (with regard to pitch, contour and du-
ration) [6]. This can be generalised with a symmetric and
reflexive relation in order to capture a wide variety of mu-
sical objects, indeed the equality or the similarity threshold
are both symmetric and reflexive relations. We then gener-
alise the correlative matrix using the following definition:

Definition (Correlative Matrix): Let T = (t1, . . . , tn)
be a sequence and ≡ a relation on T which is reflexive
(∀ti ∈ T, ti ≡ ti) and symmetric (∀ti, tj ∈ T, ti ≡ tj ⇔
tj ≡ ti). The Correlative Matrix is an n× n matrix where
the coefficient Ci,j of the line i and the column j is defined
by:

Ci,j =

{
Ci−1,j−1 + 1, if ti ≡ tj ,
0, otherwise,

(1)

with the convention: Ci,j = 0 if i or j is negative.
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Figure 2. Adapted correlative matrix generated by the se-
quence T = (7, 8, 9, 7, 8, 9, 7, 8, 9).

For example, if T = (7, 8, 9, 7, 8, 9, 7, 8, 9) and ≡ is the
usual equality = on R (i.e. 7 ≡ 7 and 7 6≡ 8), the correla-
tive matrix would be as shown in Figure 1. The following
patterns are detected: (7, 8, 9, 7, 8, 9, 7, 8, 9),
(7, 8, 9, 7, 8, 9) and (7, 8, 9). The first two patterns are de-
tected in the sequence because overlaps are allowed. In or-
der to use the idea of the correlative matrix to identify con-
tiguous segmentations of T , we need to adapt the definition
of the correlative matrix to disallow overlaps. Granted, in
music, there exist cases where the last note of a segment
can be the first note of the next, but this is outside the scope
of this paper.

2.2 Adapted Correlative Matrix

Here, we define the Adapted Correlative Matrix where
nearly repeated patterns can be easily detected in a se-
quence T without overlaps.

Definition (Adapted Correlative Matrix): Let
T = (t1, . . . , tn) be a sequence and ≡ a relation on T
which is reflexive and symmetric. The Adapted Correla-
tive Matrix is an n×n matrix where the coefficient Ci,j of
the line i and the column j is defined by:

Ci,j =





Ci−1,j−1 + 1, if ti ≡ tj and

Ci−1,j−1 + 1 ≤ |i− j|,
1, if ti ≡ tj and

Ci−1,j−1 + 1 > |i− j|,
0, otherwise,

(2)

with the convention: Ci,j = 0 if i or j is negative.

When ti ≡ tj , the maximal length of the pattern without
overlaps is |i − j|, as with any longer pattern, the higher
index would be in both occurrences of the pattern. There-
fore, if Ci,j = |i − j| and ti+1 ≡ tj+1, instead of con-
tinuing to increment the value for Ci+1,j+1 and detecting
overlapping patterns, in the adapted correlative matrix we
restart at Ci+1,j+1 = 1.

The adapted correlative matrix for the sequence T =
(7, 8, 9, 7, 8, 9, 7, 8, 9) and ≡, the equality on T , is pre-
sented in Figure 2. The longest detected pattern is now:

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

339



(7, 8, 9). Unlike the case with the correlative matrix, the
pattern (7, 8, 9, 7, 8, 9) is not detected because this pattern
is repeated with overlapping.

The correlative matrix was successfully used to detect
nearly repeated patterns in a musical sequence, allowing
for overlaps. However, by defining the adapted correlative
matrix we can retain the fundamental idea of the correla-
tive matrix while avoiding overlaps, which is required for
the music segmentation task.

3. ALGORITHM FOR EXTRACTING
HIERARCHICAL SEGMENTATIONS USING THE

ADAPTED CORRELATIVE MATRIX

Let ACM be the Adapted Correlative Matrix of a sequence
T = (t1, . . . , tn) with ≡, a reflexive and symmetric rela-
tion. We describe here an algorithm that will extract data
from the ACM in order to identify segmentations of T in a
hierarchical way.

• Step 1: Select the longest repeating patterns
The longest repeating patterns are defined by all the
pairs (ti−Ci,j

, . . . , ti) and (tj−Ci,j
, . . . , tj), where

Ci,j = max(ACM) (the value of the maximal coef-
ficients of the ACM). Often there will be more than
one pattern tied for longest.

• Step 2: Select the most distinct pair
Among all the detected pairs from step 1, the most
distinct one is the one that maximises the number of
repeating patterns that begin at the same time than
the starting note (reinforcing the beginning bound-
ary) or immediately after the two patterns of the pair
(reinforcing the ending boundary). That is to say, we
choose the pair that maximises the number of coeffi-
cients equal to 1 in the columns i−Ci,j and j−Ci,j
as illustrated in Figure 3(a) (patterns that start at the
same times as the pair) and in the columns i+1 and
j+1 illustrated in Figure 3(b) (patterns that start just
after the pair).

• Step 3: Remove the most distinct pairs from the
ACM
We then update the ACM by removing the most dis-
tinct pair and add boundaries to the segmentation
at the beginning and end of the most distinct pat-
terns. All coefficients of the most distinct pair be-
come equal to 0 except for the first coefficient which
remains equal to 1 (this will be useful in step 2 for
future iterations). Moreover, in order to have hier-
archical segmentations, if a coefficient Ci′,j′ > 1 is
on the same column or line as the beginning or the
end of a pattern of the most distinct pair, this coeffi-
cient will be equal to 1 and Ci′+k,j′+k will be k + 1
while Ci′+k,j′+k > Ci′+k−1,j′+k−1, which is illus-
trated in Figure 4(d). With this, a pattern that con-
tains a boundary will be divided in two. This creates
a boundary that will remain for the next segmenta-
tions and we will thus obtain hierarchical segmenta-
tions. Finally, we go back to step 1 until there is no
coefficient greater than 1 in the ACM.

(a) Detection of patterns that start
at the same time as the pair.

(b) Detection of patterns that start
just after the end of the pair.

Figure 3. Criteria for step 2 of the algorithm to choose the
most distinct pair of patterns among the longest ones.

Let us take an example with the sequence of real numbers

T = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3), (3)

with ≡ as the equality on T . The first loop of the algo-
rithm is illustrated in Figure 4. The ACM is represented in
Figure 4(a). The maximal coefficient is 8, and two pairs of
longest repeating patterns are detected. The pair that max-
imises the number of patterns that start at the same time
and right after the end of the pair is shown in Figure 4(c).
Finally, this pair is removed and boundaries are created in
Figure 4(d).

A tree visualisation can be computed to visualize hier-
archical segmentations. By representing the length of the
detected patterns (the most distinct pairs), the tree visual-
isation of the previous sequence T (with ≡ the equality)
is shown in Figure 5. In this case, our algorithm detects
five segmentations that are hierarchically structured. The
first segmentation is the sequence itself, so the length of T
(here 21) is represented at the top of the tree. The last seg-
mentation is: (t1)(t2) . . . (tn) where each (ti) is of length
1, represented by the bottom line 1/1/ . . . /1 of the tree.
The three other detected segmentations of T are:

• (1,2,3,4,5),(1,2,3,4,5,1,2,3),(1,2,3,4,5,1,2,3)
represented by the line 5/8/8;

• (1,2,3,4,5),(1,2,3,4,5),(1,2,3),(1,2,3,4,5),(1,2,3)
represented by the line 5/5/3/5/3; and,

• (1,2,3),(4,5),(1,2,3),(4,5),(1,2,3),(1,2,3),(4,5),(1,2,3)
represented by the line 3/2/3/2/3/3/2/3.

Hierarchical segmentations of musical notes has been stud-
ied by Lerdahl and Jackendoff based on different rules on
the proximity between notes, repetitions and strong/weak
accent of the rhythm in the GTTM [2]. They also repre-
sented hierarchical segmentations using a tree visualiza-
tion. However, the method developed in this paper handles
music objects other than notes and is able to propose multi-
ple hierarchical segmentations based on the chosen relation
between these objects.
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(a) Step 1: Two pairs of patterns of
length 8 are detected in the ACM.
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(b) Step 2: For the first pair, 10
patterns start at the same time and
1 pattern starts after the end of the
pair (total: 10+1=11).

1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3

1

2

3

4

5

1

2

3

4

5

1

2

3

1

2

3

4

5

1

2

3

1 1 1 1 1

1 2 2 2 2

1 3 3 3 3

1 4 4

1 5 5

1 1 1 1 6

2 1 2 2 7

3 1 3 3 8

4 1 4

5 1 5

1 1 1 1 6

2 2 1 2 7

3 3 1 3 8

1 1 1 1 1

2 2 2 1 2

3 3 3 1 3

4 4 1

5 5 1

1 6 6 1 1

2 7 7 2 1

3 8 8 3 1

(c) Step 2: For the second pair, 9
patterns start at the same time and
5 patterns start after the end of the
pair (total: 9+5=14). This is the
most distinct pair.
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(d) Step 3: The most distinct pair
(in red) is removed and boundaries
are created at the orange columns
and lines (changes in green).

Figure 4. First loop of the algorithm illustrated, these three
steps are executed until the coefficients of the ACM are
only 0 or 1.

4. APPLICATIONS TO SYMBOLIC MUSIC
REPRESENTATIONS

The algorithm presented in Section 3 generates hierarchi-
cal segmentations of a sequence with a relation which char-
acterises the chosen approximation for detecting when two
patterns are nearly the same. In this section, we apply this
algorithm to various symbolic music representations: a se-
quence of notes (Section 4.1), a sequence of chords (Sec-
tion 4.2) and a sequence of bars (Section 4.3). In each case,
we propose several relations which lead to multiple hierar-
chical segmentations and we illustrate the results using tree
visualisations.

4.1 When T Is a Sequence of Notes

Let T be a sequence of musical notes. There are many
ways to define a musical note. For example, a note can be
defined as a triplet (p, o, d), as in [13], where p is the pitch,
o the onset and d the duration of the note. This can also be
enriched to five parameters (o, p,mp, d, v) [14], wheremp
is the morphetic pitch [15] and v the voice where the note
occurs. It is also possible to add other parameters such as
the velocity, general pitch interval representation [16], etc.
Among all the different parameters, we first choose here to
define a note by its interval ∆pi = pi+1 − pi (pi being the
pitch of the ith note), then we have T = (∆p1, . . . ,∆pn).

For example, let T be the sequence of intervals of the

Figure 5. Tree visualisation of the five segmentations in a
hierarchical way of the sequence from Equation 3.

first 32 intervals of the Prelude in C major from the Well-
tempered Clavier by Johann Sebastian Bach (BWV 846).
The score is represented in Figure 6. In this case, T =
(4, 3, 5, ..., 5, 3,−18). A key advantage of this representa-
tion is that it is invariant to transpositions.

    

                  













Figure 6. First 32 intervals of J. S. Bach’s Prelude in C
major, BWV846.

There are also different choices for the relation ≡, be-
cause they are many ways to define similarity between in-
tervals [17]. Here we will use a strict interval equality [18],
a similarity threshold [6] and an ºup/downº relation which
defines the melodic contour [19].

Let ∆pi and ∆pj be two intervals of T , we can then de-
fine several symmetric and reflexive relations ≡ for T .

• Strict Intervals Relation:

∆pi ≡st ∆pj ⇔ ∆pi = ∆pj . (4)

• Similarity Threshold Intervals Relation:

∆pi ≡sim ∆pj ⇔ |∆pi −∆pj | ≤ λ. (5)

• Melodic Contour Relation:

∆pi ≡mc ∆pj ⇔ sgn(∆pi) = sgn(∆pj), (6)

where sgn is the sign function defined by sgn(x) =
1,−1 or 0 if x > 0, x < 0 or x = 0.

The results of our algorithm for these different relations
are illustrated in Figure 7 (the strict interval relation, the
similarity threshold intervals relation for λ = 1, 3, 7 and
the melodic contour relation). As before, the different hier-
archical segmentations are represented as trees. The ACMs
are also represented in Figure 8 for these different rela-
tions. It is interesting to note that the less strict the relation
is, the more ªregularº the tree becomes, until we get the
melodic contour relation with very regular and symmetri-
cal segmentations.
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(a) Tree based on the Strict Intervals Relation.

(b) Tree based on the Similarity Threshold Intervals Relation for
λ = 1.

(c) Tree based on the Similarity Threshold Intervals Relation for
λ = 3.

(d) Tree based on the Similarity Threshold Intervals Relation for
λ = 7.

(e) Tree based on the Melodic Contour Relation.

Figure 7. Different trees of the same sequence of notes T
(BWV 846) when the relation between intervals changes.
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(b) ACM based on the Similar-
ity Threshold Intervals Relation for
λ = 1.
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(c) ACM based on the Similar-
ity Threshold Intervals Relation for
λ = 3.
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(d) ACM based on the Similar-
ity Threshold Intervals Relation for
λ = 7.
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(e) ACM based on the Melodic
Contour Relation.

Figure 8. Different ACMs of the same sequence of notes T
(BWV 846) when the relation between intervals changes.

In order to work with the durations of the notes, we also
applied the algorithm to a sequence of notes defined by
x = (∆p, l) where l is the length of the note. We defined
the relation between two notes xi = (∆pi, li) and xj =
(∆pj , lj) by:

xi ≡ xj ⇔ |∆pi −∆pj | ≤ 3 and li = lj . (7)

The results of the algorithm is illustrated in Figure 9 with
the introduction of Chopin’s Mazurka Op.7 No.1. The
different colors represent different segmentations. These
nearly repeated patterns could also be interesting for per-
formance. For example, the identified patterns could be
ones that might be highlighted through prosodic variations
like dynamic accents; because the patterns are repeated and
distinctive, they could also sound perceptually plausible.

4.2 When T Is a Sequence of Chords

Let T = (c1, . . . , cn) be a sequence of chords where chords
of root C are labelled from the set Ĉ = {C, C6, C7, C7

M ,
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Figure 9. Detected hierarchical segmentations of the melody in Chopin’s Mazurka Op.7 No.1 as marked in the score.

Cm, C6
m, C7

m, CM7
m ,C+,C+7,Co,Co7,Cù} and similarly for

other roots. We could define the relation between two
chords by strict equality (ci ≡st cj ⇔ ci = cj) to have
a strong constraint between chords, but this runs the risk of
being overly sensitive to small ornamental changes.

Let us instead define the ChordType function of a chord
ci ∈ Ĉ (and similarly for other roots) by:

ChordType(ci) =





Cmaj if ci = C,C6,C7,C7
M ,

Cmin if ci = Cm,C
6
m,C

7
m,C

M7
m ,

Caug if ci = C+,C+7, and

Cdim if ci = Co,Co7,Cù.
(8)

For example ChordType(C7
m) = Cmin or

ChordType(F♯7) = F♯maj . Let ci and cj be two chords
of T , we can then define the ChordType Relation≡ct on T
by:

ci ≡ct cj ⇔ ChordType(ci) = ChordType(cj). (9)

Some other relations, which we will not develop here, could
include threshold relations based on the distance of chords
within the Tonnetz [20] or one of the parsimonious rela-
tions defined by Douthett and Steinbach [21].

Let us take as example the song In My Life from The Bea-
tles, released in 1965. All the songs from The Beatles are
annotated at http://isophonics.net with: struc-
tural segmentation, key changes, chords, and beats. Ac-
cording to this database, the chords of the song are: T = (
A, E, A, E, A, E, Fm♯, A7, D, Dm, A, A, E, Fm♯, A7, D,
Dm, A, Fm♯, D, G, A, Fm♯, B, Dm, A, A, E, A, E, Fm♯,
A7, D, Dm, A, A, E, Fm♯, A7, D, Dm, A, Fm♯, D, G, A,
Fm♯, B, Dm, A, A, E, Fm♯, A7, D, Dm, A, A, E, Fm♯, A7,
D, Dm, A, Fm♯, D, G, A, Fm♯, B, Dm, A, A, E, Dm, A, E,
A ).

The results of the algorithm applied to this sequence T
with the relation ≡ct defined in (9) are represented in Fig-
ure 10. We can compare the hierarchical segmentations ob-
tained by our algorithm with the annotated structure from
the database represented in Figure 11.

We can see that the second line (2/2/22/2/22/22/6) con-
tains three main sections of length 22. Each of these sec-
tions corresponds to Verse/Bridge and the remaining
sections of length 2 and 6 map to the Intro, Half-intro

Figure 10. Hierarchical segmentations of the Beatles’
In My Life based on the chord sequence from http:

//isophonics.net.

0.000 0.416 : silence

0.416 9.616 : intro

9.616 28.302 : verse

28.302 46.719 : bridge

46.719 51.438 : half-intro

51.438 70.206 : verse

70.206 88.700 : bridge

88.700 107.253 : verse_(instrumental)

107.253 125.659 : bridge

125.659 143.715 : outro

143.715 147.973 : silence

Figure 11. Annotated segmentation of In My Life from The
Beatles.

and Outro. In the third line, i.e. (2/2/7/7/8/2/7/7/8/7/7/8/6),
the Verse section is subdivided into two sequences of
7 chords and the Bridge is a sequence of 8 chords.

4.3 When T Is a Sequence of Bars

Let T = (b1, . . . , bn) be a sequence of musical bars. Each
bar contains a set of notes (the number of notes can be
different from one bar to the next). One way to define a
relation ≡ between two bars bi and bj is to consider the
number of common notes between bi and bj . For example,
bi and bj can be considered in relation if they share at least
50% of their notes, that is to say:

bi ≡ bj ⇔
2|bi ∩ bj |
|bi|+ |bj |

≥ 0.50, (10)

where |bi| is equal to the number of notes of the bar bi.
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With this definition, we compute the hierarchical segmen-
tations of the song as in the previous section i.e.: In My Life
from the Beatles. The results are represented in Figure 12.
The results are similar to Figure 10 with three main sec-
tions of equal length for the second line which correspond
to the Verse/Bridge. The Intro, Half-intro and
Outro are also represented on this line. Note that some
bars contain more than one chord, e.g. in the Verse and
Outro, which is why there are more chords than bars be-
tween Figure 10 and Figure 12.

Figure 12. Hierarchical segmentations of In My Life from
The Beatles based on a sequence of bars.

It is possible to change the relation≡ between two bars bi
and bj by adapting the 50% threshold. Also, we can deter-
mine the musical chord or key of a bar using a key-finding
function, Key, which can be based on the Krumhansl-
Schmuckler Key-Finding Algorithm [22] or the Spiral Ar-
ray Model [23]. Then, we can define the Key (similar for
Chord) Relation ≡key between two bars bi and bj by:

bi ≡key bj ⇔ Key(bi) = Key(bj). (11)

In this section, we have demonstrated the usefulness of
the proposed method with various music objects from sym-
bolic music representations. Several such relations that
are musically pertinent have also been presented, but many
more can be conceived, including relations that would ap-
ply to audio-based objects, for instance, between two frames
of a spectrogram. By adjusting which relation to focus on,
it is possible to access a much broader meaning of what
constitutes a repeated pattern, allowing this approach to be
applied to music genres which do not typically exhibit the
strong repetitions that are usually required, while preserv-
ing the algorithm’s lightweight advantage.

5. CONCLUSION

In this paper, we have further expanded the generalisation
of Correlative Matrices [11] that began with their paramet-
ric extension [6] to accept a wide family of relations that
define the degree of nearness required to be considered a
repeat of a pattern. In order to avoid overlapping patterns,
we have introduced the Adapted Correlative Matrix, a data
structure which represents the repeated patterns of a musi-
cal sequence without overlaps. We then defined the novel
distinctiveness criterion, which characterises the number
of repeated patterns that starts at the same time or at the
end of a pattern, and proposed an algorithm that iteratively
selects patterns based on their distinctiveness to generate
hierarchical segmentations.

The representation and algorithms proposed are highly
efficient and can scale readily to very large datasets. The

examples have shown the versatility of this theory. How-
ever, at the moment, human knowledge or feedback are
still very important in order to pick a representation and
relation that is appropriate for the piece and the desired
outcome. We expect that this representation would be a
powerful tool for machine learning methods that can tailor
relation operators to specific music input and find explana-
tory models for music segmentation.
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