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Abstract
Cordectomized or laryngectomized patients recover the abil-
ity to speak thanks to devices able to produce a natural-
sounding voice source in real time. However, constant voic-
ing can impair the naturalness and intelligibility of recon-
structed speech. Voicing decision, consisting in identifying
whether an uttered phone should be voiced or not, is investi-
gated here as an automatic process in the context of whisper-
to-speech (W2S) conversion systems. Whereas state-of-the-art
approaches apply DNN techniques on high-dimensional acous-
tic features, we seek here a low-resource alternative approach
for a perceptually-meaningful mapping between acoustic fea-
tures and voicing decision, suitable for real-time applications.
Our method first classifies whisper signal frames into phoneme
classes based on their spectral centroid and spread, and then
discriminates voiced phonemes from their unvoiced counterpart
based on class-dependent spectral centroid thresholds. We com-
pared our method to a simpler approach using a single centroid
threshold on several databases of annotated whispers in both
single-speaker and multi-speaker training setups. While both
approaches reach voicing accuracy higher than 91%, the pro-
posed method allows to avoid some systematic voicing decision
errors, which may allow users to learn to adapt their speech in
real-time to compensate for remaining voicing errors.
Index Terms: Whisper-To-Speech conversion, spectral mo-
ments, voiced/unvoiced decision, phonemes classification

1. Introduction
Voice disorders inducing a loss of voicing (e.g. following
a cordectomy or laryngectomy) severely hamper the patient’s
communicative abilities due to the loss of vocal source infor-
mation such as pitch contour and voicing decision [1]. The
latter is essential for intelligibility since speech normally al-
ternates between phonated vowels and phonated or unphonated
consonants. Loss of voicing information introduces ambigui-
ties among consonants that all become unphonated, as in whis-
per [2]. One of the main challenges of voice-source reha-
bilitation systems is to accurately predict and introduce the
missing vocal source information. For this purpose, non-
invasive solutions like electrolarynx [3, 4] generate an artifi-
cial voiced signal that emulates a glottal source from which
the user can articulate voiced speech. Such system imposes a
constant voicing while articulating, which may thus limit nat-
uralness and intelligibility of unvoiced segments. Solutions to
activate voicing manually based on finger or arm movements
were proposed [5, 6], yet not suitable to control rapid alterna-
tion between voiced and unvoiced segments that occur in nor-
mal speech. Therefore, automatic signal-based approaches to
voicing decision have been broadly adopted in recent systems,
many of which tackling whisper-to-speech (W2S) conversion
tasks [7, 8, 9, 10, 11, 12, 13]. Since the ability to whisper does

not require functional vocal folds, W2S is a valid paradigm
for voice-source reconstruction. All these recent methods use
extensive deep neural networks (DNN) for voicing decision,
tested in offline configurations. Apart from the current chal-
lenge of embedding complex neural networks on real-time pro-
cessors, we believe that, given the proximity of voiced and
unvoiced consonants with a similar place of articulation when
they are whispered [2], the voicing decision may asymptotically
improve but hardly be perfect. Alternatively, [14, 15] demon-
strated the ability of speakers to adapt their own speech produc-
tion when their auditory feedbacks are altered by a real-time
voice modification system. Therefore, providing that the map-
ping between acoustic features and voicing decision in W2S
systems is perceptually meaningful, we hypothesise that the
speaker can learn this mapping and adapt his/her acoustic fea-
tures to compensate for the remaining voiced decision errors.
For instance, hyper-articulation has been discussed as a way
to better discriminate voiced consonants from their unvoiced
counterparts [16]. In this line, direct inference of a voicing de-
cision from the spectral centre of gravity (or centroid) of whis-
per showed promising results [17], but the use of one single
decision threshold for all phonemes resulted in the systematic
misclassification of some phonemes. It has been proposed to
first classify signal frames into phoneme classes using prede-
fined rules based on temporal or frequency-band energy vari-
ation [18, 19], but their voicing decisions based on manually-
set and speaker-dependant thresholds lack robustness and call
for more generalising machine-learning approaches. To avoid
falling back in the need to acquire large quantity of annotated
data as DNN often require, that is rare for whispered speech
and usually not well-suited for real-time applications, it is im-
portant to target small-size machine-learning algorithms while
paying particular care in designing the training corpus.

Therefore, we propose a novel whispered-phoneme voicing
classifier based on a 2-step procedure that: 1) classifies signal
frames into naturally voiced phonemes and three types of frica-
tives. A simple KNN method is investigated and several train-
ing corpora varying in size, content and annotation are tested.
2) subdivides each fricative class into voiced and unvoiced us-
ing a simple centroid threshold. Voicing decision results will
be discussed regarding the potential of error compensation with
input adaptation offered by the system, but the real-time imple-
mentation and human control evaluation is out of scope of this
paper. In the following, the proposed approach is presented in
section 2. Section 3 describes the data and conditions used in
our evaluations. Section 4 presents the results of this study.

2. Proposed approach
2.1. Choice of descriptors

Most recent machine learning-based studies that are trained
on parallel corpus of normal and whispered speech predict
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voicing decision from Mel-Frequency Cepstral Coefficients, a
high-dimensional representation of the whisper spectral enve-
lope [7, 20, 21, 10, 11, 22]. Although they reach low voicing
decision errors rates (6.8% and 5% for [7, 11] respectively), the
input features are computed over relatively long audio segments
which is not well suited for real-time. Their high dimensional-
ity along with the non-linear mapping introduced by the neural
network make the process difficult to understand for a user to
be able to anticipate and compensate for the remaining voic-
ing decision errors. For this sake, it is preferable to use only
few identified salient features to perform classification. En-
ergy ratios between different frequency bands can be used to
classify phonemes [18, 19], but their relevance may vary de-
pending on the place of articulation of the fricative (and thus
on co-articulation). Computing spectral moments seems a more
promising approach in globally considering the spectrum as a
statistical distribution [23]. The two first moments, centroid
and spread (or standard deviation), were found to be of particu-
lar interest for discriminating the three different types of French
fricatives [23]. We thus investigate the use of these moments
in W2S voicing decision, expanding our previous use of cen-
troid [17]. The spectral centroid and spread are defined respec-
tively by equations 1 and 2 [24].

µ1 =

∑
k Skfk∑
k Sk

(1)

µ2 =

√∑
k Sk(fk − µ1)2∑

k Sk
(2)

k is the index of the spectral bin, Sk is the magnitude spec-
trum value of the signal frame at bin k, and fk is the frequency
in Hz corresponding to bin k. A sliding Hanning window of
23ms with a hop size of 6ms (appropriate values for real-time
processing) was chosen. Only the phonemic steady parts were
considered, since co-articulation can be managed by an interpo-
lation between voicing decisions. Therefore, following a pho-
netic segmentation of the audio signal (more details in section
3.2), only the 50% central frames of each phoneme were kept
for all analyses and classifications.

2.2. Phonemes of interest

This study focuses on French phonemes. Among those, plo-
sives are a particular category that can be segmented into occlu-
sion and release parts. In normal speech, the main difference
between voiced plosives and their unvoiced counterpart resides
in the occlusion part that may either carry voicing or remain
silent. However in whispered speech, plosives are always voice-
less and thus can hardly be detected in real-time, i.e. in a causal
setup. For this reason, they will not be considered in this study.
The phoneme /R/ will not be considered neither since its voic-
ing status may vary in French. Based on these considerations,
we will focus on the following phonemes of the French lan-
guage: vowels, semi-vowels, fricatives, and phonemes /l/, /m/,
and /n/. Among the considered phonemes, only fricatives /f/, /s/,
and /S/ (using the SAMPA phonetic notation [25]) are unvoiced.
However, in whispered speech, voiced and voiceless fricatives
share similar characteristics, which make them very difficult to
discriminate, both in terms of perception and signal processing
[2, 16, 23]. Three types of fricatives with different places of
articulation can be identified in French: dental fricatives /z/ and
/s/, palato-alveolar ones /Z/ and /S/, and labio-dental ones /v/
and /f/.
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Figure 1: Example of phonemes centroid and spread distribu-
tions for a text read by a male speaker. Background colours
show the frontiers of the 4 phonetic classes determined by KNN.
Coloured lines show the centroid thresholds used to determine
voicing inside each fricative class. The black dotted line shows
the optimal centroid threshold used for the baseline method.

Fig. 1 plots the distribution of signal frames from the
different phonemes in a 2D map defined by spectral centroid
and spread for a French male speaker reading a phonetically-
balanced text. It shows that centroid alone is not sufficient
to discriminate dental fricatives from labio-dental ones, and
palato-alveolar fricatives from some vowels like /i/. However,
using the spectral centroid and spread together allows to better
discriminate the different types of fricatives from each other and
from other voiced phonemes. Preliminary analysis confirmed
that this behaviour is consistent across speakers, which will be
further evaluated in section 4.

2.3. Phonemes Classification

A k-nearest neighbours algorithm (KNN) is chosen to label a
signal frame as one of the four pre-defined classes {[/Z/,/S/] ;
[/z/,/s/] ; [/v/,/f/] ; [vowels,semi-vowels,/l/,/m/,/n/]}. In the fol-
lowing, the last class is called all voiced. Particular advantages
of the KNN algorithm is that it does not require to make as-
sumptions about data distribution, and can be used with a small
training set of annotated signal frames. Based on this training
set, a new unknown signal frame will then be assigned the most
represented class among its K nearest neighbours in the train-
ing data. Note that for KNN classification, centroid and spread
values are normalised in the range [0,1] based on the minimum
and maximum values of the training set, so that both dimensions
have an equal weight when computing the Euclidean distance
between data points to find the nearest neighbours. The back-
ground colours in figure 1 show how each point of the [centroid
x spread] space would be classified using the displayed distri-
bution as the training set.

2.4. Intra-class centroid-based voicing decision

Based on the previously-established classification, each
phoneme class can then be treated independently. For signal
frames labelled as all voiced, voicing is always applied. For
the others, we use a dedicated centroid threshold as criteria for
each fricative class, computed as the mean centroid value of
the class distribution. If the centroid is above the threshold, the
frame will be labelled as unvoiced, and if it is below, it will be
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Table 1: Phonemic coverage of each of the training corpora. V
stands for vowels and semi-vowels.

[/v/, /f/] [/z/, /s/] [/S/, /Z/] [V,/l/,/m/,/n/] Total

“ph” [1,1] [1,1] [1,1] [13,0,0,0] 19
“V1CV1” [13,13] [13,13] [13,13] [156,0,0,0] 234
“V1CV2” [6,6] [6,6] [6,6] [72,0,0,0] 108
“text” [8,3] [1,10] [4,1] [95,19,7,2] 150

labelled as voiced. The thresholds computed from the distribu-
tion of Fig. 1 for each class are displayed as coloured lines.

3. Corpus and testing conditions
Due to the lack of existing publicly-available French database
of annotated whispered speech, we recorded and annotated a
new dataset to evaluate the proposed approach.

3.1. Test data

For assessing the intelligibility of pathological voices, [23] con-
ceived a text in French that covers many phonetic, phonologi-
cal and linguistic criteria, among which: a full phonetic cover-
age with a phonetic balance similar to that of French language;
multiple apparition of the cardinal vowels /a/, /i/, and /u/; ap-
pearance of the unvoiced fricative /s/ followed by each cardinal
vowel; rapid occurrence of multiple unvoiced fricatives. This
text can be found in [23, p.114], along with the full list of cov-
ered criteria. We assume that evaluating the performance of our
method on this text should give a good overview of what may be
expected in real usage condition, and thus used this text as test
data in all of the following evaluations. The five first sentences
of the text were removed from the test data, since they are used
as one of the training conditions, as detailed below.

3.2. Training conditions

The creation of the training data raises three questions: 1) the
size of the database and phoneme coverage; 2) the need to train
the system specifically for each user based on individual record-
ings, or if a single generic system trained on a multi-speaker
database would be sufficient for any new unseen user; 3) the
quality of training data annotation (automatic vs. manual). All
three considerations are trade-offs between classification accu-
racy, and recording/annotation time. In particular, if it were
demonstrated that the proposed method performances would
benefit from using personalised training data and manual an-
notation, then a calibration procedure requiring some record-
ings from the new speaker followed by data annotation should
be performed for each new user. This would not be desirable
in terms of workload for both user and experimenter. There-
fore we evaluated here the influence of the phonemic content
; single-speaker vs. multi-speaker training ; and automatic vs.
manual annotation, on classification accuracy.

3.2.1. Phonemic content

Four training datasets were created as described below and
whose phonemic contents are summarised in Table 1:

• “ph”: Steady phonemes, covering each vowel and fricative,
sustained for about 2s (19 items).

• “V1CV1”: Sequences of 3 phonemes, where V1 covers all
vowels, and C covers all fricatives (78 items).

• “V1CV2”: Sequences of 3 phonemes, where V1 and V2 is a
pair of different cardinal vowels (/a/, /i/ and /u/) and C is a

fricative (36 items).
• “text”: The first 5 sentences of the text mentioned in sec-

tion 3.1, which have been conceived such that they already
cover many phonetic criteria, including a good phonetic bal-
ance and full phonetic coverage (63 words).

All the test and training data were recorded by 10 different
speakers (5 female and 5 male). Recordings were done in an
anechoic chamber using a high-quality DPA4088 headset mi-
crophone along with a Komplete audio 6 audio interface, with a
sampling rate of 44.1kHz and a bit depth of 32 bits.

3.2.2. Speaker and annotation

In order to evaluate the need for an individual system calibra-
tion, we compared a single-speaker setup where only recordings
of the subject being evaluated are used as a train set, to a multi-
speaker set-up where the model is trained on recordings from
all speakers except the one being evaluated.

We used the Montreal Forced Aligner [26] for data annota-
tion, with the “french prosodylab” model available for French
language to perform an automatic phonetic segmentation of the
recordings. All annotations of the test set were manually cor-
rected using Praat [27] to ensure a robust ground truth to be used
for evaluation. To assess how potential errors of the automatic
annotation may affect classification accuracy, single-speaker
setups were tested both with and without manual annotation.
Since a multi-speaker training is done once and for all, we as-
sume that manual annotation is worth doing in this case. To sum
up, the three speaker and annotation conditions called training
type in the following are: “ind auto” for single-speaker auto-
matic annotation; “ind man” for single-speaker manual anno-
tation; “generic” for multi-speaker manual annotation.

3.3. Methods

We compared the KNN-based method to a baseline in all the
conditions described above. Based on preliminary tests with
KNN, we set the value of K to 51 for all setups and datasets,
which gave in average the best results for classification accu-
racy. A similar approach to that from [17] was used as a base-
line, with a single global threshold on the raw spectral centroid
of a signal frame to determine voicing. For this method, we set
the threshold as the one that maximises the global voicing de-
cision accuracy on the whole training set, as illustrated in Fig.
1.

Overall, the evaluation was performed on 2 methods × 4
training sets × 3 training types. In the following, voicing accu-
racy is calculated as the ratio of correct voicing decisions com-
puted on each individual test speaker for each method, train-
ing set and training type. Results are reported for the 10 test
subjects, and multiple comparisons between conditions are per-
formed with a logistic regression.

4. Results
4.1. Comparison of training conditions

Fig. 2 shows the global voicing accuracy obtained on the whole
test set, grouped by training set and training type, methods com-
bined. Significance between conditions are indicated by stars on
the Figure. Except for the “ph” condition for which individual
training is better, the obtained results show that there is little
benefice (< 0.2% improvement) in using a user-specific cali-
bration procedure, compared to a generic calibration from sev-
eral unseen speakers, which greatly simplifies the usage of the
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Figure 2: Voicing decision accuracy from all speakers and
methods for the different training conditions. (*** show sig-
nificant differences with p < 0.001)

Figure 3: Results of classification and voicing accuracy for the
different calibration data in the “generic” training condition.
(a) Classification accuracy of KNN. (b) Voicing accuracy of our
method. (c) Voicing accuracy of baseline method. (* and ***
denote significant differences with p < 0.05 and p < 0.01.)

proposed methods. One reason may be that the “generic” con-
dition uses 9 times more training data than each of the single-
speaker conditions. For the following analysis, we will thus
only focus on the “generic” condition.

Figure 3 shows both the classification accuracy given by
the KNN algorithm (fig. 3.a) and the voicing accuracy ob-
tained with our complete method (KNN+thresholds) (fig. 3.b)
and with the baseline (fig. 3.c) for the 4 training sets and the
“generic” condition. Significant differences between the “text”
and the 3 other conditions are displayed on the figure. Classi-
fication results show that the more co-articulation in the train-
ing set, the better the results. Regarding voicing, “V1CV1”,
“V1CV2” and “text” display similar scores (< 0.5% differ-
ence). Nevertheless, given that “text” has best phoneme classi-
fication scores, is shorter in size than “V1CV1” (Table 1), and
is more natural for subjects to record, we consider this train-
ing set to be the most appropriate for both tasks and methods.
Overall, we demonstrated here that a KNN model trained on a
short dataset of 63 words uttered by 9 speakers has a whispered
phoneme classification accuracy of over 92%. Then, both KNN
and baseline method perform a voicing decision of above 91%
accuracy, which is not far from the results reported with DNN
methods (5% of errors for [11]) given the size of our training
set and the simplicity of the models.

4.2. Comparison of methods

Although both KNN and baseline perform similarly in terms of
overall voicing accuracy, some more in-depth analysis shows in-
teresting differences for specific phonemes. Figure 4 (a) shows
the confusion matrix of the phonemes classification obtained
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Figure 4: For “generic” condition with “text” data: (a) Confu-
sion matrix of phonemes classification and (b) Voicing accuracy
of the proposed method. (c) Voicing accuracy of the baseline.

with our approach trained in the “generic” condition on “text”
data. Such representation helps to better understand how clas-
sification errors impact voicing decision accuracy, since only
misclassified phonemes contained in the red areas imply voic-
ing decision errors. For instance, the classification of /v/ in the
all voiced group does not lead to a voicing decision error. How-
ever intra-class decision errors (e.g. /S/ labelled as /Z/) do lead
to a wrong voicing decision. Figures 4 (b) and (c) compare the
voicing decision error on each phoneme for the proposed and
baseline methods, respectively. While both methods present
similar results for /v/, /f/, /z/ and /s/, the most striking differ-
ence is on the phonemes /S/ and /Z/. They are given an accu-
racy of 0 and 1 by the baseline, respectively, while errors are
more evenly distributed with our method. Fig. 1 illustrates well
this result: the position of the baseline threshold classifies all
the phoneme class [/S/,/Z/] as voiced. In a real-time speaker
adaptation paradigm, this set up would not allow the speaker to
increase the /S/ centre of gravity above the threshold. Inversely,
the class-specific threshold allows much more flexibility to ad-
just the fricative centre of gravity to enforce the voicing decision
when necessary.

5. Conclusion
A new method for automatic voicing decision in W2S conver-
sion was proposed. It first classifies signal frames into three
types of fricatives or voiced phonemes based on spectral cen-
troid and spread values. It then further discriminates voiced
from unvoiced fricatives based on intra-class centroid thresh-
olds. We first showed that individual system calibration can
be avoided by training the algorithm on a pre-annotated multi-
speaker database of read text. Second, both proposed method
and baseline displayed a voicing accuracy higher than 91%
when trained on 9 unseen speakers uttering a phonetically-
balanced 63-word text. Third, compared to the baseline, our
method allows to reduce systematic voicing errors for some
phonemes, opening the path to a more suitable control space for
voicing decision. We believe that speakers can learn to adapt
to the class-dependant spectral centroid of fricatives in a real-
time setting and compensate for the system voicing errors. This
hypothesis will be investigated in future work.
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