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Résumé :

Le contexte de cet article concerne la simulation de lŠévolution complexe des conditions de contact et

de frottement entre les Ąls des câbles des liignes dŠancrage dŠéoliennes Ćottantes offshore pour prédire

avec précision leur durée de vie en fatigue. AĄn de faire face aux fortes non-linéarités du problème et

aux temps de calcul élevés nécessaires, le solveur LATIN non linéaire et la réduction de modèle Proper

Generalized Decomposition (PGD) sont proposés pour résoudre le problème. Dans ce contexte, un cas

test simple unidimensionnel, représentatif du problème posé, est analysé dans le cadre LATIN-PGD :

différents indicateurs de convergence pour le solveur LATIN sont étudiés aĄn de vériĄer et assurer la

convergence des quantités dŠinterface de contact, cruciales pour la détermination de la durée de vie

en fatigue. Ensuite, la réductibilité du problème est étudiée, en se concentrant sur le tri efficace et le

contrôle de la taille et de la qualité de la base réduite tout au long des itérations du solveur non linéaire.

Abstract :

The context of this paper concerns the simulation of the complex evolution of contact and friction con-

ditions between the wires of mooring line ropes for Ćoating offshore wind turbines to accurately predict

their fatigue life. In order to deal with the strong non-linearity of the problem and the high compu-

tational times required, the non-linear LATIN solver and model-order reduction based on the Proper

Generalized Decomposition (PGD) are proposed to solve the problem. In this context a one-dimensional

benchmark problem, representative of the problem at hand, is analyzed within the LATIN-PGD frame-

work: Ąrst different convergence indicators for the LATIN solver are proposed in order to check and

assure convergence of local contact interface quantities, crucial for fatigue life determination. Then the

reducibility of the problem is investigated, focusing on efficiently sorting and controlling the reduced

basis size and quality throughout the iterations of the non-linear solver.

Keywords : Proper Generalized Decomposition, LATIN method, frictional
contact.
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1 Introduction

Floating offshore wind turbines (FOWTs) are basically constituted by a wind turbine installed on a Ćoater,

which is linked to the seabed by means of mooring lines, and, despite the offshore mooring technology

has been used for many years, mooring line break events are still relevant concerns today. Mooring lines

may be constituted by spiral strand wire ropes, which consist in a complex assembly of steel wires usually

wrapped together in a twisted helical assembly of different wire layers around a single core wire. Due to

their peculiar architecture, tension and bending loadings induce complex frictional phenomena between

the wires that may induce fretting fatigue damage. A direct Ąnite element analysis of the wire mechanics

in order to predict fatigue life is computationally costly, since such kind of problem involves simulating

the complex evolution of contact and friction conditions between the wires of the wire rope [4, 5]. In or-

der to overcome these difficulties, reduced-order model (ROM) techniques can be used. Over the years,

reduced-order models have proven themselves as reliable tools in reducing computational complexity in

the context of linear and non-linear problems [12, 8]. Nevertheless, the use of reduced-order modeling

can be problematic for contact problems, as a reduced-order basis may not easily and efficiently capture

non-regular and propagating multiscale phenomena that occur at contact interfaces, sliding, sticking and

separation zones being difficult to follow.

For contact problems, pertinent model reduction techniques rest on a posteriori methods. They cover

POD projection-based methods for displacements and contact forces [1], adopting a non-negative ma-

trix factorization scheme to the construction of a positive reduced basis for the contact forces. Reduced

Basis methods have also been used with a greedy algorithm for the construction of a non-negative basis

for the contact forces [2]. Enrichment techniques with POD modes for parametric problems have been

succesfully used for the simulation of fretting fatigue in [6]. In [10], the LATIN method [13] combined

with a multigrid solver is applied to frictional contact problems by making use of a pre-computed re-

duced basis. A priori model reduction techniques instead rely on the Proper Generalized Decomposition

(PGD) [17] and its application to contact problems with the LATIN method can be found for instance

in [11, 15, 20].

The LATIN (Large Time INcrement) is a non-incremental solver for non-linear problems which iterates

on the whole time-space domain [13], a peculiarity that makes it natively suitable for model-order reduc-

tion. Moreover, the resulting iterative scheme with two search directions features a robust treatment of

contact non-linearities due to the fact that it shares similarities with augmented Lagrangian formulations

for contact problems and Uzawa-like algorithms [23]. For the problem at hand, model reduction based

on the LATIN-PGD method is exploited in this paper in order to efficiently deal with the non-linear

content of the problem.

Within the target application on FOWTs, several scientiĄc challenges arise. First of all convergence

criteria for the non-linear solution method must assure a good convergence for local contact quantities:

a global convergence criterion does not ensure local convergence of the interface quantities, which are

crucial for fretting fatigue life prediction. Moreover, the LATIN convergence rate for contact problems

strongly depends on search directions, and updating search directions is a challenging issue [25]. An-

other issue concerns the efficient treatment and accurate representation of the multiscale content for

contact interface quantities. The use of a multiscale strategy in this case is appealing as discussed in

[11] and proposed in [10]. A multiscale mixed domain decomposition method that builds a reduced

basis per subdomain has been successfully proposed in [14, 15, 16, 18, 19]. In these approaches, the

deĄnition and updating of a suitable coarse problem is crucial. In this paper, the application of a domain

decomposition method is not addressed but it will be revisited and studied in future works.
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This paper is organized as follows: in Section 2 the LATIN method is brieĆy introduced along with a

summary of the equations to solve at the global and the local stages in the case of a frictional contact

problem. In Section 3, the LATIN method is applied on a simple one-dimensional benchmark repre-

sentative of the target application, where only one frictional contact interface is considered. Various

convergence and error criteria are investigated with respect to the accuracy of contact interface quan-

tities. A study of the sensitivity of the convergence rate to the choice for the search direction is also

proposed. Section 4 reports the application of PGD in order to check the reducibility of the benchmark

problem following [11]. It is shown in particular how a dedicated sorting strategy for the reduced basis

can improve the representation of the contact interface quantities and consequently the efficiency of the

LATIN-PGD method. Conclusions and perspectives are provided in Section 5.

2 LATIN method applied to frictional contact problems
In this section the reference frictional contact problem is presented, as well as the LATIN method adopted

to solve it.

2.1 Reference contact problem
Let consider, under the assumptions of small displacements and an isothermal quasi-static state, the

equilibrium of a solid body occupying domain Ω over a time interval ∥0, T ∥ and whose bounday ∂Ω

can be split into three complementary parts: ∂1Ω where displacements up are prescribed, ∂2Ω with

prescribed time-dependent external loadings f
ext

and ∂3Ω where contact with a rigid wall may occur

(Fig. 1). Let also consider a linear elastic regime for the solid body and frictional contact conditions at

the potential contact interface ∂3Ω.

𝜕3ΩΩ
𝜕1Ω𝜕2Ω

𝑔

Figure 1: Frictional contact problem setting.

At the contact interface ∂3Ω, the trace of the displacement Ąeld u(x, t) is v(x, t) ≙ u∣∂3Ω×[0,T ], and one

can distinguish between normal an tangential components of displacements and contact forces λ(x, t)
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with respect to ∂3Ω, as follows:

∀(x, t) ∈ ∂3Ω × ∥0, T ∥ ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v(x, t) ≙ vNn + vT

λ(x, t) ≙ λNn + λT ,
(1)

with n being the outward normal vector to ∂Ω.

The problem consists in Ąnding the displacement Ąeld u(x, t) and the CauchyŠs stress Ąeld satisfying

kinematic admissibility, static admissibility and constitutive laws for the solid body and the contact inter-

face. By using the Ąnite element approximation in space for the displacement Ąeld, and by discretizing

the time interval into a regular time stepping t0≤i≤Nt
such that ti+1 ≙ ti +∆t, the discretized reference

frictional contact problem is to look for the vector of nodal displacements u(t) and contact forces λ(t)

verifying
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ku ≙ fext +B
T
λ

R(v,λ) ≙ 0
(2)

for every time step, with K being the stiffness matrix. The boolean matrix B maps global nodal quanti-

ties to their value on the contact interface nodes, v ≙ Bu is the trace of the displacement Ąeld over the

contact interface and R represents the Signorini-Coulomb non-smooth constitutive law on the contact

interface. Signorini conditions [22] are applied to normal contact quantities, while Coulomb frictional

law [9] is used for the tangential contact behaviour.

2.2 The LATIN method
The LATIN method is a non-incremental solver for non-linear problems [13]. The main idea of the

LATIN method is to separate a given problem in order to avoid the simultaneity of the global character

and the non-linear (local) character of the problem. Thus, the mechanical properties of the equations are

considered in order to deĄne two manifolds: the local, and possibly non-linear, equations which belong

to some non-linear manifold Γ, and the linear, and possibly global, equations which belong to some

linear manifold A. The search of the solution is based on a two-search direction algorithm: starting

from an initial guess of the solution s0 ∈A, at each iteration a solution is alternately built in each of the

manifolds as sketched in Fig. 2. The Ąrst step, called local stage, is to look for the solution ŝn+ 1

2

∈ Γ⋂E
+

knowing the global solution sn ∈A at the previous iteration by making use of an ascent search direction

E
+. The second step, called global stage, consists in seeking the global solution sn+1 ∈A⋂E

− by using

a descent search direction E
−. The exact solution sexact belongs to the intersection of the two manifolds.

Two types of formulations can be adopted, based on the used unknows: the formulation in displacement

and the formulation in velocity. The velocity formulation is usually adopted in the context of material

non-linearities, where constitutive relations are expressed in strain-rate formulation (see [16, 18, 20]),

while the displacement formulation is usually more adequate in the context of linear elastic behaviour

(see [6, 11]).

Here the equations to be solved for the global and the local stage for the displacement formulation of

the LATIN method are summarized, where one makes use of the unknowns s ≙ (u,λ). The velocity

formulation, based on the unknowns s ≙ (u̇, λ), differs from the displacement formulation mainly from

the fact that displacements have to be reconstructed from the velocities by making use of a pertinent

time integration scheme.
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𝐬𝑛
𝐬𝑛+1𝐬exact

ො𝐬𝑛+12 𝐄+
𝐄−

Figure 2: LATIN iteration scheme between the two manifolds.

2.2.1 Local stage

Given sn ≙ (un, λn) ∈A by the global stage at iteration n, the local stage is a corrective stage occurring

at the contact interface and consists in Ąnding ŝn+ 1

2

≙ (ûn+ 1

2

, λ̂n+ 1

2

) ∈ Γ by following the ascent search

direction E
+:

(ŝn+ 1

2

− sn) ∈ E
+
⇐⇒ λ̂n+ 1

2

− λn ≙ k(v̂n+ 1

2

− vn), (3)

with k being the search direction parameter, homogeneous to a stiffness. The search direction parameter

may be different from node to node and from time step to time step, it may also be updated according to

the contact status; however, in the present study, a constant search direction in space and time along the

iterations is adopted. The contact status on the interface can be detected by means of contact indicators

CN and CT , deĄned on every contact node for the normal and tangential directions, (see [11, 6, 7]

for more details). In the present work only the tangential contact is analyzed, and the deĄnition of the

tangential contact indicator is the following:

C
i
T ≙ λ

i
T − k(v

i
T − v̂

i−1
T ), (4)

where, in order to alleviate the notation, subscripts of the iterations have been removed and superscript i

refers to time step ti. At the current iteration and at the current time step, all the previous quantities are

known, and, based on the value of the contact indicator, two conditions can occur, which are summarized

in Tab. 1, where µ represents the friction coefficient and λ̂N is the current value of the normal contact

force at the local stage.

2.2.2 Global stage

Given the solution ŝn+ 1

2

≙ (ûn+ 1

2

, λ̂n+ 1

2

) ∈ Γ known from the previous local stage, the global stage at the

current iteration consists in Ąnding sn+1 ≙ (un+1, λn+1) ∈A by following the descente search direction

E
−:

(sn+1 − ŝn+ 1

2

) ∈ E− ⇐⇒ λn+1 − λ̂n+ 1

2

≙ k(v̂n+ 1

2

− vn+1). (5)
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Local stage: tangential components

sliding: ∥Ci
T ∥ > µ∣λ̂

i
N ∣ sticking: ∥Ci

T ∥ ≤ µ∣λ̂
i
N ∣

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λ̂
i

T ≙ µ∣λ̂
i
N ∣

C
i
T

∥Ci
T
∥

v̂
i
T ≙ v

i
T −

1
k
(λi

T − λ̂
i

T )

⎧⎪⎪
⎨
⎪⎪⎩

λ̂
i

T ≙C
i
T

v̂
i
T ≙ v

i
T −

1
k
(λi

T − λ̂
i

T ) ≙ v̂
i−1
T

Table 1: Solution of the local stage for the displacement formulation of the LATIN method.

Linear constitutive law, kinematic admissibility and static admissibility have to be veriĄed and, by taking

into account the search direction (5), the following discretized problem has to be solved at the global

stage for each time step ti:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∥K +BTkB∥ui
≙ f

i
ext +B

T (λ̂
i
+ kv̂i)

v
i
≙Bu

i

λ
i
≙ λ̂

i
+ k(v̂i

− v
i).

(6)

2.2.3 Initialization and error and convergence indicators

The LATIN algorithm can be initialized with the linear contactless elastic solution s0 ≙ (u0, λ0) ∈ A

and, by denoting with sref ≙ (uref , λref) the reference solution of the problem, obtained with a high

number of iterations of the LATIN method, one can deĄne:

• Reference solution error:

ηref ≙
∥s − sref∥

2

∥sref∥2
(7)

• LATIN convergence indicator:

η ≙
∥s − ŝ∥2

1
2
(∥s∥2 + ∥ŝ∥2)

(8)

• Displacement and force convergence indicators:

ηu ≙
∥u − û∥2u

1
2
(∥u∥2u + ∥û∥

2
u)

(9)

ηλ ≙
∥λ − λ̂∥2λ

1
2
(∥λ∥2

λ
+ ∥λ̂∥2

λ
)

(10)

• Time error indicator with respect to reference solution:

ηt ≙
∫∂3Ω∥k(u(x, t) − uref(x, t))2 + 1

k
(λ(x, t) − λref(x, t))

2∥dS

∫∂3Ω(ku2ref(x, t) + 1
k
λ2ref(x, t))dS

(11)

204 S32



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

with the following norms:

∥s∥2 ≙ ∫
∂3Ω
∫
[0,T ]
(ku2(x, t) +

λ2(x, t)

k
)dSdt (12)

∥u∥2u ≙ ∫
∂3Ω
∫
[0,T ]

ku2(x, t)dSdt (13)

∥λ∥2λ ≙ ∫
∂3Ω
∫
[0,T ]

1

k
λ2(x, t)dSdt (14)

3 One-dimensional numerical application
In the following section a one-dimensional benchmark problem, represented in Fig. 3a, is analyzed, that

is, a one dimensional clamped bar subjected to a time dependent traction loading F (t) (see Fig. 3b) and

in contact with a frictional surface by means of a normal pressure p(t) acting on it. The used parameters

are shown in Tab. 2. In this particular case, the whole domain coincides with the contact interface (i.e.,

the boolean matrix B reduces to the identity matrix), and the normal contact force λN is prescribed and

corresponds to p(t) so that only tangential behaviour has to be analyzed. The considered benchmark

problem can be fairly seen as representative of the wire rope mechanics: in fact the rope is subjected to

cyclic traction loadings from the sea state and, because of the helical geometry of the rope, traction and

bending phenomena cause pressure loads between the different layers of wires which slide with respect

to each other determining frictional contact phenomena.

Frictional contact interfacex

L

(a) One-dimensional clamped bar in contact with a fric-

tional interface.
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N
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(b) Loading and unloading stages for the traction force

F (t).

Figure 3: Benchmark problem set: (a) sketch of the problem, (b) time evolution of traction loadingF (t).

Some snapshots of the reference solution of the problem obtained with a very high number of iterations

of the LATIN method (overkill solution) are shown in Fig. 4. One can notice that the sliding front

propagates as the traction force increases, during the loading stage. Even during unloading, another

sliding front propagates from the right top of the bar, until the traction force becomes zero, and, because

of the presence of friction, the bar does not get back to its original position.
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Parameters

Young modulus, E 210 GPa

Bar cross section, S 3.14 mm2

Bar length, L 1 m

Number of elements, Nx 50

Number of time steps, Nt 100

Time interval, T 1 s

Friction coefficient, µ 0.3

Traction force, F (t) 1000 sin(πt
T
) N

Pressure load, p(t) 5000 N/L

Table 2: Used parameters for the benchmark problem.
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(a) Snapshots of the solution during loading.
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(b) Snapshots of the solution during unloading.

Figure 4: Reference solution of the benchmark problem: (a) during loading, (b) during unloading.

Fig. 5 and Fig. 6 represent some space modes of the singular value decomposition (SVD) of the quantity

k(uref − u0) + (λref −λ0), which will be used in the next section for the model-order reduction of the

problem. We recall that the number of modes M obtained with the SVD is M ≙ min(Nx,Nt) ≙ 50,

according to Tab. 2. As found in [11], the Ąrst modes depict a global behaviour of the solution, the

subsequent modes, on the other hand, bring localized corrections at speciĄc points, which illustrates the

multiscale content of frictional contact problems.
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Figure 5: First three SVD space modes of k(uref − u0) + (λref −λ0).
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Figure 6: Last three SVD space modes of k(uref − u0) + (λref −λ0).

3.1 Analysis of the convergence indicators
Here the behaviour of the different error and convergence indicators deĄned previously in section 2.2.3

for the LATIN method are analyzed with respect to the benchmark problem. A Ąrst guess value k0 of

the search direction parameter, related to the mechanical properties of the considered problem (see [3]),

has been used for this analysis, i.e.,

k0 ≙
ES

lel
, (15)

with lel being the length of the Ąnite elements. Fig. 7 shows the evolution of the different error and

convergence indicators along the iterations of the LATIN method. From Fig. 7a it can be noticed

that the LATIN convergence indicator underestimates the real error for this particular problem, and, in

general, one may notice that displacements converge faster than forces . Fig. 7b shows how the reference

solution error behaves at different time-steps: the error presents a time propagating behaviour, at lower

time steps the error is lower than the one at higher time steps.
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(a) Evolution of error indicators η, ηref , ηλ, ηv along the

iterations of the LATIN method.
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Figure 7: Error indicators for the benchmark problem with k ≙ k0: (a) global space-time errors, (b) time

error ηt.

Mastering convergence behaviour is crucial for the targeted application concerning the fatigue life pre-

diction of spiral strands: an accurate computation of local contact conditions is crucial to achieve the

desired goal and, for this reason, convergence criteria must assure a good convergence of local quantities
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both in space and time. As presented in this study this is a challenging issue, in fact the classical LATIN

convergence indicator, which is a global indicator in space and time, may not be appropriate for our

purpose since different convergence rates are observed for contact forces and displacements, as also for

the different time steps. For this reason different convergence indicators can be deĄned, see for example

[11], where a convergence indicator is deĄned as the maximum norm of s over all the contact nodes and

all the time steps. In [20] a new convergence indicator is deĄned in the context of domain decomposition

by taking into account the different behaviour of every interface of every subdomain (perfect interface,

imposed displacement, imposed force, contact interface, etc...). These different convergence indicators

will be tested in future works.

3.2 Determination of the optimal search direction
Since the LATIN method shares similarities with an augmented lagrangian formulation where the search

direction parameter is analogous to the augmentation parameter, the convergence rate of the LATIN

method depends on the value of the search parameter k. In the following, by considering a constant

k in space and time, ones looks for the optimal value kopt of search direction k which minimizes the

required number of iterations to reach an error with respect to the reference solution of ηref ≙ 10−4.

Starting with a Ąrst guess value k0 for the search parameter, a parametric study on the LATIN method

has been performed by varying the search direction with respect to k0 deĄned in Eq. (15). Fig. 8a

displays the evolution of the number of iterations with respect to the search direction, and one can notice

that, at least for the problem here considered, an optimal value exists and that the required number of

iterations to reach convergence with this value of the search direction are far less than the reference value

k0, as it can be seen from Fig. 8b.
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Figure 8: Parametric study on the search direction: (a) evolution of the number of iterations with respect

to the search direction to reach an error level of ηref ≙ 10
−4, (b) reference error with k ≙ k0 and k ≙ kopt.

In this study it was shown how the LATIN method convergence rate is dependent on the search parameter,

as for augmented lagrangian techniques [24] [25]. Here a constant value of the search direction in space

and time has been adopted, however, the search parameter is related to local contact conditions at the
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contact interface, i.e., sticking, sliding, contact detachment. Updating the search direction along the

iterations according to the contact status on every node and every time step may be an efficient strategy

to achieve a better convergence rate, and will be investigated in future works. The search parameter,

however, not only affects the convergence rate of the solution but also the quality of the solution [20],

for the targeted applications it is crucial to ensure, along with a fast convergence rate, also a good quality

of the converged solution.

4 LATIN-PGD for frictional contact problems
The LATIN-PGD approach applied to frictional contact mechanics has been discussed in [11, 6, 20].

Here, following [11], a sorting algorithm is used to capture the best PGD modes according to the SVD.

Let reformulate the global stage of the LATIN method by seeking for corrections (∆u,∆λ) ≙ (un −

un−1,λn − λn−1) between two consecutive global iterations. Given an initial linear elastic solution

Ku0 ≙ fext and λ0 ≙ 0, the reformulated global stage of the LATIN method at the current iteration n

consists in solving the following problem:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

K∆u ≙B
T∆λ

∆v ≙B∆u

∆λ + k∆v − rsd ≙ 0,

(16)

with the residual on the search direction rsd deĄned as rsd ≙ λ̂−λn−1+k(v̂−vn−1), known at this stage.

Once the global stage is solved, displacements and contact forces are corrected accordingly. One can

then introduce a space-time separated representation of both forces and displacements in the global stage

of the LATIN method, that is, one looks for a separated representation of corrections ∆u ≙Vϕ(t) and

∆λ ≙ Lψ(t). By inserting this requirement in the equilibrium equation (16), one obtains the following

condition of admissibility for space and time functions of forces and displacements:

∀t ∈ ∥0, T ∥ ∶ KVϕ(t) ≙BT
Lψ(t) ⇐⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

KV ≙B
T
L

ϕ(t) ≙ ψ(t),
(17)

which means that space and time functions of forces and displacements are not independent. Prob-

lem (16), including the separated representation of corrections respecting admissibility (17), is over-

constrained, as a consequence, search direction equation is veriĄed at best in a weak sense by solving

the following problem:

{W, ϕ(t)} ≙ arg min
W,ϕ

∥Wϕ̄(t) − rsd∥F , (18)

with W ≙ L+kBV being an auxiliary space mode introduced to take account of the linear relationship

between V and L (see 17). With this separated representation the search equation is veriĄed in a weak

sense, but the constraint between space and time modes of forces and displacements exactly satisĄes the

admissibility conditions. Different approaches can be exploited, for example, by requiring the search

direction to be exactly satisĄed and the admissibility conditions to be satisĄed in a weak sense; although,

since the search direction is just a parameter of the problem, it is more reasonable to require it to be

veriĄed in a weak sense. Alg. 1 shows the so-called quasi-optimal LATIN-PGD scheme for contact

problems introduced in [11]. It consists of three different stages: an updating stage for the whole set of

time modes everytime a new couple is added to the basis (see [17] on how this stage is cheap to compute
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and largely improves the quality of the solution), an orthonormalization stage applied to space modes

every time a new couple {W, ϕ(t)} is added to the basis, and a downsizing stage applied to time modes

in order to reduce their redundancy after orthonormalization. For further details, the interested reader

can refer to [11].

Algorithm 1: Quasi-optimal LATIN-PGD algorithm for frictional contact

Input:
Tolerances: ε, ε1, ε2;

Max iterations of downsizing stage: ξmax;

Enrichment criterion: 0 ≤ θ ≤ 1;

Initialization:
Compute linear elastic solution: Ku0 ≙ fext, λ0 ≙ 0;

Initialize PGD basis size: p ≙0;

while η > ϵ do
Local stage: Ąnd (v̂, λ̂);

Updating stage:
if p ≥ 1 then

Compute search direction residual: rsd ≙ λ̂ + kv̂ − (λ0 + kBu0 +∑p
k=1

Wkϕk(t));
Update time modes;

Update search direction residual;

Enrichment stage with orthonormalization:
if 1 − η/ηold < θ then

Find new couple {W, ϕ(t)};
Perform orthogonal enrichment with tolerance ε1: {W, ϕ(t)}→ (Wp+1, ϕp+1) ;

Increment basis size: p← p + 1;

Downsizing stage:
if p ≥ 1 then

Perform downsizing with iterations ξmax and tolerance ε2;

Update basis size q ≤ p← p;

Convergence check:
Save previous convergence criterion ηold ← η;

Compute convergence criterion η;

The LATIN-PGD scheme illustrated in Alg. 1 is applied to the one-dimensional benchmark problem,

and the effect of the different stages (updating, orthonormalization, downsizing) of the algorithm on the

quality of reduced basis is analyzed. Fig. 9 and Fig. 10 show the evolution of the PGD basis along the

iterations by making use of the different stages of Alg. 1. Without any additional stage, a new mode

is generated at each iteration and the dimension of the PGD basis largely exceeds the dimension of the

problem. This approach is not useful since modes are highly redundant and no computational saving

is achieved. With orthonormalization of the space modes the dimension of the basis is controlled in

size (see Fig. 9a). In fact, in the orthonormalization stage, every time a new couple is generated, the

new space mode is projected onto the previously computed basis and, if the new space mode is not

independent from the others, the new couple is not added to the basis according to a tolerance ε1. By

using both orthonormalization and time function update, a full basis is generated at the Ąrst iterations

(see Fig. 9b). With downsizing (see Fig. 10), one can sort and control the basis quality and size by

capturing only the best PGD modes. The size of the generated basis depends on a tolerance ε2 on the

norm of the time modes. The behaviour of the PGD basis along the iterations can be easily visualized

by making use of the Modal Assurance Criterion (MAC) diagrams between the PGD modes and the
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SVD modes [21]. Shortly, given two sets of vectors of the same dimension (Xi)
p
1 and (Yi)

q
1, the MAC

matrix M is deĄned as:

Mij ≙
∣XT

i Yj ∣
2

∥Xi∥2∥Yj∥2
∈ ∥0,1∥. (19)

Mij measures the correlation between mode Xi and mode Yj . Mij ≙ 1 means that the modes are

collinear, that is highly correlated, otherwise Mij ≙ 0 means that the modes are orthogonal, that is

highly uncorrelated.
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(a) Evolution of PGD basis size with orthonormaliza-
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(b) Evolution of PGD basis size with orthonormaliza-

tion and time functions update.

Figure 9: Evolution of PGD basis size along the iterations of the LATIN method: (a) with orthonormal-

ization, (b) with orthonormalization and time functions update.
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Figure 10: Evolution of PGD basis size along the iterations of the LATIN method with downsizing,

orthonormalization and time function update.

Fig. 11 displays the MAC diagrams for the different stages used in the LATIN-PGD in Alg. 1. By
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making use of only orthonormalization and time function update, the generated PGD modes show no

correlation with the SVD. By making use also of the downsizing stage, an optimal correlation is achieved.

With this sorting algorithm, it enables to capture only the best PGD modes which are closer to the SVD

decomposition of the original problem.
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Figure 11: MAC diagrams for space modes W: (a) with orthonormalization, (b) with orthonormaliza-

tion and time function update, (c) with downsizing.

5 Conclusions
The reducibility of a one-dimensional frictional contact benchmark problem with the LATIN non-linear

solver and the Proper Generalized Decomposition has been studied. The study on the convergence indi-

cators shows that assuring a good convergence of local contact quantities in space and time is a challeng-

ing task: forces and displacements converge at a different rate as also convergence differs from one time

step to another. Moreover the global LATIN convergence indicator can underestimate the real error with

respect to the reference solution. The analysis for the search direction shows that the the convergence

rate of the LATIN method is highly dependent on the search direction. A well suited search direction

can improve convergence and computational time. Updating the search direction based on the contact

interface status can be a valuable approach that is currently being investigated. The application of PGD

shows some interesting results in agreement with [11]. With the downsizing algorithm proposed in [11],

the reduced basis dimension and quality can be controlled and enables to select the best (quasi-optimal)

modes with the respect to the Singular Value decomposition of the problem. For future works, the mul-

tiscale version of the LATIN-based domain decomposition method [15, 16, 14, 19] will be exploited in

order to introduce a coarse scale problem and to generate reduced basis per subdomain, by considering

problems with multiple contact interfaces. This strategy will be revisited in order to take beneĄt from the

multiscale content of the problem, with global and local space and time modes, while paying attention

especially on the following aspects: improve convergence rate of the solution and control the qualtity of

interface quantities, which are crucial for the target application concerning the fatigue life prediction of

spiral strand wire ropes for FOWTs, with numerous and complex loadings on long time intervals.
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