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Enforcing the consensus between Trajectory Optimization
and Policy Learning for precise robot control

Quentin Le Lidec*,1 Wilson Jallet1,2 Ivan Laptev1 Cordelia Schmid1 Justin Carpentier1

Abstract— Reinforcement learning (RL) and trajectory opti-
mization (TO) present strong complementary advantages. On
one hand, RL approaches are able to learn global control policies
directly from data, but generally require large sample sizes to
properly converge towards feasible policies. On the other hand,
TO methods are able to exploit gradient-based information
extracted from simulators to quickly converge towards a locally
optimal control trajectory which is only valid within the vicinity
of the solution. Over the past decade, several approaches have
aimed to adequately combine the two classes of methods in
order to obtain the best of both worlds. Following on from
this line of research, we propose several improvements on top
of these approaches to learn global control policies quicker,
notably by leveraging sensitivity information stemming from
TO methods via Sobolev learning, and Augmented Lagrangian
(AL) techniques to enforce the consensus between TO and policy
learning. We evaluate the benefits of these improvements on
various classical tasks in robotics through comparison with
existing approaches in the literature.

I. INTRODUCTION

BY leveraging derivative information from the dynamics
and costs, optimal control (OC) algorithms [1], [2], [3],

[4] efficiently compute local controllers. Model Predictive
Control (MPC) [5] aims at retrieving a local controller with
state feedback through online re-planning. However, current
algorithms remain computationally too expensive to be run at
high frequencies, are sensible to local minima and integration
of information from sensors (e.g. force, vision) is technically
difficult. This limits both their real-world capabilities and
the practicality of deployment on complex settings requiring
various sensor modalities. For these reasons, control policies
learned directly from data are appealing as they offer the
possibility to perform sensor-fusion and executed at very high
frequencies.

Reinforcement learning (RL) [6] is the prevailing paradigm
when it comes to learning policies directly from observations.
In RL, the physical dynamics are usually considered as
unknown and classical algorithms [7] rely on stochastic
policies to build 0th-order gradient estimators. Although they
are unbiased, the high variance of such estimators make
them very sample-inefficient. Actor critic approaches [8]
combine ideas from policy gradient and approximate dynamic
programming by using an estimate of the Q function to
reduce variance of policy gradient algorithms. This improves
the sample efficiency but often at the cost of less stable
training, and more advanced strategies, e.g. Proximal Policy
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Optimization (PPO) [9] or Soft Actor-Critic (SAC) [10], are
often focused on regaining more stability. Eventually, even on
problems easily solved via standard model-based approaches
such as LQR, model-free algorithms exhibit several limitations
and simpler rather than more complex methods may perform
better [11].

In robotics, RL is never truly model-free, as samples are
often generated by simulators which are actually based on
models of physics. Therefore, we propose to embrace models
when they are available, and, by using gradient information,
to move from 0th-order to 1st-order methods with superlinear
convergence properties. Such an approach is made possible by
the recent emergence of differentiable physics engines, relying
on derivatives of rigid body algorithms [12] and frictional
contacts [13], [14]. A second key ingredient for model-
based approaches is access to efficient numerical solvers
for trajectory optimization [4], [15]. Indeed, specialized OC
algorithms exploit physical models, their derivatives, and the
inherent temporal structure of the problem via the Bellman
equation (or Pontryagin’s principle). In particular, quasi-
Newton (e.g., iterative Linear Quadratic Regulator (iLQR) [1],
[3]) or second-order methods (e.g., Differential Dynamic
Programming (DDP) [2]), lead to improved convergence rates.

For complex scenarios, OC is often too slow to be run
online, especially when it includes constraints on the system.
Yet, it remains attractive to draw benefits from its capabilities
offline; typically, for training policies. Following this path,
guided policy search (GPS) [16], [17] aims at combining
the strengths of OC and policy learning. Closer to our work,
[18] considers known deterministic dynamics and uses an
ADMM framework to embed the policy learning problem
within the OC formulation. The dual update from ADMM
allows to automatically and gradually reach a consensus
between the learned policy and the local controllers that
OC yields. However, they relax the agreement constraint
between RL and OC, which results in shifted, thus degraded,
solutions. Additionally, they further exploit the feedback gains
from trajectory optimization in order to supervise the first
order derivatives of the policy. This technique, also known
as Sobolev training [19], [20], regularizes the training and
improves generalization and thus the stability of the control
policy. In this work, we extend it by using a stochastic
variant [20] to boost computational efficiency. Finally, a
more recent work [21] improves rollouts of the policy by
performing approximate Newton steps in the trajectory space.
Here we establish some links between such an approach and
OC, which in turn allows us to set the stage for a general
formulation incorporating constraints while resulting in more



TABLE I
CHARACTERISTICS OF VARIOUS POLICY LEARNING ALGORITHMS.

Precise Efficient Constraints Sobolev Model-free

RL ✓
DPL [18] ✓ ✓
PODS [21] ✓ ✓
AL (Ours) ✓ ✓ ✓ ✓
PDDP (Ours) ✓ ✓ ✓ ✓

efficient algorithms. Table I summarizes some characteristics
of our approach and the related works, i.e. the precision of the
learned policy (Precision), the number of samples required to
converge (Efficient), the ability to handle physical constraints
(Constraints) or to leverage higher order information (Sobolev)
and the need for a physical model (Model-free).

In this paper, we first present a general formulation,
including physical and geometrical constraints, for policy
learning which lays the ground for a better interplay between
OC and policy learning (Sec. II). In Sec. III, we propose a
first algorithm based on a projected descent and detail how
stochastic Sobolev learning can be leveraged to provide a
computationally efficient higher-order supervision of policy
training. A second variation based on Augmented Lagrangian
(AL) techniques is introduced in Sec. IV to automatically
and precisely reach a consensus between the policy and the
trajectory optimization oracle. To properly account for the
lack of consensus at the beginning of the learning process, we
propose to add multiple shooting component which allows
to sensibly reduce the computational timings of learning
a control policy. Finally, in Sec. V, the influence of each
component of the approach is evaluated separately and we
validate the final algorithms on a set of standard robotics
tasks.

II. INTERPLAY BETWEEN POLICY LEARNING AND
TRAJECTORY OPTIMIZATION

We consider deterministic and known system dynamics

xt+1 = f(xt, ut) (1a)
xt ∈ X and ut ∈ U (1b)

while other parameters of the optimal control problem (OCP)
are randomly distributed. These parameters, denoted by β,
include the initial condition of the problem x0 ∈ X , as well
as other parameters (desired terminal state or end-effector
position); they follow a random distribution P . The set
U = [umin, umax] contains the admissible control inputs, of
dimension nu, while X refers to the set of feasible states also
accounting for obstacles. The deterministic assumption on the
dynamics is reasonable, as a wide range of systems (robotic
arms, manipulators, quadrupeds, drones) can accurately be de-
scribed without stochasticity. We denote u = (u0, . . . , uT−1)
the sequence of controls, and x = (x0, . . . , xT ) the state
sequence. The total cost associated with a given control
sequence u is:

R(β;u) =

T−1∑
t=0

ℓt(xt, ut;β) + ℓT (xT ;β) (2)

Unlike previous works in the literature [18], [21], we also
account in this work for state and control constraints in
Eq. (1b) directly in the TO problems. Experiments from
Sec. V notably demonstrate how this consideration of the
constraints substantially improves the precision and the
stability of the resulting policy.

The goal of this paper is to learn closed-loop control
policies π : X → U which approximately minimizes the
trajectory cost. The policy π is constrained to lie in a set of
parameterized policies Π; typically, we will consider neural
network policies with two hidden layers of 256 units each.
The policy parameters are denoted by θ and lie in a set Θ.
The policy space is thus

Π = {πθ : θ ∈ Θ}.

The activation functions are ReLU except for the final layer
which is activated by a hyperbolic tangent so that the output is
restricted to [umin, umax]. We denote by R, the cost function
and J(β;πθ) the policy cost, which is the trajectory cost with
controls given by ut = πθ(xt):

J(β;πθ) = R (β;πθ(x0), . . . , πθ(xT−1))

with x0 = x0, xt+1 = f(xt, πθ(xt))
(3)

Our goal is to solve the policy optimization problem:

min
θ∈Θ

Eβ [J(β;πθ))] (4)

where Eβ [·] is the expectation.
To do so, we will follow the path initiated in [18], [22] and

adopt a constrained formulation linking together trajectory
optimization and policy optimization:

min
θ,u

Eβ [R(β;u)] (5a)

s.t. ∀t ut = πθ(xt), a.s. (5b)

where we now optimize over a distribution of control
sequences u, and x = (xt)t is defined by (1a). The constraint
enforces that the controls and the policy are consistent on
almost all states xt reached by randomization of β.

III. ALTERNATING BETWEEN OC AND SUPERVISED
LEARNING: A PROJECTED DDP APPROACH

Projected DDP algorithm. A classical way of solving
a constrained optimization problem consists in alternating
between making a step on the unconstrained problem and
projecting the new iterate on the constraints (e.g., projected
gradient algorithms). In this spirit, (5) can be solved by
optimizing the control u via trajectory optimization before
projecting the new trajectory on the set of trajectories
obtainable through Π. Discarding the constraints, the problem
(5) can be solved by approximating the expectation with a
finite sum R̂(u) obtained by sampling N instances of the
problem β(i) ∼ P:

R̂(U) =
1

N

N∑
i=1

R(β(i);u(i)). (6)



Algorithm 1: Projected DDP descent (PDDP)
Input: Distribution on the parameters β ∼ P , model

for the policy: πθ ∈ Π
Output: Optimal policy π⋆

θ

1 for k = 1 to M do
2 Uk+1,0 ← Rollout(πθk); // Initial guess

3 Uk+1 ← argminU R̂(U); // OC (with guess)

// Supervised learning (can also use d̂2)

4 θk+1 ← argminθ d̂(θ,U
k+1);

5 end

where U = (u(1), . . . ,u(N)) is the entire set of control
sequences. The objective above is separable, hence each u(i)

can be optimized separately in parallel.
The sampled problems are then optimized via discrete-time

trajectory optimization methods such as Differential Dynamic
Programming (DDP) [2] or its variant iLQR [3], using a
rollout originating from the learned policy πθ as a warm-start.
Then, the local control trajectories (u(i))i are projected onto
an element of Π in the least-squares sense. The projection
problem is equivalent to the following supervised learning
problem:

min
θ∈Θ

d̂(θ,U) =

N∑
i=1

T−1∑
t=0

1

2

∥∥∥u(i)
t − πθ

(
x
(i)
t

)∥∥∥2
2
. (7)

which is solved using classical stochastic mini-batch gradient
algorithms such as Adam [23]. Alternating between these two
operations results in Alg. 1 which we call Projected DDP
(PDDP).

Such an approach encompasses the one proposed in [21]
where Gauss-Newton (GN) steps are successively projected.
By establishing an interplay with OC, here we rather perform
a DDP step which is just a more efficient way to compute a
GN step that also handles the constraints from (1). Previous
works [18], [21] often ignore these constraints during the
trajectory optimization phase. Typically, the box constraint
on the control is rather lifted to the policy space via a
tanh activation function on the last layer. This discrepancy
can be fatal as trajectories obtained from OC might not
be reproducible by the neural network and, thus, could
cause divergence of the combined approach. Experiments
in Sec. V demonstrate how crucial this specificity of our
methods is to ensure convergence. Another obvious advantage
is the possibility to consider more complex tasks involving
geometric constraints or dynamic constraints on the systems
to control (e.g., obstacles or joint limits).

Stochastic Sobolev learning. If the constraint from (5)
enforces the output of the learned policy to match the local
controllers, this should also be true for higher order derivatives.
This idea, exploited in [18], refers to the concept of Sobolev
training [20]. Second-order methods such as DDP additionally
yield local feedback gains Kt around the optimized trajectory.
These gains can be used for stabilization of the controlled
system around the local optimum, as [24] has shown on

real-world systems. For policy learning, we can make use of
these gains to regularize the policy πθ during the supervised
learning phase (Alg. 1, line 4), leading to the following
supervised learning problem:

min
θ∈Θ

d̂2(θ,U) = d̂(θ,U) +
1

2

∑
i,t

∥∥∥∥K(i)
t −

∂πθ

∂x
(x

(i)
t )

∥∥∥∥2
2

(8)

However, getting the second order derivative ∂xθπθ, as in
[18], is computationally expensive as it requires to perform
multiple backpropagation operations. For this reason, we
propose to use a stochastic version of Sobolev learning
[20] which is done by matching projections of K and
∂xπθ on control directions v(i) randomly sampled on the
unit sphere. The regularization term from (8) becomes
1
2

∑
i,t ∥(v(i))⊤K

(i)
t − ∂x

(
v(i)

⊤
πθ(x

(i)
t )

)
∥22 and this greatly

improves computational efficiency by avoiding backpropagat-
ing several times across the neural network.

IV. GRADUALLY ENFORCING A CONSENSUS: AN
AUGMENTED LAGRANGIAN APPROACH

The Lagrangian function associated to the constrained
formulation (5) is given by:

L(θ,u,λ) = Eβ

[
R(β;u) +

T−1∑
t=0

λ⊤
t (ut − πθ(xt))

]
(9)

where λ = (λt)0≤t≤T now designate random variables which
are the Lagrange multipliers. We can define the corresponding
augmented Lagrangian by:

Lµ
A(θ,u,λ) = L(θ,u,λ) + Eβ

[
T−1∑
t=0

µt

2
∥ut − πθ(xt)∥2

]
(10)

ADMM algorithm. We first consider that a set of sample pa-
rameters (β(i)) is fixed during training. Indeed, the Lagrange
multipliers are intrinsically linked to the sampled values of β
and thus, re-sampling them would require to update λ without
losing progress on the optimization, which is a difficult task
left as future work. This differs from Alg. 1 which can be
naturally run online. Thus, we consider the following sampled
version of the constrained problem (5):

min
θ,U

1

N

N∑
i=1

R(β(i);u(i)) (11a)

s.t. u
(i)
t = πθ(x

(i)
t ), ∀t, ∀i ∈ J1, NK (11b)

where (β(i))1≤i≤N . The classical and augmented Lagrangians
for this sampled variant are respectivily given by:

L̂(θ,U ,Λ) = R̂(U) +
∑
i,t

(λ
(i)
t )⊤(u

(i)
t − πθ(x

(i)
t )), (12)

L̂µ
A(θ,U ,Λ) = L̂(θ,U ,Λ) +

∑
i,t

µt

2

∥∥u(i)
t − πθ(x

(i)
t )

∥∥2,
(13)

where Λ = (λ(1), . . . ,λ(N)) are the Lagrange multipliers for
each constraint block {u(i)

t = πθ(x
(i)
t )}t. Both functions are

separable with respect to the entry u(i).



Algorithm 2: Policy learning via ADMM (PLAL)
Input: Distribution on the parameters β ∼ P , model

for the policy: πθ ∈ Π
Output: Optimal policy πθ⋆

1 for k = 1 to M do
2 Uk+1 ← argminu L̂

µ
A(θ

k,U ,Λk);
// Supervised learning

3 θk+1 ← argminθ L̂
µ
A(θ,U

k+1,Λk);
// Dual update

4 Λk+1 ← (λ
(i)
t + µ(u

(i)
t − πθ(x

(i)
t )))t,i;

5 end

The problem is solved using the alternating direction
method of multipliers (ADMM) [25], as described in Alg. 2
which we call PLAL. The algorithm alternatively minimizes
Lµ
A w.r.t. the primal variables U and θ, before updating the

dual variable Λ through a simple dual ascent step. As done in
Sec. III, minimization w.r.t. each u(i) is done using a DDP-
type algorithm such as FDDP [4], while the minimization
w.r.t. θ is performed using a classical stochastic optimization
algorithm [23]. If [18] also uses ADMM, the consensus is
approximated via a quadratic penalty term, while in this work
we enforce it with a hard constraint (11b). This results in
more stable and precise solutions as shown in Sec. V.

Contrary to Alg. 1, the OC (Alg. 2, line 2) and super-
vised learning (Alg. 2, line 3) phases are now linked via
the Lagrange multipliers Λ. Indeed, the additional terms
appearing in (13) enforces the demonstrations from OC to
be adapted to the current capabilities of the policy, while the
dual update (Alg. 2, line 4) gradually leads to an agreement
between the local controllers from OC and the policy. The
previously introduced stochastic Sobolev term can naturally
be integrated in the approach as a regularization of the
learning phase (Alg. 2, line 3), and the algorithm is then
interpretable as an occurrence of Global Variable Consensus
with Regularization [25].

Multiple shooting formulation. Due to the augmented
Lagrangian terms, the trajectory optimization phase (Alg. 2,
line 2) requires to optimize the state x through the neural
network policy and thus involves the costly computation of the
Jacobian ∂xπθ. Inspired by [18], we propose to decouple the
state variables of the supervised learning and OC problems,
in a way similar to what is done in multiple shooting [26].
To do so, two state variables are introduced (1X = (1x(i))i
and 2X = (2x(i))i):

min
θ,U ,1X,2X

1

N

N∑
i=1

R(β(i); 1x(i),u(i)) (14a)

s.t. ∀t, ∀i, u
(i)
t = πθ(

2x
(i)
t ) (14b)

2X = 1X (14c)

The corresponding Augmented Lagrangian is:

Lµ
A(θ,

1X, 2X,U ,Λ,Γ) =
1

N

N∑
i=1

[
R(β(i); 1x(i),u(i))

+

T−1∑
t=0

µ
(i)
t

2

∥∥∥∥∥u(i)
t +

λ
(i)
t

µ
(i)
t

− πθ(
2x

(i)
t )

∥∥∥∥∥
2

+
µ
(i)
t

2

∥∥∥∥∥1x(i)
t +

γ
(i)
t

µ
(i)
t

− 2x
(i)
t

∥∥∥∥∥
2

− 1

2µ
(i)
t

∥∥∥λ(i)
t

∥∥∥2 − 1

2µ
(i)
t

∥∥∥γ(i)
t

∥∥∥2 ]
(15)

and the update rule for γ is:

γ
(i)
t ← γ

(i)
t + µ

(i)
t (1x

(i)
t − 2x

(i)
t ) (16)

By decoupling the state variables between the control and
learning problems, we avoid the need of computing the
Jacobian of πθ when doing optimal control, lifting the burden
to a simple dual update (16).

V. EXPERIMENTS

Our implementation uses Pinocchio [27] and Crocoddyl [4]
for defining and solving OCPs, and relies on PyTorch [28]
for learning the neural network. We also propose our own
implementations of PODS [21] and DPL [18] as they were not
provided along with the original papers. For RL algorithms,
i.e. PPO [9] and SAC [10], we use implementations provided
by [29]. Our code is open-source and will be publicly released
upon publication acceptance. Every experiment was run on
a single laptop without GPUs and took about 5 minutes to
train policies, even on complex systems such as UR5.

The first problem we consider is a constrained LQR where
the control inputs are forced to stay into a box. This is a
typical convex optimization problem already very well-studied
in the control community. This control problem already high-
lights different characteristics and limitations of approaches
under consideration. The second set of experiments are related
to robotics systems of increasing complexity: an inverted
simple pendulum, a double pendulum and an UR5 robotic
arm. These problems are challenging as their dynamics are
highly non-linear and the considered targets are unstable. In
addition, we consider non-linear cost functions of the form:

ℓ(xt, ut) =
1

2
∥p(xt)− p∥2Wp

+
1

2
∥ut∥2Wu

+
1

2
∥xt∥2Wx

where p corresponds to the position of the end-effector which
should reach a desired position p and Wx,Wu,Wp are given
weight matrices. On robot systems, we only penalize the joint
velocities in the state penalty term ∥xt∥2Wx

.

A. Ablation study: constrained LQR and inverted pendulum

Model-based vs model-free. Fig. 3 compares model-based
algorithms, i.e. Algs. 1,2, DPL and PODS, to the well-
established deep RL algorithms PPO and SAC, on a con-
strained LQR problem. It appears that model-based ap-



Fig. 1. Learned policy on UR5. After training, a rollout of the policy leads to precise control on a test problem.
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Fig. 2. Precision of the policy. Model-based Alg. 1 (left) leads to policies
more precise than RL algorithms such as PPO (right).
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Fig. 3. Sample efficiency: constrained LQR. Model-based methods
outperform model-free RL on tasks with linear dynamics and a
stable target. We also evaluate the impact Sobolev training (+S) and
multiple shooting (+M) or removing the constraint handling (-C).

proaches are an order of magnitude more efficient than model-
free algorithms. Fig. 2 also demonstrates how our approach
is able to reach precise solutions while RL algorithms
are limited by the inherent noise from 0th-order gradients
estimates. Among already existing model-based algorithms,
PODS seems to dominate DPL both in terms of precision
and efficiency. Mainly, DPL suffers from the approximated
formulation which shifts the initial problem and hinders
progress towards the solution even on the constrained LQR.

Constrained vs unconstrained OC. If including the trajec-
tory constraints (1b) in the trajectory optimization phase al-
lows to slightly improve results on instances of the constrained
LQR (Fig. 3), the results appear even more pronounced on
the inverted pendulum problem (Fig. 4). In particular, we
observe a significant performance drop when removing this
component (see PDDP v. PODS or PLAL+S v. PLAL+S-C on
Fig. 4). Intuitively, as the policy tries to mimic an unreachable
control from the OC phase, it deteriorates the final solution,
resulting in a significant gap in performance.

Multiple shooting. As mentioned in Sec. IV, multiple
shooting allows to reduce the computational burden of the
TO phase without modifying the final solution (Fig. 3). In
practice, we observe that the OC phase of PLAL+M is 5
times faster than the one of PLAL. However, the results from
Fig. 3,4 also exhibit how multiple shooting can require more
simulator calls to learn a good policy (see PLAL+M v. PLAL
on Fig. 3, and PLAL+M+S v. PLAL+S on Fig. 4).
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Fig. 4. Sample efficiency: inverted pendulum. Using a constrained
formulation (5) along with supervision of the derivatives appears
essential to reach a precise solution on a non-linear dynamics with
unstable target.
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Fig. 5. Samples efficiency: robotics tasks. Due to chaotic dynamics,
the double pendulum (left) and UR5 (right) require both handling
constraints and the Sobolev training to converge. When it is so, it
converges quickly towards a precise solution. Even though policy
parameters are identically initialized across the different algorithms,
on UR5 the first test evaluations are only performed after a few
training steps to avoid numerical divergence during rollouts.

Sobolev training allows to obtain gains in terms of sample
efficiency by exploiting higher-order information made avail-
able by the trajectory optimization solver (see PLAL+M v.
PLAL+M+S on Fig. 3). In addition, it also yields better
generalization properties which significantly improve the
stability of the policy rollouts and facilitate the training (see
PLAL+M+S v. PLAL+M on Fig. 4). The latter characteristic
becomes even more important for tasks on more complex
systems with chaotic dynamics (Sec. V-B).

B. Robotics systems

Here, we consider tasks on the double pendulum and UR5
robotic arm. These tasks are made very challenging by the
highly non-linear and chaotic dynamics and the instability of
the desired target configuration.

As already noticed during experiments on the inverted
pendulum, taking into account the physical constraints and
exploiting the higher-order information contained in the
feedback gains is crucial. In the case of the double pendulum
and UR5, the combination of these components even appears
to be necessary to get converging algorithms (Fig. 5). Due to
the chaotic dynamics, for the PODS algorithm, even slight
drifts from the policy w.r.t the TO controller induce very large
deviations which, in turn, drive the policy towards saturation
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Fig. 6. Comparisons of controllers from TO and policy learning.
We represent the trajectories (right) and the corresponding control
(left) on a testing sample of UR5. The 1st row corresponds to
the learned policy while the 2nd and 3rd represent the trajectories
obtained via TO when the solver is initialized respectively with and
without the learned controller.
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Fig. 7. Benefits of policy learning on TO. We record the number
of iterations required by the TO solver to reach a given precision on
OCPs from the testing set. We compare the cases where the solver
is initialized with and without a rollout of the learned policy.

and cause the rollouts to diverge. Including the physical
constraints in the OC phase and regularizing the learning
phase with the feedback gains allow to reduce the gap, and
thus stabilize the training process.

Fig. 5 (right) highlights the influence of the augmented
Lagrangian parameter µ on the convergence of ADMM
algorithms. As described in V-A, multiple shooting already
hinders the stability of the learning process, and when using
it, we suspect the setting of µ to be even more crucial for
the quality of the final solution (Fig. 5, right).

If we already demonstrated how policy learning can take
advantage of TO, reciprocally, we observe that TO can also
benefit from being warm-started by the learned policy (Fig. 7).
In our case, doing so allows to systematically avoid worst
case scenarii where the solver needs more than 100 steps.

Eventually, Fig. 6 demonstrates that warm-starting the
solver with the policy also impacts the final control as it
changes the local minima found by TO algorithms.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

In this paper, we have introduced a general framework to
leverage the interplay between policy learning and trajectory
optimization. Our formulation results in two algorithmic
variants which both exploit two constrained optimization
techniques: a projected DDP method, and the alternating
direction method of multipliers for establishing a strong
consensus between the learned control policy and TO. Both al-
gorithms proceed in two alternating steps: solving an OCP and
solving a supervised learning problem. We have introduced
enhancements for either part: constraints handling, stochastic
Sobolev regularization and multiple shooting. Although these
algorithms achieve faster convergence towards more precise
solutions when compared to classical RL algorithms, the
experiments also highlight the need for advanced numerical
trajectory optimization solvers. Indeed, for challenging robotic
tasks, constraint handling and higher order information appear
to be necessary to stabilize the training of the policy. The
experiments and the ablation study also reveal the interest
in our proposed enhancements: stochastic Sobolev learning
enhanced sample efficiency and the stability of learned
policy rollouts, and multiple shooting eliminates drift in the
optimized trajectories.

A possible enhancement is the convergence speed of
the method towards a consensus between the OCP and
the supervised learning loop. It is known that Augmented
Lagrangian methods (which includes ADMM) can reach much
higher performance by having a strategy for updating the
penalty parameter (µt). One such strategy in the literature
is that of the bound-constrained Lagrangian (BCL) method
of [30], which could be a direction for further enhancements.

In this work, we assumed the samples (β(i))i used for
policy optimization are fixed; they are never re-sampled
(which is how stochastic algorithms such as SGD work)
nor are new samples ever added. This is the domain of
constrained stochastic optimization; one of the difficulties
here is updating the Lagrange multipliers in a way where
optimization progress is not lost at every sampling. Such an
extension could allow active sampling of the initial condition
x0 or other parameters so to explore the state space and learn
policies more effectively.

We could then explore extensions towards setups closer to
GPS [17] by considering partially unknown system dynamics,
with limited knowledge of some physical parameters (e.g.
friction coefficients) – in order to take advantage of physical
models once again. This would require embedding a system
identification step in the loop which would also benefit from
differentiable simulation techniques.
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