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We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar-on-function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.

Introduction

We consider the regression model with a functional predictor x i ∈ L 1 (T ) and a scalar response Y i given by 1

Y i = µ + T x i (t)β(t)dt + ε i , i = 1, . . . , n, (1) 
where µ ∈ R, β is a continuous function on T , ε 1 , . . . , ε n are independent random variables with a N (0, σ 2 ) distribution. For instance, the scalar response may be the amount of some agricultural production and the functional covariate may be the rainfall or the temperature history. An issue which arises naturally in many applied contexts is the detection of periods of time which influence the final outcome the most or, equivalently, the periods of time for which the covariate has almost no impact on the response. To this end, we provide in this paper an interpretable estimate of the functional coefficient β. By interpretable, we mean a smooth function that may possibly be equal to zero on some intervals. The value of the functional covariate on these intervals has no effet on the response; hence an interpretability of β.

Model (1), usually called the linear scalar-on-function regression, is very popular in the functional data analysis (fda) literature. Many ideas, techniques and applications of fda can be found in the monographs [START_REF] Ramsay | Functional Data Analysis[END_REF] and [START_REF] Ferraty | Nonparametric Functional Data Analysis. Theory and Practice[END_REF]; the latter being focused on nonparametric methods. A more recent overview of concepts of fda is given in [START_REF] Wang | Functional data analysis[END_REF]. In addition to the linear model (1), the literature on scalar-on-function regression also includes nonlinear and nonparametric models; for a comprehensive review, we refer the reader to [START_REF] Reiss | Methods for scalar-on-function regression[END_REF]. A common general approach to fitting model ( 1) is to expand the coefficient function β onto a basis of functions such as splines, wavelets or data-driven bases and to use a regularization technique (penalties, constraints, prior distributions) to prevent overfitting (e.g., [START_REF] Cardot | Functional linear model[END_REF][START_REF] Brown | Bayesian wavelet regression on curves with application to a spectroscopic calibration problem[END_REF][START_REF] Crainiceanu | Bayeisan functional data analysis using winbugs[END_REF][START_REF] Goldsmith | Functional regression via variational bayes[END_REF][START_REF] Zhao | Wavelet-based lasso in functional linear regression[END_REF].

Such standard methods provide estimates of β which are not exactly equal to zero on some intervals even if there is no relationship between the response and the covariate for large regions of t. Furthermore, the interpretation may be hard because of indesirable flutuations of the estimate. Some authors have proposed new approaches to overcome these problems. In a frequentist framework, [START_REF] James | Functional linear regression that's interpretable[END_REF] discretizes the coefficient function and obtains an interpretable estimate with sparse derivatives of different orders using an L 1 -penalty. With a similar discretization, [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] obtains a sparse estimate with local constancy using the Fused lasso penalties. [START_REF] Zhou | Functional linear model with zerovalue coefficient function at sub-regions[END_REF] proposes a two-stage estimator to simultaneously identify the null region of β and an estimate of β on its support. At stage one, the null region is roughly identified by expanding β onto a B-spline basis and using the Dantzig selector. The second stage refines the estimation of the null region and achieves the estimation of β. [START_REF] Picheny | Interpretable sparse sir for functional data[END_REF] also focuses on the estimation of the support of β by using penalized versions of Sliced Inverse Regression. In a Bayesian framework, [START_REF] Grollemund | Bayesian functional linear regression with sparse step functions[END_REF] proposes estimates of both the support and the coefficient function by restraining β to be a step function equal to zero on some intervals.

In this paper, we address the problem by adopting a Bayesian approach: put a prior distribution on the unkown parameters according to a prior knowledge and compute the posterior. We assume that it is known that the function coefficient is smooth and equal to zero on some, possibly unknown, subset T 0 ⊂ T . Our main contribution will be to construct a prior for β according to this prior knowledge. To this end, Gaussian processes are natural candidates as the smoothness of the trajectories can be controlled by the covariance function [START_REF] Cramér | Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications[END_REF][START_REF] Adler | An introduction to continuity, extrema, and related Topics for general Gaussian processes[END_REF]. Furthermore, the implementation is rather easy thanks to the conjugacy property. As the trajectories of a usual Gaussian process with specific smoothness properties do not vanish on some interval, it is natural to consider such a process conditioned to be zero on some intervals. The conditioned process will share the smoothness properties of the initial processes while being equal to zero on some intervals.

Gaussian process priors appear in the Bayesian literature for several decades, including density estimation [START_REF] Leonard | Density estimation,stochastic processes and prior information[END_REF], binary and normal regression [START_REF] Kimeldorf | A correspondence between bayesian estimation on stochastic processes and smoothing by splines[END_REF][START_REF] Wood | A bayesian approach to robust binary nonparametric regression[END_REF], computer experiments [START_REF] Morris | Exploratory designs for computational experiments[END_REF][START_REF] Gu | Parallel partial gaussian process emulation for computer models with massive output[END_REF], Bayesian numerical analysis [START_REF] Diaconis | Bayesian numerical analysis[END_REF][START_REF] O'hagan | Some bayesian numerical analysis. Dans Bayesian Statistics[END_REF][START_REF] Hennig | Probabilistic numerics and uncertainty in computations[END_REF] and functional analysis of variance [START_REF] Kaufman | Bayesian functional ANOVA modeling using Gaussian process prior distributions[END_REF]. For a recent account on priors on functions, we refer the reader to [START_REF] Ghosal | Fundamentals of Nonparametric Bayesian Inference[END_REF].

As we take a Gaussian process for the prior distribution for β, we will denote β t instead of β(t) in the sequel. With such a prior, it can be seen (Section 2) that ( 1) is a special case of the Gaussian process regression model and can be written as follows:

Y i = µ + F (x i ) + ε i , i = 1, . . . , n,
where the process F = (F (x), x ∈ L 1 (T )) is defined by

F (x) = T x(t)β t dt
(2) and β = (β t , t ∈ T ) is a centred, real-valued Gaussian process. Although Gaussian process regression has received considerable attention (see O 'Hagan, 1978;[START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] for scalar covariates and [START_REF] Shi | Gaussian Process Regression Analysis for Functional Data[END_REF][START_REF] Wang | Gaussian process regression with functional covariates and multivariate response[END_REF][START_REF] Konzen | Gaussian process for functional data analysis: The gpfda package for r[END_REF] for functional covariates and a functional response), to my knowledge, the above special case (2) has never been studied in the literature.

In Section 2, we study the process F and derive the posterior distribution of β. Section 3 contains the main contribution of the paper: given a centred Gaussian process β with specific almost sure regularity and a subset T 0 , we construct a Gaussian process β 0 which can be interpreted as the process β conditioned to be zero on a given subset T 0 . The trajectories of β 0 are equal to zero on a given set T 0 while sharing the same almost sure regularity as β. More precisely, it is shown that β is the sum of β 0 and an independent Gaussian processes β 1 with probability one. Results of Sections 2 and 3 are applied to a simulation study and a real case study in Section 4. In this section, T 0 is unknown and two different priors for T 0 , corresponding to different prior knowledges, are considered. For the former, it is known that T 0 is a single (unknown) interval. In the latter case, it is only known that 'simple' subsets T 0 are more likely than others; in particular, T 0 can be any union of unknown intervals. The proofs and some computational formulas are gathered in the Appendix.

The unconstrained model

In this section, we assumed that µ = 0 and that σ 2 is known; the general case with µ and σ 2 unknown will be studied in Section 4. Precisely, we focus on the following Bayesian model:

Y i |β ∼ N ( T x i (t)β t dt, σ 2 ) β ∼ GP (0, K), (3) 
where the random variables Y i are independent given β. The last line of (3) means that β = (β t , t ∈ T ) is a real-valued centred Gaussian process with a continuous covariance fonction K. We say that model ( 3) is unconstrained as it is not assumed that the trajectories of β are zero on some intervals; this latter case will be studied in Section 3. Some technical assumptions on the process are required: we assume that T ⊂ R d is a product of compact intervals of R and that β is separable. Separability is a weak assumption in our context as it is always possible to replace the process by a separable modification [START_REF] Doob | Stochastic processes[END_REF]. As we are interested in random functions with smooth trajectories, we also assume the following entropy condition

∞ 0 log N ( )d( ) < ∞, (4) 
where N ( ) is the smallest number of closed d-balls of radius that cover T and d(s, t) = E(β s -β t ) 2 is the canonical metric. Entropy condition (4) is sufficient for the almost sure continuity of centred Gaussian processes. Sufficient conditions for (4) to hold can be found in Adler (1990, pages 13-15 and 106).

We denote by H the Hilbert space generated by the random function β, that is, the closure in L 2 (Ω, A, Pr) of the linear span generated by the random variables β t defined on some probability space (Ω, A, Pr). Note that any random variable of H is centred Gaussian (Janson, 1997, Theorem 1.3). Since the trajectory of β is continuous with probability one, T f (t)β t dt can be defined for all f ∈ L 1 (T ) with probability one as well.

The following Lemma shows that expectation and integration with respect to t can be interchanged and is useful to determine the distribution of

T f (t)β t dt.
Lemma 1 The random function β is measurable and, for all f ∈ L 1 (T ),

T f (t)β t dt is the unique element of H such that E Y T f (t)β t dt = T f (t)E[Y β t ]dt, ( 5 
)
for all Y ∈ L 2 (Ω, A, Pr).

Consider the random process F = (F (g), g ∈ L 1 (T )) with L 1 (T ) as index set where F (g) is defined by (2). Since F (g) ∈ H by Lemma 1, any linear combination of such variables for some g ∈ L 1 (T ) is in H and is therefore centred Gaussian. Thus, F is a centred Gaussian process whose the covariance function R is given by:

R(g, f ) = T T K(s, t) g(s) f (t)dsdt, (6) 
the above equality being obtained by applying (5) twice in the calculation of E(F (g)F (f )). Therefore, model ( 3) is a special case of the regression Gaussian process model with functional covariates and can be rewritten as follows:

Y i |F ∼ N (F (x i ), σ 2 ) F ∼ GP (0, R). (7) 
Although the posterior distribution of F for model ( 7) is a standard result, this is apparently not the case for the posterior distribution of β for model (3). This latter distribution is provided by Proposition 1 below. We denote by L the integral operator with kernel K, that is

Lf (t) = T K(t, s)f (s)ds.
Proposition 1 Under model (3), the posterior distribution of β is a Gaussian process on T , GP (m, K * ), where

m(t) = Lx(t) (Σ + σ 2 I n ) -1 Y, K * (s, t) = K(s, t) -Lx(s) (Σ + σ 2 I n ) -1 Lx(t), Lx(t) = (Lx 1 (t), . . . , Lx n (t)) is the transpose of the column vector Lx(t) with entry Lx i (t), Y is the column vector with entry Y i , Σ is the n × n-matrix with entry Σ ij = R(x i , x j ) and I n denotes the n × n identity matrix. Furthermore, the marginal distribution of Y is multivariate normal N n (0, Σ + σ 2 I n ).
3 The constrained Gaussian process β 0

In this section, we consider the prior information that the functional coefficient β is equal to zero on a given set T 0 ⊂ T . A random process β with such a property will be called a constrained random process. We shall construct a constrained Gaussian process β 0 from the unconstrained Gaussian process β of Section 2 in Theorem 1 and study its smoothness properties in Proposition 2. More precisely, we shall show that, with probability one, β can be decomposed into the sum of two independent Gaussian random functions β 0 and β 1 such that β 0 is zero on T 0 . The important point here is that β 0 and β 1 share the same smoothness properties with β.

Denote by H the reproducing kernel Hilbert space (RKHS) with kernel K. It is well-known that H can be identified with an Hilbert space of real-valued functions on T and that Θ :

H → H, defined by Θ(Z)(t) = E(Zβ t ) is a linear isometry. Note that Θ(β s ) = K s where K s is defined by K s (t) = K(s, t).
If (., .) H denotes the inner product on H, we have the reproducing property: (f, K s ) H = f (s) for all f ∈ H. Classical results on RKHS and Gaussian processes can be found in [START_REF] Neveu | Processus aléatoires gaussiens[END_REF]; [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]; [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF]; [START_REF] Van Der Vaart | Reproducing kernel hilbert spaces of gaussian priors[END_REF].

Let H 0 be the subspace of H made up of functions that vanish on T 0 . It is shown in the next theorem that H 0 is closed and we denote by P the orthogonal projection onto H 0 . As Θ is an isometry, we deduce that H 0 = Θ -1 (H 0 ) is a Hilbert subspace of H and that P = Θ -1 PΘ is the orthogonal projection onto H 0 . Finally, we set β 0 t = Pβ t for all t ∈ T . The construction of the random function β 0 = (β 0 t , t ∈ T ) is illustrated by the following commutative diagram.

H Θ / / P H P H 0 Θ / / H 0
Similarly, we set H 1 = (H 0 ) ⊥ for the orthogonal complement of H 0 in H and denote by Q the orthogonal projection onto H 1 . Then, we construct

β 1 t = Qβ t where Q = Θ -1 QΘ. We can deduce that H 1 = Θ -1 (H 1 ) is the orthogonal complement of H 0 in H and that Q is the orthogonal projection onto H 1 .
By construction, for every t ∈ T , we have β t = β 0 t + β 1 t with probability one. It is shown in the next theorem that the null set on which the equality fails is independent of t.

Theorem 1 a) The randon functions β 0 and β 1 are independent. Furthermore, with probability one, the random functions β, β 0 and β 1 are continuous and β t = β 0 t + β 1 t for all t ∈ T . b) β 0 is a centred Gaussian process with covariance function K 0 defined by K 0 (s, t) = PK s (t) and RKHS H 0 . With probability one, β 0 t = 0 for all t ∈ T 0 . c) Similarly, β 1 is a centred Gaussian process with covariance function K 1 defined by K 1 (s, t) = QK s (t) and RKHS H 1 .

An interesting consequence of Theorem 1 is that the distribution of β 0 can be viewed as the distribution of β conditioned by β τ = 0 for all τ ∈ T 0 (although a precise definition of a process conditioned by an event of probability zero is beyond the scope of the paper). Indeed, by noting that, for all f ∈ H and all t ∈ T , f (t) = 0 if and only if (f, K t ) H = 0, it can easily be proved that H 1 , the orthogonal complement of H 0 in H, is the closure in H of the subspace spanned by K τ for all τ ∈ T 0 . Then, given that β τ = 0 for all τ ∈ T 0 , we deduce that K τ (t) = E(β τ β t ) = 0 for all τ ∈ T 0 and t ∈ T and therefore H 1 = {0}. Finally, since K 1 ∈ H 1 , we have K 1 = 0, β 1 = 0 and β = β 0 with probability one.

As K 0 ∈ H, it can be expected that the trajectories of β 0 and β share the same smoothness properties. Proposition 2 shows that this is actually the case when the smoothness properties are expressed by means of a RKHS with some kernel K. Several examples of RKHS of smooth functions are given in Berlinet & Thomas-Agnan (2004, Chapter 7).

Proposition 2 Let K be a continuous positive definite kernel on T × T such that H ⊂ H where H denotes the RKHS with kernel K. If the trajectory of β belongs to H with propability one, then the trajectory of β 0 (and β 1 ) belongs to H with propability one as well.

An immediate consequence of Proposition 2 is that, if T ⊂ R and if the trajectory of β has m -1 absolutely continuous derivatives and a square integrable m-th derivative, then the trajectory of β 0 shares the same smoothness property (see [START_REF] Wahba | Spline Models for Observational Data[END_REF], Chapter 1, for a study of the corresponding space H in this case).

Applications

The general Bayesian model

In this section, we consider the following Bayesian model:

Y i |µ, σ 2 , β 0 ∼ N µ + T x i (t)β 0 t dt, σ 2 β 0 |σ 2 , T 0 ∼ GP (0, σ 2 K 0 ) p(µ, σ 2 , T 0 ) ∝ σ -2 p(T 0 ), ( 8 
)
where the random variables Y i are independent given (µ, σ 2 , β 0 ) and p is a generic notation for a density distribution. As defined in Section 3, the kernel K 0 is the orthogonal projection on H 0 of a kernel K and, therefore, does depend on T 0 . Note that the last line means that (µ, σ 2 ) is independent of T 0 and has a non-informative prior distribution with density p(µ, σ 2 ) ∝ 1/σ 2 . Two particular prior distributions for T 0 are proposed in Section 4.2.

The posterior distribution of (T 0 , σ 2 , µ) By applying Proposition 1 with

Y i replaced by Y i -µ and K replaced by σ 2 K 0 , we deduce that the conditional distribution of Y given (µ, σ 2 , T 0 ) is N n (µ1 n , σ 2 M) where 1 n = (1, . . . , 1) , M = Σ 0 + I n and Σ 0 ij = T T K 0 (s, t) x i (s) x j (t)dsdt.
A method for calculating the orthogonal projection in a RKHS and a formula for the computation of Σ 0 using the rectangle method are given in the Appendix. Some classical calculations show that the conditional distribution of (µ, σ 2 ) given (Y, T 0 ) is N IG(S 1Y /S 11 , 1/S 11 , (n -1)/2, b) where

S 11 = 1 n M -1 1 n , S 1Y = 1 n M -1 Y, S Y Y = Y M -1 Y, and b = 0.5(S Y Y -S 2 1Y /S 11
). Simulations from the posterior distribution of (µ, σ 2 , T 0 ) can be obtained by a Metropolis-Hastings-Within-Gibbs algorithm.

An estimate of β 0 By applying Proposition 1 with Y i replaced by Y i -µ and K replaced by σ 2 K 0 , we deduce that the posterior distribution of

β 0 given (µ, σ 2 , T 0 ) is GP (m, K * ) with m(t) = L 0 x(t) M -1 (Y -µ1 n ) and K * (s, t) = σ 2 [K 0 (s, t) -L 0 x(s) M -1 L 0 x(t)] ,
where L 0 is the integral operator with kernel K 0 . We deduce from the above paragraph that E(β 0 t |Y, T 0 ) = L 0 x(t) M -1 (Y -S Y 1 /S 11 1 n ) and we estimate the function β 0 by β0 (t) = E(β 0 t |Y, T 0 ) when T 0 is fixed at its posterior mode T 0 . Note that, contrary to E(β 0 t |Y), β0 vanishes on T 0 and is therefore interpretable. A formula for the computation of β0 on a grid is given in the Appendix. A credible interval of β 0 t for each t ∈ T can be obtained by simulating trajectories from the posterior distribution of β 0 (by simulating first (T 0 , σ 2 , µ) from its posterior distribution).

Setting the hyperparameters Recall that K 0 is the orthogonal projection of K in the space H. Therefore, the choice of the covariance function K can have important consequences in the final estimation of β 0 . This choice is usually decomposed into two steps: first, a parametric family is chosen and then the parameters within the chosen family are set. We refer the reader to [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] for a presentation of the different methodologies for setting these parameters. We arbitrarily take the popular squared-exponential covariance function

K(s, t) = σ 2 K exp - 1 2 s -t l 2
with length scale l and signal variance σ 2 K . Inferential difficulties may arise in estimating both the two parameters σ 2 K and l [START_REF] Zhang | Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics[END_REF]. Therefore, as the value of σ 2 K have a very low impact on the posterior distribution, we set it to 1.

The choice of l is of particular importance as it controls the flexibility of the random function β 0 . We notice on simulations that, if l is too large, the lack of flexibility of β 0 entails the concentration of the posterior distribution of T 0 around the empty set. On the contrary, if l is small or tends to zero, the consequences on the posterior of T 0 are rather insignificant as, in this situation, the range of T 0 is mainly controlled by the data. We use this robustness property to set the value of l: we put a uniform prior distribution on a coarse grid and estimate l by l the infimum of the 90% highest posterior density (HPD) region. This estimate is lower that the classical estimate defined by the mode of the posterior distribution and, as explained above, prevents from a lack of flexibility of β 0 . The HPD region is obtained by simulating l from its posterior distribution. This can be acheived by including an independent proposal for l in the Metropolis-Hastings step above. Note that a full Bayesian analysis with the additionnal parameter l could also be performed, but this would give a very flat posterior distribution for T 0 for small sample sizes. For this reason, we prefer to use an empirical Bayes strategy using the fixed value l in the applications below.

A simulation study

Simulated data We arbitrarily set T = [-3, 3]. The functional coefficient β 0 and the functional covariates x i are discretized on a regular grid (t l ) with size g = 2 7 . The (true) functional coefficient β 0 true , plotted in Figure 1, is the orthogonal projection of the function t → sin(tπ/4) onto the subspace of functions that vanish on T 0 = [-1, 0.5] in the RKHS with kernel K(s, t) = exp (-2(t -s) 2 ). The functional covariates x i are randomly simulated from a centred Gaussian process with the covariance function K. The corresponding values of Y i are obtained from (1) where β is replaced by β 0 true , µ = 0 and σ 2 = 0.25; the integral being simply approximated by the rectangle method. We fix the sample size at n = 30. Figure 1: True functional coefficient β 0 true (dashed line), estimate β0 (plain line) and 95% credible intervals of β 0 (t) for all t; the corresponding true interval T 0 is indicated by two vertical short lines while the estimate T 0 is indicated by a wide band. Left: Prior 1 (T 0 is a single interval). Right: Prior 2 with α = 4 (T 0 is an union of intervals).

Prior 1 (T 0 is a single interval) From now on, we consider the discretized version of T , namely T = {t 1 , . . . , t g }. We assume that T 0 is a single interval and put a uniform prior on the intervals with at least two elements. As T is discrete, an interval is simply a sequence of consecutive elements of T . The proposal distribution for T 0 encreases or reduces the range of T 0 by 1. We first run the algorithm with a uniform prior for the additional parameter l on a regular 20-point grid from 0.1 to 2 as explained above. The posterior distribution of l is clearly unimodal with a 90% HPD region equal to {0.5, . . . , 1.4}. Then, we set l = 0.5, run the chain with 3 × 10 5 iterations and discard the first twenty thousand iterations. The parameters µ and σ 2 are estimated by their posterior expectation, E(µ|Y) = 0.16 and E(σ 2 |Y) = 0.27, while T 0 is estimated by its posterior mode T 0 = [-0.75, 0.70] whose the posterior probability is 0.22%. The chain visits 2345 different values of T 0 ; the posterior distribution of T 0 is rather flat in a neighborhood of T 0 . The estimate β0 and a credible interval are given in Figure 1.

Prior 2 (T 0 is an union of intervals) We propose a prior for T 0 so that every subset of T has a positive probability but with high probabilities for subsets T 0 associated with a small number of runs; by run, we mean a sequence of consecutive elements of T . Note that a run can be viewed as an interval of the discrete set T . The prior density p(T 0 ) is chosen to be proportional to e -α r(T 0 ) where r(T 0 ) denotes the total number of runs of T 0 and of T \ T 0 . The distribution of r(T 0 ) derived from p(T 0 ) is given in the Appendix. We set α = 4; with this value, the expected number of runs is 3.3 (with a standard deviation of 1.5) which corresponds to our prior belief. Note that, when the number of runs is 3, T 0 reduces to a single interval or a union of two intervals. The proposal distribution for T 0 first chooses a run of T at random (not necessarily in T 0 ) and then, adds or removes an element at the ends of the run with probability 0.5 or removes an element in the interior of the run with probability 0.5; in the latter case, the chosen run is splitted into 3 runs.

We proceed similarly as in the previous paragraph and obtain very similar results: l = 0.5, E(µ|Y) = 0.16, E(σ 2 |Y) = 0.27, T 0 = [-0.70, 0.84] (with a posterior probability of 0.23%) and an estimate β0 very close to that obtained with Prior 1 (Figure 1). The chain visits 14452 different values of T 0 , the posterior expectation of the number of runs is 3.24 (with a standard deviation of 0.45).

A real case study

The data set We apply our method to predict the production of black truffles of an orchard in the south of France given the rainfall curves. The dataset is described in detail in [START_REF] Grollemund | Bayesian functional linear regression with sparse step functions[END_REF] along with the biological questions of interest. For each year from 1986 to 1999, the scalar response is the production of black truffles of the current year and the functional predictor consists of the cumulative rainfalls measured every 10 days from the 1st of January of the previous year to the 31st of March of the current year. Hence, the functional predictor reduces to the vector of the cumulative rainfalls for 45 ten-days periods.

Bayesian inference We use model 8 with Prior 2 with α = 1.35; with this value, the expected number of runs is 10.26 (with a standard deviation of 2.7) which implies a set T 0 composed of 5 disjoint intervals and corresponds to our prior belief. We first adopt the strategy of Section 4.1 to fix the value of l. Contrary to the simulation study, the posterior distribution of l is not clearly unimodal but is almost uniform even for a very large grid range. As it seems impossible to fix l by an empirical Bayes approach we proceed as follows. We remark that the correlation between β s and β t reduces to K(s, t) and that K(s, t) = e -5 ≈ 0 when |s -t| = √ 10l. Therefore, by taking l = 3, β s and β t are independent as soon as |s -t| ≥ 3 √ 10 ≈ 10 which roughly corresponds to our prior belief on β.

We run a chain with 3×10 5 iterations and discard the first thousand iterations. The chain visits 99593 different values of T 0 . The posterior expectation of the number of runs is 11.02 (with a standard deviation of 2.95) which is slightly greater than the prior expectation. The posterior distribution of T 0 is rather flat in the neighborhood of the mode T 0 and several values of T 0 with almost the same posterior probability could have been chosen to construct different estimates β0 . For that reason, we consider another way to estimate (the complement of) T 0 . For each t ∈ {1, . . . , 45}, we compute the posterior probability that β 0 (t) = 0, i.e., that t / ∈ T 0 . The results given in Figure 2 (right panel) are roughly consistent with those of [START_REF] Grollemund | Bayesian functional linear regression with sparse step functions[END_REF] but some differences can be noted: in particular, the central peak obtained with our model is shifted to the right for l = 3. We also run our algorithm with different values of l and note that, for small values(l ∈ {1, 2}), a new peak appears at the beginning of winter of the previous year (t = 0). This peak, associated with a negative value of β0 (t), indicates that the rainfalls at the beginning of winter of the previous year may have a negative impact on the production of truffles. We refer the reader to [START_REF] Grollemund | Bayesian functional linear regression with sparse step functions[END_REF] for a review of the literature on black truflles production and life cycle. 

Conclusion

In this paper, we provide a prior distribution of a functional parameter β 0 = (β 0 t , t ∈ T ) so that the trajectories of β 0 are smooth and vanish on a given subset T 0 . We show that this distribution can be interpreted as the conditional distribution of a Gaussian process β = (β t , t ∈ T ) given that β t = 0 for all t ∈ T 0 . Then, this prior is used to estimate an interpretable version of the functional parameter of the linear regression model with functional predictor and scalar response. In the applications, we show that this prior can easily be used with different prior distributions for T 0 : from an unknown single interval to a completly unknown subset of T .

Other shape constraints on functions can be taken into account by using the process β 0 of this paper. For instance, assuming that T = [0, 1] if we integrate β 0 once, twice or third on [0, t], we obtain a process whose the trajectories are constant, linear or quadratic on T 0 respectively with the same almost sure regularity properties as the initial process. In the same spirit, the construction of the conditional distribution of Section 3, namely by taking the orthogonal projection onto a subspace of the RKHS of a Gaussian process, can be generalized to any subspace H 0 to obtain processes with particular almost sure properties. We plan to pursue in such directions for future works.

Appendix A: Proof

Proof of Lemma 1 Since β is continuous with probability one, it is also measurable (that is measurable in the pair of variables (t, ω) ∈ T × Ω) by Doob (1953, Theorem 2.5). Take f ∈ L 1 (T ) and set ν(A) = A f (t)dt. Since ν is a bounded measure on T , we can apply Proposition 3.9 of [START_REF] Neveu | Processus aléatoires gaussiens[END_REF] to the Gaussian random function β; this concludes the proof by noting that

T ν(dt)β t = T f (t)β t dt.
Proof of Proposition 1 In this proof, we shall derive the posterior distribution of β from the posterior distribution of F . The posterior distribution of F in model ( 7) is a Gaussian process with mean function m * F and covariance function R * given by:

m * F (g) = R(g, x) (Σ + σ 2 I n ) -1 Y, R * (f, g) = R(f, g) -R(g, x) (Σ + σ 2 I n ) -1 R(f, x), (9) 
with the notation R(g, x) = (R(g, x 1 ), . . . , R(g, x n )) for any g ∈ L 1 (T ). This latter result is standard in the literature on regression Gaussian process model. Given the distribution (9) for F , we aim at finding the distribution of β such that F (g) = T g(t)β t dt. Take m ∈ N and t 1 , . . . , t m in T and consider the random vector v = (v 1 , . . . , v m ) with entry v l = F (η t l ,ε ) where η t l ,ε is defined in Lemma 2. Then, v is multivariate Gaussian with

E(v l ) = m * F (η t l ,ε ) and cov(v l , v k ) = R * (η t l ,ε , η t k ,ε ). By noting that R(η t l ,ε , x i ) = T η t l ,ε (u)Lx i (u)du,
we deduce from Lemma 2 that R(η t l ,ε , x i ) → Lx i (t l ) as ε → 0; the continuity of Lx i being a consequence of the continuity of K. Similarly, we deduce from Lemma 2 that R(η t l ,ε , η t k ,ε ) → K(t l , t k ). Then, it is easily seen that m F (η t l ,ε ) → m(t l ) and R * (η t l ,ε , η t k ,ε ) → K * (t l , t k ). On the other hand, since β is continuous with probability one, we deduce from Lemma 2 that v → (β(t 1 ), . . . , β(t m )) as ε → 0 with probability one and the proof is complete.

The marginal distribution of Y for model ( 7) is a standard result; it can easily be obtained by noting that(F (x 1 ), . . . , F (x n )) ∼ N n (0, Σ).

Lemma 2 For all t ∈ T and ε > 0, let

η t,ε (u) = 1 λ(B(t, ε) ∩ T ) 1 B(t,ε) (u)
where λ denotes the Lebesgue measure on R d , B(t, ε) denotes the closed ball with center t and radius ε and 1 A denotes the indicator function of the set A. Then, for all (t, s) ∈ T 2 and all continuous functions f and g,

T η t,ε (u)f (u)du → f (t) and T η t,ε (u)η s,ε (v)g(u, v)dudv → g(t, s) as ε → 0.
Proof of Lemma 2 First note that, as T is a product of compact intervals, λ(B(t, ε) ∩ T ) > 0 for all t ∈ T and ε > 0. We have that

T η t,ε (u)f (u)du -f (t) = T η t,ε (u)(f (u) -f (t))du ≤ sup u∈B(t,ε) |f (u) -f (t)|,
and this last term tends to 0 by the continuity of f . We proceed similarly for the convergence of T η t,ε (u)η s,ε (v)g(u, v)dudv.

Proof of Theorem 1 Let us first show that H 0 = {f ∈ H, f (t) = 0 for all t ∈ T 0 } is a closed subspace of H. Clearly, it is a linear space. Take f n ∈ H 0 such that f n → f in H. Thanks to the reproducing property, we have

f (t) = (f, K t ) H = lim(f n , K t ) H = lim f n (t) = 0
; hence H 0 is closed and the orthogonal projection onto H 0 does exist. a) By construction, H 0 and H 1 are two orthogonal Gaussian Hilbert subspaces of H. Hence, the sub σ-algebras of A generated by H 0 and H 1 are independent (Neveu, 1968, Proposition 2.4). Since β 0 t ∈ H 0 and β 1 s ∈ H 1 , the sub σ-algebras generated by β 0 and β 1 are independent as well. Actually, it can be seen that H 0 (resp. H 1 ) is exactly the Hilbert space generated by the random function β 0 (resp. β 1 ) and, therefore, the sub σ-algebras generated by β 0 and by H 0 (resp. β 1 and by H 1 ) coincide (Neveu, 1968, Lemma 2.3).

Write d 0 (s, t) = E(β 0 s -β 0 t ) 2 for the canonical metric of β 0 and define d 1 , the canonical metric of β 1 , in a similar way. From the independence of β 0 and β 1 , we deduce that d 2 (s, t) = d 2 0 (s, t) + d 2 1 (s, t). Hence, d(s, t) ≥ d 0 (s, t) and any d-ball is included into a d 0 -ball with same center and same radius. If we denote by N 0 ( ) the smallest number of closed d 0 -balls of radius that cover T , we have that N 0 ( ) ≤ N ( ) and we deduce from (4) that ∞ 0 log N 0 ( )d( ) < ∞. We deduce the almost sure continuity of β 0 (and β) from Adler (1990, Corollary 4.15 page 106). We proceed similarly with β 1 .

By construction, for all t ∈ T , we have that β t = β 0 t + β 1 t with probability one. If we denote by T * a countable, dense subset of T , we have that, with probability one, β t = β 0 t + β 1 t for all t ∈ T * . We conclude that, with probability one, β t = β 0 t + β 1 t for all t ∈ T thanks to the continuity of the random functions. b) By [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] 

0 that K 0 (s, t) = E(β 0 s β 0 t ) = (PK s , PK t ) H = (PK s , K t ) H = PK s (t) as P = P 2 is self-adjoint; hence K 0 (s, t) = PK s (t)
. We deduce from this last equality and Berlinet & Thomas-Agnan (2004, Theorem 11) that H 0 is the RKHS with reproducing kernel K 0 .

Let us show that, with probability one, β 0 (t) = 0 for t ∈ T 0 . By the definition of P, PK t (s) = 0 for all s ∈ T 0 . Then, for all t ∈ T 0 , E(β 0 t ) 2 = K 0 (t, t) = PK t (t) = 0. Thus, with probability one, β t = 0 for t in a countable dense subset of T 0 and we conclude by the continuity of β 0 .

The same reasoning applies to prove c).

Proof of Proposition 2 Note that, since K is a positive definite, d 2 K (s, t) = K(s, s) -2 K(s, t) + K(t, t) defines a metric d K on T (Lukić & Beder, 2001, Lemma 4.2). Then, since T is compact and K continuous, H is a separable space of continuous functions [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF], Corollary 5 page 36). Finally, as continuity (with respect to any usual norm of R d ) and d K -continuity are equivalent [START_REF] Adler | An introduction to continuity, extrema, and related Topics for general Gaussian processes[END_REF], page 3), the trajectories of β and β 0 are also d K -continuous. We are now in a position to apply Theorem 7.5 of [START_REF] Lukić | Stochastic processes with sample paths in reproducing kernel hilbert spaces[END_REF] to β and β 0 . First, since the trajectories of β belong to H with probability one, we conclude that there exists a (unique, positive, symmetric) nuclear linear operator L KK : H → H whose range is contained in H and such that (f, g) H = (L KK f, g) H for all f ∈ H and g ∈ H, where (f, g) H denotes the inner product in H. Now, set L KK 0 = PL KK where P is the orthogonal projection defined in Section 3. Clearly, L KK 0 is a linear operator whose range is contained in H 0 and such that, for all f ∈ H and g ∈ H 0 , we have

(f, g) H = (L KK f, g) H = (L KK f, Pg) H = (L KK 0 f, g) H (10) 
as Pg = g and P is self-adjoint. Since H 0 is a closed subspace of H and K 0 (s, t) = PK s (t), the Hilbert subspace H 0 and the RKHS with kernel K 0 coincide [START_REF] Neveu | Processus aléatoires gaussiens[END_REF], Proposition 3.15 page 59). Thus we have (L KK 0 f, g) H = (L KK 0 f, g) H 0 and, from (10), we deduce that L KK 0 is the dominance operator of H over H 0 defined in Lukić & Beder (2001, Theorem 1.1). It is enough to show that L KK 0 is nuclear to conclude, by Lukić & Beder (2001, Theorem 7.5), that the trajectories of β 0 are in H with probability one. For all f ∈ H, since L KK 0 f ∈ H, note that

(L KK 0 f, f ) H = (L KK 0 f, L KK 0 f ) H = PL KK f H
and similarly that (L KK f, f ) H = L KK f H . Since P : H → H is an orthogonal projection onto H 0 , PL KK f H ≤ L KK f H and we have that (L KK 0 f, f ) H ≤ (L KK f, f ) H . Since L KK 0 and L KK are compact non-negative linear operators from H to H, we conclude by the min-max theorem (Gohberg et al., 2003, Theorem 9.1 page 186), that the eigenvalues of L KK 0 are bounded by the eigenvalues of L KK and, therefore, that L KK 0 is nuclear.

K τ τ . Let t = (t i ) be a regular grid of T . If f t and Pf t denote the column vectors with entry f (t i ) and Pf (t i ) respectively, we have Pf t ≈ f t -K tτ K -1 τ τ f τ . Similarly, we obtain the following approximation for the n×n-matrix K 0 tt with entry K 0 (t i , t j ): K 0 tt ≈ [K tt -K tτ K -1 τ τ K τ t ] where K tt and K τ t = K tτ are the matrices with entry K(t i , t j ) and K(τ i , t j ) respectively. In this paper, the discretization (τ j ) is a subset of the grid (t l ) but it is worth noticing that (τ j ) can be chosen independently of (t l ).

Computation of Σ 0 and β0 We denote by L 0 x t the n × g-matrix with entry L 0 x i (t l ) and by β0

t the column vector with entry β0 (t l ). Using the rectangle method, we have L 0 x t ≈ δK 0 tt X and Σ 0 ≈ δ 2 XK 0 tt X where X is the n × g-matrix with entry X ij = x i (t j ) and δ = t i+1 -t i . If we denote by β 0 t the random vector with entry β 0 t l , the posterior distribution of β 0 t given (µ, σ 2 , T 0 ) is N g (m t , K * tt ) with m t = L 0 x t M -1 (Y -µ1 n ) and K * tt = σ 2 [K 0 tt -L 0 x t M -1 L 0 x t ]. Then, since E(µ|Y, T 0 ) = S 1Y /S 11 , we deduce that E(β t |Y, T 0 ) = L 0 x t M -1 (Y-S 1Y /S 11 1 n ) and β0

t is equal to this last expression when T 0 is fixed at its posterior mode.

The prior distribution of T 0 (Prior 2 ) Remember that T = {t 1 , . . . , t g }, p(T 0 ) ∝ e -α r(T 0 ) where r(T 0 ) is the total number of runs of T 0 and of T \ T 0 . Let us derive the distribution of r(T 0 ) from p(T 0 ). It is convenient to represent T 0 by a vector of {0, 1} g whose l-th coordinate is 1 if t l ∈ T 0 and 0 otherwise. Thus, T 0 is associated with successive sequences of 0 and sequences of 1 (runs). We set S k = {T 0 ⊂ T, r(T 0 ) = k} and we denote by c k the cardinal of S k . Then, we have Pr(r(T 0 ) = k) = T 0 ∈S k p(T 0 ) = T 0 ∈S k e -α r(T 0 ) T 0 ⊂T e -α r(T 0 ) = c k e -αk g k=1 c k e -αk .

We remark that T 0 is determined by the value (0 or 1) of the first run and the locations of the beginnings of the other runs. Since there are 2 possible values for the first run and g-1 k-1 ways of choosing the beginnings of the other runs, we have c k = 2 g-1 k-1 .
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  [Theorem 1.3], every element of H is a centred Gaussian random variable. By construction, β 0 t ∈ H 0 ⊂ H is therefore a centred Gaussian random variable. By noting that Θβ 0 s = PK s , we deduce from the definition of K

Appendix B: Computational issues

Computing an orthogonal projection in a RKHS Since we noticed in Section 3 that H 1 is the closure in H of the subspace spanned by K(τ, .) with τ ∈ T 0 , it is thus natural to approximate any g ∈ H 1 by a finite sum of the form m j=1 a j K τ j for some fixed τ j ∈ T 0 ; the best approximation being obtained by the orthogonal projection onto the subspace spanned by {K τ j , j = 1, . . . , m}. Thus, for any f ∈ H = H 0 ⊕ H 1 , we have Pf ≈ f -m j=1 a j K τ j . Since Pf (τ i ) = 0, we deduce that a = (a 1 , . . . , a m ) is a solution of the linear system f τ = K τ τ a where f τ = (f (τ 1 ), . . . , f (τ m )) and K τ τ is the m×m-matrix with entry K(τ i , τ j ). Note that such a solution exists and is unique when K is positive definite; furthermore, it can be efficiently computed by classical algorithms based on the Choleski decomposition of
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