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Abstract

We provide a prior distribution for a functional parameter so that
its trajectories are smooth and vanish on a given subset. This dis-
tribution can be interpreted as the distribution of an initial Gaussian
process conditioned to be zero on a given subset. Precisely, we show
that the initial Gaussian process is the sum of the conditioned process
and an independent process with probability one and that all the pro-
cesses have the same almost sure regularity. This prior distribution is
use to provide an interpretable estimate of the coefficient function in
the linear scalar-on-function regression; by interpretable, we mean a
smooth function that may possibly be zero on some intervals. We ap-
ply our model in a simulation and real case studies with two different
priors for the null region of the coefficient function. In one case, the
null region is known to be an unknown single interval. In the other
case, it can be any unknown unions of intervals.

Keywords: constrained Gaussian process, Bayesian regression, scalar-on-function
regression, functional predictor, shape constraints, RKHS.

1 Introduction

We consider the regression model with a functional predictor xi ∈ L1(T ) and
a scalar response Yi given by
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Yi = µ+

∫
T

xi(t)β(t)dt+ εi, i = 1, . . . , n, (1)

where µ ∈ R, β is a continuous function on T , ε1, . . . , εn are independent ran-
dom variables with a N(0, σ2) distribution. For instance, the scalar response
may be the amount of some agricultural production and the functional co-
variate may be the rainfall or the temperature history. An issue which arises
naturally in many applied contexts is the detection of periods of time which
influence the final outcome the most or, equivalently, the periods of time for
which the covariate has almost no impact on the response. To this end, we
provide in this paper an interpretable estimate of the functional coefficient
β. By interpretable, we mean a smooth function that may possibly be equal
to zero on some intervals. The value of the functional covariate on these
intervals has no effet on the response; hence an interpretability of β.

Model (1), usually called the linear scalar-on-function regression, is very
popular in the functional data analysis (fda) literature. Many ideas, tech-
niques and applications of fda can be found in the monographs Ramsay &
Silverman (1997) and Ferraty & View (2006); the latter being focused on
nonparametric methods. A more recent overview of concepts of fda is given
in Wang et al. (2016). In addition to the linear model (1), the literature
on scalar-on-function regression also includes nonlinear and nonparametric
models; for a comprehensive review, we refer the reader to Reiss et al. (2017).
A common general approach to fitting model (1) is to expand the coefficient
function β onto a basis of functions such as splines, wavelets or data-driven
bases and to use a regularization technique (penalties, constraints, prior dis-
tributions) to prevent overfitting (e.g., Cardot et al., 1999; Brown et al., 2001;
Crainiceanu & Goldsmith, 2010; Goldsmith et al., 2011; Zhao et al., 2012).

Such standard methods provide estimates of β which are not exactly equal
to zero on some intervals even if there is no relationship between the response
and the covariate for large regions of t. Furthermore, the interpretation may
be hard because of indesirable flutuations of the estimate. Some authors
have proposed new approaches to overcome these problems. In a frequentist
framework, James et al. (2009) discretizes the coefficient function and obtains
an interpretable estimate with sparse derivatives of different orders using an
L1-penalty. With a similar discretization, Tibshirani et al. (2005) obtains a
sparse estimate with local constancy using the Fused lasso penalties. Zhou
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et al. (2013) proposes a two-stage estimator to simultaneously identify the
null region of β and an estimate of β on its support. At stage one, the null
region is roughly identified by expanding β onto a B-spline basis and using the
Dantzig selector. The second stage refines the estimation of the null region
and achieves the estimation of β. Picheny et al. (2019) also focuses on the
estimation of the support of β by using penalized versions of Sliced Inverse
Regression. In a Bayesian framework, Grollemund et al. (2019) proposes
estimates of both the support and the coefficient function by restraining β
to be a step function equal to zero on some intervals.

In this paper, we address the problem by adopting a Bayesian approach:
put a prior distribution on the unkown parameters according to a prior knowl-
edge and compute the posterior. We assume that it is known that the func-
tion coefficient is smooth and equal to zero on some, possibly unknown,
subset T 0 ⊂ T . Our main contribution will be to construct a prior for β
according to this prior knowledge. To this end, Gaussian processes are natu-
ral candidates as the smoothness of the trajectories can be controlled by the
covariance function (Cramér & Leadbetter, 1967; Adler, 1990). Furthermore,
the implementation is rather easy thanks to the conjugacy property. As the
trajectories of a usual Gaussian process with specific smoothness properties
do not vanish on some interval, it is natural to consider such a process con-
ditioned to be zero on some intervals. The conditioned process will share the
smoothness properties of the initial processes while being equal to zero on
some intervals.

Gaussian process priors appear in the Bayesian literature for several
decades, including density estimation (Leonard, 1978), binary and normal
regression (Kimeldorf & Wahba, 1970; Wood & Kohn, 1998), computer ex-
periments (Morris & Mitchell, 1995; Gu & Berger, 2016), Bayesian numerical
analysis (Diaconis, 1988; O’Hagan, 1992; Hennig et al., 2015) and functional
analysis of variance (Kaufman & Sain, 2010). For a recent account on priors
on functions, we refer the reader to Ghosal & van der Vaart (2017).

As we take a Gaussian process for the prior distribution for β, we will
denote βt instead of β(t) in the sequel. With such a prior, it can be seen
(Section 2) that (1) is a special case of the Gaussian process regression model
and can be written as follows:

Yi = µ+ F (xi) + εi, i = 1, . . . , n,
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where the process F = (F (x), x ∈ L1(T )) is defined by

F (x) =

∫
T

x(t)βtdt (2)

and β = (βt, t ∈ T ) is a centred, real-valued Gaussian process. Although
Gaussian process regression has received considerable attention (see O’Hagan,
1978; Rasmussen & Williams, 2006 for scalar covariates and Shi & Choi, 2011;
Wang et al., 2017; Konzen et al., 2021 for functional covariates and a func-
tional response), to my knowledge, the above special case (2) has never been
studied in the literature.

In Section 2, we study the process F and derive the posterior distribution
of β. Section 3 contains the main contribution of the paper: given a centred
Gaussian process β with specific almost sure regularity and a subset T 0, we
construct a Gaussian process β0 which can be interpreted as the process β
conditioned to be zero on a given subset T 0. The trajectories of β0 are equal
to zero on a given set T 0 while sharing the same almost sure regularity as
β. More precisely, it is shown that β is the sum of β0 and an independent
Gaussian processes β1 with probability one. Results of Sections 2 and 3 are
applied to a simulation study and a real case study in Section 4. In this
section, T 0 is unknown and two different priors for T 0, corresponding to
different prior knowledges, are considered. For the former, it is known that
T 0 is a single (unknown) interval. In the latter case, it is only known that
’simple’ subsets T 0 are more likely than others; in particular, T 0 can be any
union of unknown intervals. The proofs and some computational formulas
are gathered in the Appendix.

2 The unconstrained model

In this section, we assumed that µ = 0 and that σ2 is known; the general
case with µ and σ2 unknown will be studied in Section 4. Precisely, we focus
on the following Bayesian model:

Yi|β ∼ N(
∫
T
xi(t)βt dt, σ2)

β ∼ GP (0, K),
(3)

where the random variables Yi are independent given β. The last line of (3)
means that β = (βt, t ∈ T ) is a real-valued centred Gaussian process with a
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continuous covariance fonction K. We say that model (3) is unconstrained
as it is not assumed that the trajectories of β are zero on some intervals;
this latter case will be studied in Section 3. Some technical assumptions on
the process are required: we assume that T ⊂ Rd is a product of compact
intervals of R and that β is separable. Separability is a weak assumption
in our context as it is always possible to replace the process by a separable
modification (Doob, 1953). As we are interested in random functions with
smooth trajectories, we also assume the following entropy condition∫ ∞

0

logN(ε)d(ε) <∞, (4)

where N(ε) is the smallest number of closed d-balls of radius ε that cover
T and d(s, t) =

√
E(βs − βt)2 is the canonical metric. Entropy condition

(4) is sufficient for the almost sure continuity of centred Gaussian processes.
Sufficient conditions for (4) to hold can be found in Adler (1990, pages 13-15
and 106).

We denote by H the Hilbert space generated by the random function
β, that is, the closure in L2(Ω,A,Pr) of the linear span generated by the
random variables βt defined on some probability space (Ω,A,Pr). Note that
any random variable of H is centred Gaussian (Janson, 1997, Theorem 1.3).
Since the trajectory of β is continuous with probability one,

∫
T
f(t)βtdt can

be defined for all f ∈ L1(T ) with probability one as well.
The following Lemma shows that expectation and integration with re-

spect to t can be interchanged and is useful to determine the distribution of∫
T
f(t)βtdt.

Lemma 1 The random function β is measurable and, for all f ∈ L1(T ),∫
T
f(t)βtdt is the unique element of H such that

E

[
Y

∫
T

f(t)βtdt

]
=

∫
T

f(t)E[Y βt]dt, (5)

for all Y ∈ L2(Ω,A,Pr).

Consider the random process F = (F (g), g ∈ L1(T )) with L1(T ) as index
set where F (g) is defined by (2). Since F (g) ∈ H by Lemma 1, any linear
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combination of such variables for some g ∈ L1(T ) is inH and is therefore cen-
tred Gaussian. Thus, F is a centred Gaussian process whose the covariance
function R is given by:

R(g, f) =

∫
T

∫
T

K(s, t) g(s) f(t)dsdt, (6)

the above equality being obtained by applying (5) twice in the calculation
of E(F (g)F (f)). Therefore, model (3) is a special case of the regression
Gaussian process model with functional covariates and can be rewritten as
follows:

Yi|F ∼ N(F (xi), σ
2)

F ∼ GP (0, R).
(7)

Although the posterior distribution of F for model (7) is a standard result,
this is apparently not the case for the posterior distribution of β for model
(3). This latter distribution is provided by Proposition 1 below. We denote
by L the integral operator with kernel K, that is

Lf(t) =

∫
T

K(t, s)f(s)ds.

Proposition 1 Under model (3), the posterior distribution of β is a Gaus-
sian process on T , GP (m,K∗), where

m(t) = Lx(t)′ (Σ + σ2In)
−1

Y,

K∗(s, t) = K(s, t)− Lx(s)′ (Σ + σ2In)
−1
Lx(t),

Lx(t)′ = (Lx1(t), . . . , Lxn(t)) is the transpose of the column vector Lx(t) with
entry Lxi(t), Y is the column vector with entry Yi, Σ is the n×n-matrix with
entry Σij = R(xi, xj) and In denotes the n×n identity matrix. Furthermore,
the marginal distribution of Y is multivariate normal Nn(0,Σ + σ2In).

3 The constrained Gaussian process β0

In this section, we consider the prior information that the functional coeffi-
cient β is equal to zero on a given set T 0 ⊂ T . A random process β with such
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a property will be called a constrained random process. We shall construct
a constrained Gaussian process β0 from the unconstrained Gaussian process
β of Section 2 in Theorem 1 and study its smoothness properties in Propo-
sition 2. More precisely, we shall show that, with probability one, β can be
decomposed into the sum of two independent Gaussian random functions β0

and β1 such that β0 is zero on T 0. The important point here is that β0 and
β1 share the same smoothness properties with β.

Denote by H the reproducing kernel Hilbert space (RKHS) with kernel K.
It is well-known that H can be identified with an Hilbert space of real-valued
functions on T and that Θ : H → H, defined by Θ(Z)(t) = E(Zβt) is a linear
isometry. Note that Θ(βs) = Ks where Ks is defined by Ks(t) = K(s, t).
If (., .)H denotes the inner product on H, we have the reproducing property :
(f,Ks)H = f(s) for all f ∈ H. Classical results on RKHS and Gaussian
processes can be found in Neveu (1968); Janson (1997); Berlinet & Thomas-
Agnan (2004); van der Vaart & van Zanten (2008).

Let H0 be the subspace of H made up of functions that vanish on T 0. It is
shown in the next theorem that H0 is closed and we denote by P the orthog-
onal projection onto H0. As Θ is an isometry, we deduce that H0 = Θ−1(H0)
is a Hilbert subspace of H and that P = Θ−1PΘ is the orthogonal projection
onto H0. Finally, we set β0

t = Pβt for all t ∈ T . The construction of the
random function β0 = (β0

t , t ∈ T ) is illustrated by the following commutative
diagram.

H Θ //

P
��

H

P
��

H0
Θ
// H0

Similarly, we set H1 = (H0)⊥ for the orthogonal complement of H0 in
H and denote by Q the orthogonal projection onto H1. Then, we construct
β1
t = Qβt where Q = Θ−1QΘ. We can deduce that H1 = Θ−1(H1) is the

orthogonal complement of H0 in H and that Q is the orthogonal projection
onto H1.

By construction, for every t ∈ T , we have βt = β0
t + β1

t with probability
one. It is shown in the next theorem that the null set on which the equality
fails is independent of t.
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Theorem 1 a) The randon functions β0 and β1 are independent. Further-
more, with probability one, the random functions β, β0 and β1 are continuous
and βt = β0

t + β1
t for all t ∈ T .

b) β0 is a centred Gaussian process with covariance function K0 defined
by K0(s, t) = PKs(t) and RKHS H0. With probability one, β0

t = 0 for all
t ∈ T 0.

c) Similarly, β1 is a centred Gaussian process with covariance function
K1 defined by K1(s, t) = QKs(t) and RKHS H1.

An interesting consequence of Theorem 1 is that the distribution of β0

can be viewed as the distribution of β conditioned by βτ = 0 for all τ ∈
T 0 (although a precise definition of a process conditioned by an event of
probability zero is beyond the scope of the paper). Indeed, by noting that,
for all f ∈ H and all t ∈ T , f(t) = 0 if and only if (f,Kt)H = 0, it can easily
be proved that H1, the orthogonal complement of H0 in H, is the closure in
H of the subspace spanned by Kτ for all τ ∈ T 0. Then, given that βτ = 0
for all τ ∈ T 0, we deduce that Kτ (t) = E(βτβt) = 0 for all τ ∈ T 0 and t ∈ T
and therefore H1 = {0}. Finally, since K1 ∈ H1, we have K1 = 0, β1 = 0
and β = β0 with probability one.

As K0 ∈ H, it can be expected that the trajectories of β0 and β share
the same smoothness properties. Proposition 2 shows that this is actually
the case when the smoothness properties are expressed by means of a RKHS
with some kernel K̃. Several examples of RKHS of smooth functions are
given in Berlinet & Thomas-Agnan (2004, Chapter 7).

Proposition 2 Let K̃ be a continuous positive definite kernel on T ×T such
that H ⊂ H̃ where H̃ denotes the RKHS with kernel K̃. If the trajectory of β
belongs to H̃ with propability one, then the trajectory of β0 (and β1) belongs

to H̃ with propability one as well.

An immediate consequence of Proposition 2 is that, if T ⊂ R and if the trajec-
tory of β has m−1 absolutely continuous derivatives and a square integrable
m-th derivative, then the trajectory of β0 shares the same smoothness prop-
erty (see Wahba, 1990, Chapter 1, for a study of the corresponding space H̃
in this case).
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4 Applications

4.1 The general Bayesian model

In this section, we consider the following Bayesian model:

Yi|µ, σ2, β0 ∼ N
(
µ+

∫
T
xi(t)β

0
t dt, σ2

)
β0|σ2, T 0 ∼ GP (0, σ2K0)
p(µ, σ2, T 0) ∝ σ−2 p(T 0),

(8)

where the random variables Yi are independent given (µ, σ2, β0) and p is a
generic notation for a density distribution. As defined in Section 3, the kernel
K0 is the orthogonal projection on H0 of a kernel K and, therefore, does
depend on T 0. Note that the last line means that (µ, σ2) is independent of
T 0 and has a non-informative prior distribution with density p(µ, σ2) ∝ 1/σ2.
Two particular prior distributions for T 0 are proposed in Section 4.2.

The posterior distribution of (T 0, σ2, µ) By applying Proposition 1 with
Yi replaced by Yi−µ and K replaced by σ2K0, we deduce that the conditional
distribution of Y given (µ, σ2, T 0) is Nn(µ1n, σ

2M) where 1n = (1, . . . , 1)′,
M = Σ0 + In and

Σ0
ij =

∫
T

∫
T

K0(s, t)xi(s)xj(t)dsdt.

A method for calculating the orthogonal projection in a RKHS and a for-
mula for the computation of Σ0 using the rectangle method are given in the
Appendix. Some classical calculations show that the conditional distribu-
tion of (µ, σ2) given (Y, T 0) is NIG(S1Y /S11, 1/S11, (n−1)/2, b) where S11 =
1′nM−11n, S1Y = 1′nM−1Y, SY Y = Y′M−1Y, and b = 0.5(SY Y − S2

1Y /S11).
Simulations from the posterior distribution of (µ, σ2, T 0) can be obtained by
a Metropolis-Hastings-Within-Gibbs algorithm.

An estimate of β0 By applying Proposition 1 with Yi replaced by Yi − µ
and K replaced by σ2K0, we deduce that the posterior distribution of β0

given (µ, σ2, T 0) is GP (m,K∗) with m(t) = L0x(t)′M−1(Y − µ1n) and

K∗(s, t) = σ2 [K0(s, t)− L0x(s)′M−1L0x(t)] ,

where L0 is the integral operator with kernel K0. We deduce from the above
paragraph that E(β0

t |Y, T 0) = L0x(t)′M−1(Y − SY 1/S111n) and we estimate
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the function β0 by β̂0(t) = E(β0
t |Y, T 0) when T 0 is fixed at its posterior

mode T̂ 0. Note that, contrary to E(β0
t |Y), β̂0 vanishes on T̂ 0 and is therefore

interpretable. A formula for the computation of β̂0 on a grid is given in
the Appendix. A credible interval of β0

t for each t ∈ T can be obtained by
simulating trajectories from the posterior distribution of β0 (by simulating
first (T 0, σ2, µ) from its posterior distribution).

Setting the hyperparameters Recall that K0 is the orthogonal projec-
tion of K in the space H. Therefore, the choice of the covariance function K
can have important consequences in the final estimation of β0. This choice
is usually decomposed into two steps: first, a parametric family is chosen
and then the parameters within the chosen family are set. We refer the
reader to Rasmussen & Williams (2006) for a presentation of the different
methodologies for setting these parameters. We arbitrarily take the popular
squared-exponential covariance function

K(s, t) = σ2
K exp−1

2

(
s− t
l

)2

with length scale l and signal variance σ2
K . Inferential difficulties may arise

in estimating both the two parameters σ2
K and l (Zhang, 2004). Therefore,

as the value of σ2
K have a very low impact on the posterior distribution, we

set it to 1.
The choice of l is of particular importance as it controls the flexibility of

the random function β0. We notice on simulations that, if l is too large, the
lack of flexibility of β0 entails the concentration of the posterior distribution
of T 0 around the empty set. On the contrary, if l is small or tends to zero,
the consequences on the posterior of T 0 are rather insignificant as, in this
situation, the range of T 0 is mainly controlled by the data. We use this
robustness property to set the value of l: we put a uniform prior distribution
on a coarse grid and estimate l by l̂ the infimum of the 90% highest posterior
density (HPD) region. This estimate is lower that the classical estimate
defined by the mode of the posterior distribution and, as explained above,
prevents from a lack of flexibility of β0. The HPD region is obtained by
simulating l from its posterior distribution. This can be acheived by including
an independent proposal for l in the Metropolis-Hastings step above. Note
that a full Bayesian analysis with the additionnal parameter l could also
be performed, but this would give a very flat posterior distribution for T 0
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for small sample sizes. For this reason, we prefer to use an empirical Bayes
strategy using the fixed value l̂ in the applications below.

4.2 A simulation study

Simulated data We arbitrarily set T = [−3, 3]. The functional coefficient
β0 and the functional covariates xi are discretized on a regular grid (tl) with
size g = 27. The (true) functional coefficient β0

true, plotted in Figure 1, is
the orthogonal projection of the function t→ sin(tπ/4) onto the subspace of
functions that vanish on T 0 = [−1, 0.5] in the RKHS with kernel K(s, t) =
exp (−2(t− s)2). The functional covariates xi are randomly simulated from a
centred Gaussian process with the covariance function K. The corresponding
values of Yi are obtained from (1) where β is replaced by β0

true, µ = 0 and
σ2 = 0.25; the integral being simply approximated by the rectangle method.
We fix the sample size at n = 30.

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Figure 1: True functional coefficient β0
true (dashed line), estimate β̂0 (plain

line) and 95% credible intervals of β0(t) for all t; the corresponding true

interval T 0 is indicated by two vertical short lines while the estimate T̂ 0 is
indicated by a wide band. Left: Prior 1 (T 0 is a single interval). Right: Prior
2 with α = 4 (T 0 is an union of intervals).

Prior 1 (T 0 is a single interval) From now on, we consider the discretized
version of T , namely T = {t1, . . . , tg}. We assume that T 0 is a single interval
and put a uniform prior on the intervals with at least two elements. As
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T is discrete, an interval is simply a sequence of consecutive elements of
T . The proposal distribution for T 0 encreases or reduces the range of T 0

by 1. We first run the algorithm with a uniform prior for the additional
parameter l on a regular 20-point grid from 0.1 to 2 as explained above. The
posterior distribution of l is clearly unimodal with a 90% HPD region equal to
{0.5, . . . , 1.4}. Then, we set l = 0.5, run the chain with 3×105 iterations and
discard the first twenty thousand iterations. The parameters µ and σ2 are
estimated by their posterior expectation, E(µ|Y) = 0.16 and E(σ2|Y) = 0.27,

while T 0 is estimated by its posterior mode T̂ 0 = [−0.75, 0.70] whose the
posterior probability is 0.22%. The chain visits 2345 different values of T 0;
the posterior distribution of T 0 is rather flat in a neighborhood of T̂ 0. The
estimate β̂0 and a credible interval are given in Figure 1.

Prior 2 (T 0 is an union of intervals) We propose a prior for T 0 so
that every subset of T has a positive probability but with high probabilities
for subsets T 0 associated with a small number of runs; by run, we mean a
sequence of consecutive elements of T . Note that a run can be viewed as
an interval of the discrete set T . The prior density p(T 0) is chosen to be
proportional to e−α r(T 0) where r(T 0) denotes the total number of runs of T 0

and of T \ T 0. The distribution of r(T 0) derived from p(T 0) is given in the
Appendix. We set α = 4; with this value, the expected number of runs is
3.3 (with a standard deviation of 1.5) which corresponds to our prior belief.
Note that, when the number of runs is 3, T 0 reduces to a single interval or a
union of two intervals. The proposal distribution for T 0 first chooses a run of
T at random (not necessarily in T 0) and then, adds or removes an element at
the ends of the run with probability 0.5 or removes an element in the interior
of the run with probability 0.5; in the latter case, the chosen run is splitted
into 3 runs.

We proceed similarly as in the previous paragraph and obtain very similar
results: l̂ = 0.5, E(µ|Y) = 0.16, E(σ2|Y) = 0.27, T̂ 0 = [−0.70, 0.84] (with a
posterior probability of 0.23%) and an estimate β̂0 very close to that obtained
with Prior 1 (Figure 1). The chain visits 14452 different values of T 0, the
posterior expectation of the number of runs is 3.24 (with a standard deviation
of 0.45).
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4.3 A real case study

The data set We apply our method to predict the production of black
truffles of an orchard in the south of France given the rainfall curves. The
dataset is described in detail in Grollemund et al. (2019) along with the bi-
ological questions of interest. For each year from 1986 to 1999, the scalar
response is the production of black truffles of the current year and the func-
tional predictor consists of the cumulative rainfalls measured every 10 days
from the 1st of January of the previous year to the 31st of March of the
current year. Hence, the functional predictor reduces to the vector of the
cumulative rainfalls for 45 ten-days periods.

Bayesian inference We use model 8 with Prior 2 with α = 1.35; with this
value, the expected number of runs is 10.26 (with a standard deviation of
2.7) which implies a set T 0 composed of 5 disjoint intervals and corresponds
to our prior belief. We first adopt the strategy of Section 4.1 to fix the value
of l. Contrary to the simulation study, the posterior distribution of l is not
clearly unimodal but is almost uniform even for a very large grid range. As
it seems impossible to fix l by an empirical Bayes approach we proceed as
follows. We remark that the correlation between βs and βt reduces to K(s, t)
and that K(s, t) = e−5 ≈ 0 when |s− t| =

√
10l. Therefore, by taking l = 3,

βs and βt are independent as soon as |s − t| ≥ 3
√

10 ≈ 10 which roughly
corresponds to our prior belief on β.

We run a chain with 3×105 iterations and discard the first thousand itera-
tions. The chain visits 99593 different values of T 0. The posterior expectation
of the number of runs is 11.02 (with a standard deviation of 2.95) which is
slightly greater than the prior expectation. The posterior distribution of T 0 is
rather flat in the neighborhood of the mode T̂ 0 and several values of T 0 with
almost the same posterior probability could have been chosen to construct
different estimates β̂0. For that reason, we consider another way to estimate
(the complement of) T 0. For each t ∈ {1, . . . , 45}, we compute the posterior
probability that β0(t) 6= 0, i.e., that t /∈ T 0. The results given in Figure 2
(right panel) are roughly consistent with those of Grollemund et al. (2019)
but some differences can be noted: in particular, the central peak obtained
with our model is shifted to the right for l = 3. We also run our algorithm
with different values of l and note that, for small values(l ∈ {1, 2}), a new
peak appears at the beginning of winter of the previous year (t = 0). This
peak, associated with a negative value of β̂0(t), indicates that the rainfalls at
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the beginning of winter of the previous year may have a negative impact on
the production of truffles. We refer the reader to Grollemund et al. (2019)
for a review of the literature on black truflles production and life cycle.
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Figure 2: Left: Estimate β̂0 and 95% credible intervals of β0(t) for all t ∈
{1, . . . , 45}. Right: Posterior probability of {t /∈ T 0} for all t ∈ {1, . . . , 45}.

5 Conclusion

In this paper, we provide a prior distribution of a functional parameter
β0 = (β0

t , t ∈ T ) so that the trajectories of β0 are smooth and vanish on
a given subset T 0. We show that this distribution can be interpreted as the
conditional distribution of a Gaussian process β = (βt, t ∈ T ) given that
βt = 0 for all t ∈ T 0. Then, this prior is used to estimate an interpretable
version of the functional parameter of the linear regression model with func-
tional predictor and scalar response. In the applications, we show that this
prior can easily be used with different prior distributions for T 0: from an
unknown single interval to a completly unknown subset of T .

Other shape constraints on functions can be taken into account by using
the process β0 of this paper. For instance, assuming that T = [0, 1] if we
integrate β0 once, twice or third on [0, t], we obtain a process whose the
trajectories are constant, linear or quadratic on T 0 respectively with the same
almost sure regularity properties as the initial process. In the same spirit, the
construction of the conditional distribution of Section 3, namely by taking the
orthogonal projection onto a subspace of the RKHS of a Gaussian process,
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can be generalized to any subspace H0 to obtain processes with particular
almost sure properties. We plan to pursue in such directions for future works.

Appendix A: Proof

Proof of Lemma 1 Since β is continuous with probability one, it is also
measurable (that is measurable in the pair of variables (t, ω) ∈ T × Ω) by
Doob (1953, Theorem 2.5). Take f ∈ L1(T ) and set ν(A) =

∫
A
f(t)dt. Since

ν is a bounded measure on T , we can apply Proposition 3.9 of Neveu (1968)
to the Gaussian random function β; this concludes the proof by noting that∫
T
ν(dt)βt =

∫
T
f(t)βtdt. �

Proof of Proposition 1 In this proof, we shall derive the posterior distri-
bution of β from the posterior distribution of F . The posterior distribution of
F in model (7) is a Gaussian process with mean function m∗F and covariance
function R∗ given by:

m∗F (g) = R(g, x)′(Σ + σ2In)−1Y,
R∗(f, g) = R(f, g)−R(g, x)′(Σ + σ2In)−1R(f, x),

(9)

with the notation R(g, x) = (R(g, x1), . . . , R(g, xn))′ for any g ∈ L1(T ).
This latter result is standard in the literature on regression Gaussian process
model. Given the distribution (9) for F , we aim at finding the distribution of
β such that F (g) =

∫
T
g(t)βtdt. Take m ∈ N and t1, . . . , tm in T and consider

the random vector v = (v1, . . . , vm)′ with entry vl = F (ηtl,ε) where ηtl,ε is
defined in Lemma 2. Then, v is multivariate Gaussian with E(vl) = m∗F (ηtl,ε)
and cov(vl, vk) = R∗(ηtl,ε, ηtk,ε). By noting that

R(ηtl,ε, xi) =

∫
T

ηtl,ε(u)Lxi(u)du,

we deduce from Lemma 2 that R(ηtl,ε, xi)→ Lxi(tl) as ε→ 0; the continuity
of Lxi being a consequence of the continuity of K. Similarly, we deduce
from Lemma 2 that R(ηtl,ε, ηtk,ε) → K(tl, tk). Then, it is easily seen that
mF (ηtl,ε) → m(tl) and R∗(ηtl,ε, ηtk,ε) → K∗(tl, tk). On the other hand, since
β is continuous with probability one, we deduce from Lemma 2 that v →
(β(t1), . . . , β(tm))′ as ε→ 0 with probability one and the proof is complete.
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The marginal distribution of Y for model (7) is a standard result; it can
easily be obtained by noting that(F (x1), . . . , F (xn))′ ∼ Nn(0,Σ). �

Lemma 2 For all t ∈ T and ε > 0, let

ηt,ε(u) =
1

λ(B(t, ε) ∩ T )
1B(t,ε)(u)

where λ denotes the Lebesgue measure on Rd, B(t, ε) denotes the closed
ball with center t and radius ε and 1A denotes the indicator function of
the set A. Then, for all (t, s) ∈ T 2 and all continuous functions f and g,∫
T
ηt,ε(u)f(u)du→ f(t) and

∫
T
ηt,ε(u)ηs,ε(v)g(u, v)dudv → g(t, s) as ε→ 0.

Proof of Lemma 2 First note that, as T is a product of compact intervals,
λ(B(t, ε) ∩ T ) > 0 for all t ∈ T and ε > 0. We have that∣∣∣∣∫

T

ηt,ε(u)f(u)du− f(t)

∣∣∣∣ =

∣∣∣∣∫
T

ηt,ε(u)(f(u)− f(t))du

∣∣∣∣
≤ sup

u∈B(t,ε)

|f(u)− f(t)|,

and this last term tends to 0 by the continuity of f . We proceed similarly
for the convergence of

∫
T
ηt,ε(u)ηs,ε(v)g(u, v)dudv. �

Proof of Theorem 1 Let us first show that H0 = {f ∈ H, f(t) = 0 for all t ∈
T 0} is a closed subspace of H. Clearly, it is a linear space. Take fn ∈ H0

such that fn → f in H. Thanks to the reproducing property, we have
f(t) = (f,Kt)H = lim(fn, Kt)H = lim fn(t) = 0; hence H0 is closed and
the orthogonal projection onto H0 does exist.

a) By construction, H0 and H1 are two orthogonal Gaussian Hilbert sub-
spaces of H. Hence, the sub σ-algebras of A generated by H0 and H1 are
independent (Neveu, 1968, Proposition 2.4). Since β0

t ∈ H0 and β1
s ∈ H1, the

sub σ-algebras generated by β0 and β1 are independent as well. Actually, it
can be seen that H0 (resp. H1) is exactly the Hilbert space generated by the
random function β0 (resp. β1) and, therefore, the sub σ-algebras generated
by β0 and by H0 (resp. β1 and by H1) coincide (Neveu, 1968, Lemma 2.3).

Write d0(s, t) =
√
E(β0

s − β0
t )

2 for the canonical metric of β0 and define
d1, the canonical metric of β1, in a similar way. From the independence of β0
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and β1, we deduce that d2(s, t) = d2
0(s, t) + d2

1(s, t). Hence, d(s, t) ≥ d0(s, t)
and any d-ball is included into a d0-ball with same center and same radius.
If we denote by N0(ε) the smallest number of closed d0-balls of radius ε
that cover T , we have that N0(ε) ≤ N(ε) and we deduce from (4) that∫∞

0
logN0(ε)d(ε) < ∞. We deduce the almost sure continuity of β0 (and β)

from Adler (1990, Corollary 4.15 page 106). We proceed similarly with β1.
By construction, for all t ∈ T , we have that βt = β0

t +β1
t with probability

one. If we denote by T ∗ a countable, dense subset of T , we have that,
with probability one, βt = β0

t + β1
t for all t ∈ T ∗. We conclude that, with

probability one, βt = β0
t + β1

t for all t ∈ T thanks to the continuity of the
random functions.

b) By Janson (1997)[Theorem 1.3], every element of H is a centred Gaus-
sian random variable. By construction, β0

t ∈ H0 ⊂ H is therefore a centred
Gaussian random variable. By noting that Θβ0

s = PKs, we deduce from the
definition of K0 that K0(s, t) = E(β0

sβ
0
t ) = (PKs,PKt)H = (PKs, Kt)H =

PKs(t) as P = P2 is self-adjoint; hence K0(s, t) = PKs(t). We deduce from
this last equality and Berlinet & Thomas-Agnan (2004, Theorem 11) that
H0 is the RKHS with reproducing kernel K0.

Let us show that, with probability one, β0(t) = 0 for t ∈ T 0. By the
definition of P, PKt(s) = 0 for all s ∈ T 0. Then, for all t ∈ T 0, E(β0

t )
2 =

K0(t, t) = PKt(t) = 0. Thus, with probability one, βt = 0 for t in a countable
dense subset of T 0 and we conclude by the continuity of β0.

The same reasoning applies to prove c).
�

Proof of Proposition 2 Note that, since K̃ is a positive definite, d2
K̃

(s, t) =

K̃(s, s)− 2K̃(s, t) + K̃(t, t) defines a metric dK̃ on T (Lukić & Beder, 2001,

Lemma 4.2). Then, since T is compact and K̃ continuous, H̃ is a separable
space of continuous functions (Berlinet & Thomas-Agnan, 2004, Corollary 5
page 36). Finally, as continuity (with respect to any usual norm of Rd) and
dK̃-continuity are equivalent (Adler, 1990, page 3), the trajectories of β and
β0 are also dK̃-continuous. We are now in a position to apply Theorem 7.5 of
Lukić & Beder (2001) to β and β0. First, since the trajectories of β belong

to H̃ with probability one, we conclude that there exists a (unique, positive,

symmetric) nuclear linear operator LK̃K : H̃ → H̃ whose range is contained

in H and such that (f, g)H̃ = (LK̃Kf, g)H for all f ∈ H̃ and g ∈ H, where
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(f, g)H̃ denotes the inner product in H̃. Now, set LK̃K0 = PLK̃K where P
is the orthogonal projection defined in Section 3. Clearly, LK̃K0 is a linear

operator whose range is contained in H0 and such that, for all f ∈ H̃ and
g ∈ H0, we have

(f, g)H̃ = (LK̃Kf, g)H = (LK̃Kf,Pg)H = (LK̃K0f, g)H (10)

as Pg = g and P is self-adjoint. Since H0 is a closed subspace of H and
K0(s, t) = PKs(t), the Hilbert subspace H0 and the RKHS with kernel K0 co-
incide (Neveu, 1968, Proposition 3.15 page 59). Thus we have (LK̃K0f, g)H =
(LK̃K0f, g)H0 and, from (10), we deduce that LK̃K0 is the dominance operator

of H̃ over H0 defined in Lukić & Beder (2001, Theorem 1.1). It is enough to
show that LK̃K0 is nuclear to conclude, by Lukić & Beder (2001, Theorem

7.5), that the trajectories of β0 are in H̃ with probability one. For all f ∈ H̃,
since LK̃K0f ∈ H, note that

(LK̃K0f, f)H̃ = (LK̃K0f, LK̃K0f)H = ‖PLK̃Kf‖H

and similarly that (LK̃Kf, f)H̃ = ‖LK̃Kf‖H. Since P : H → H is an or-
thogonal projection onto H0, ‖PLK̃Kf‖H ≤ ‖LK̃Kf‖H and we have that
(LK̃K0f, f)H̃ ≤ (LK̃Kf, f)H̃. Since LK̃K0 and LK̃K are compact non-negative

linear operators from H̃ to H̃, we conclude by the min-max theorem (Go-
hberg et al., 2003, Theorem 9.1 page 186), that the eigenvalues of LK̃K0 are
bounded by the eigenvalues of LK̃K and, therefore, that LK̃K0 is nuclear. �

Appendix B: Computational issues

Computing an orthogonal projection in a RKHS Since we noticed
in Section 3 that H1 is the closure in H of the subspace spanned by K(τ, .)
with τ ∈ T 0, it is thus natural to approximate any g ∈ H1 by a finite sum
of the form

∑m
j=1 ajKτj for some fixed τj ∈ T 0; the best approximation

being obtained by the orthogonal projection onto the subspace spanned by
{Kτj , j = 1, . . . ,m}. Thus, for any f ∈ H = H0 ⊕ H1, we have Pf ≈
f −

∑m
j=1 ajKτj . Since Pf(τi) = 0, we deduce that a = (a1, . . . , am)′ is a

solution of the linear system fτ = Kττ a where fτ = (f(τ1), . . . , f(τm))′ and
Kττ is the m×m-matrix with entry K(τi, τj). Note that such a solution exists
and is unique when K is positive definite; furthermore, it can be efficiently
computed by classical algorithms based on the Choleski decomposition of
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Kττ . Let t = (ti) be a regular grid of T . If ft and Pft denote the column
vectors with entry f(ti) and Pf(ti) respectively, we have Pft ≈ ft−KtτK

−1
ττ fτ .

Similarly, we obtain the following approximation for the n×n-matrix K0
tt with

entry K0(ti, tj): K0
tt ≈ [Ktt −KtτK

−1
ττ Kτt] where Ktt and Kτt = K′tτ are the

matrices with entry K(ti, tj) and K(τi, tj) respectively. In this paper, the
discretization (τj) is a subset of the grid (tl) but it is worth noticing that (τj)
can be chosen independently of (tl).

Computation of Σ0 and β̂0 We denote by L0xt the n × g-matrix with
entry L0xi(tl) and by β̂0

t the column vector with entry β̂0(tl). Using the
rectangle method, we have L0x′t ≈ δK0

ttX
′ and Σ0 ≈ δ2XK0

ttX
′ where X is

the n × g-matrix with entry Xij = xi(tj) and δ = ti+1 − ti. If we denote
by β0

t the random vector with entry β0
tl
, the posterior distribution of β0

t

given (µ, σ2, T 0) is Ng(mt,K
∗
tt) with mt = L0x′tM

−1(Y − µ1n) and K∗tt =
σ2 [K0

tt − L0x′tM
−1L0xt]. Then, since E(µ|Y, T 0) = S1Y /S11, we deduce that

E(βt|Y, T 0) = L0x′tM
−1(Y−S1Y /S111n) and β̂0

t is equal to this last expression
when T 0 is fixed at its posterior mode.

The prior distribution of T 0 (Prior 2) Remember that T = {t1, . . . , tg},
p(T 0) ∝ e−α r(T

0) where r(T 0) is the total number of runs of T 0 and of T \T 0.
Let us derive the distribution of r(T 0) from p(T 0). It is convenient to rep-
resent T 0 by a vector of {0, 1}g whose l-th coordinate is 1 if tl ∈ T 0 and
0 otherwise. Thus, T 0 is associated with successive sequences of 0 and se-
quences of 1 (runs). We set Sk = {T 0 ⊂ T, r(T 0) = k} and we denote by ck
the cardinal of Sk. Then, we have

Pr(r(T 0) = k) =
∑
T 0∈Sk

p(T 0) =

∑
T 0∈Sk e

−α r(T 0)∑
T 0⊂T e

−α r(T 0)
=

cke
−αk∑g

k=1 cke
−αk .

We remark that T 0 is determined by the value (0 or 1) of the first run and
the locations of the beginnings of the other runs. Since there are 2 possible
values for the first run and

(
g−1
k−1

)
ways of choosing the beginnings of the other

runs, we have ck = 2
(
g−1
k−1

)
.
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Neveu J. (1968). Processus aléatoires gaussiens. Les presses de université de
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List of Figures

Figure 1 True functional coefficient β0
true (dashed line), estimate β̂0 (plain

line) and 95% credible intervals of β0(t) for all t; the corresponding true

interval T 0 is indicated by two vertical short lines while the estimate T̂ 0 is
indicated by a wide band. Left: Prior 1 (T 0 is a single interval). Right: Prior
2 with α = 4 (T 0 is an union of intervals).

Figure 2 Left: Estimate β̂0 and 95% credible intervals of β0(t) for all t ∈
{1, . . . , 45}. Right: Posterior probability of {t /∈ T 0} for all t ∈ {1, . . . , 45}.
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