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Abstract

This paper deals with preference elicitation within
Choquet Expected Utility (CEU) theory for deci-
sion making under uncertainty. We consider the
Savage’s framework with a finite set of states and
assume that preferences of the Decision Maker
over acts are observable. The CEU model involves
two parameters that must be tuned to the value
system of the decision maker: a set function (ca-
pacity) modeling weights attached to events, of
size exponential in the number of states, and a util-
ity function defined on the space of outcomes. Our
aim is to learn a sparse representation of the CEU
model from preference data. We propose and test
a preference learning approach based on a spline
representation of utilities and the sparse learning
of capacities to obtain CEU models achieving a
good tradeoff between the aim of sparsity and the
expressivity required by preference data.

1 INTRODUCTION

Decision theory has developed an entire stream of theoreti-
cal works on the axiomatic foundations of preference mod-
els either for descriptive, normative or prescriptive purposes
[von Neumann and Morgenstern, 1947, Savage, 1954, Fish-
burn, 1970, Gilboa, 2008, Quiggin, 2012, Wakker, 2013].
The mathematical models used to describe preferences in-
clude parameters that can be fitted to the value system of
the decision maker (DM). The role of these preference pa-
rameters is well understood and the decision behavior of
an individual can be interpreted by analysing the values of
these parameters. For example, in expected utility theory,
risk aversion is equivalent to the concavity of the utility
function and the level of risk-aversion of an individual can
be measured from the curvature and the slope of his/her
utility function [Arrow, 1971, Pratt, 1978].

In the framework of decision under uncertainty (i.e., no
probability of the events needs to be given) and risk (i.e.,
probabilities of the events are known) various models have
been proposed, involving an increasing number of prefer-
ential parameters to cover an ever larger class of decision
behaviors. For example, Tversky and Kahneman [1979]
have observed a frequent violation of the sure thing princi-
ple of Savage [1954] in their experiments on preferences.
Such violations preclude any representation of the observed
preferences by Expected Utility (EU). Then, rank-dependent
models have been introduced relying on a weakened version
of the sure thing principle. Among them, Choquet Expected
Utility (CEU) [Schmeidler, 1989] has received much at-
tention due to its high descriptive possibilities and the fact
that it boils down to well known simpler models for some
well identified subclasses of capacities or utilities. Among
them let us mention rank-dependent utility (RDU) [Quiggin,
2012], Yaari’s model [Yaari, 1987] and EU [Savage, 1954].

CEU can easily explain standard preference inversions as
those observed in Allais paradox (in the context of risk) and
in Ellsberg paradox (in the context of uncertainty) [Ellsberg,
1961, Wakker, 2001]. However, the CEU model requires the
definition of a non-necessarily additive set function (named
capacity) that assigns a weight to every event that may oc-
cur in the problem, in addition to the utility function. In a
problem where uncertainty is represented by a finite set S
of n states of nature, the set of events under consideration
is the set of all subsets of S. Hence the definition of the
capacity and therefore of CEU requires the determination,
in the general case, of 2n coefficients, in addition to those
that are necessary for the definition of the utility function.

The growing number of preference parameters, justified
by descriptive objectives, comes at a cost: sophisticated
decision models are harder to learn and need larger bases
of preference data to be able to make reliable predictions
on new data. Since preference data are usually not very
numerous in practical applications and may be costly to
obtain (preference queries must be asked to the DM or
derived from a history of previous decisions) there is a
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need of flexible approaches allowing to adapt the number of
preference parameters used in the model to the expressivity
required by preference data. This question is of particular
relevance for CEU due to its expressivity but also to its lack
of compactness in the general case. For this reason, we study
in this paper the potential of sparse learning to determine
compact instances of CEU from small preference databases.

One possible source of difficulties here is the interplay of
utilities and capacities in the computation of CEU values,
making the learning of these two types of parameters in-
terdependent. Another difficulty comes from the fact that
utilities and capacities are not assumed to be directly observ-
able and should be derived from preference statements over
pairs of alternatives. Taking these specificities into account,
we propose a learning approach that proceeds in two steps:
using preference questions specially designed for utility elic-
itation we learn a spline representation of the utility function
and then derive a sparse representation of the capacity from
further preference examples.

The paper is organized as follows: Section 2 introduces the
CEU model and some basic concepts and properties related
to Choquet integrals. In Section 3 we review some works
on learning decision models based on Choquet integrals and
introduce the premises of a two-phase approach to learn
utilities and then capacities from preference data. Then the
learning of the utility function is presented in Section 4 and
the learning of the capacity in Section 5. In the two latter
sections we present numerical tests to show the effectiveness
of the proposed approach.

2 BACKGROUND ON CEU

We adopt the standard setting of Savage [1954] for decision
making under uncertainty. We have to compare acts the
outcomes of which depend on the (unknown) state of nature.
Here we consider a finite set of states S = {1, . . . , n} that
is supposed to include all relevant possible futures. Any
subset A ⊆ S must be interpreted as an event. For instance,
if S = {1, 2, 3} the set A = {1, 3} represents the event
“s = 1 or s = 3” where s is the actual state of nature.

The acts to be compared are seen as functions defined
from S to the outcome space X . For simplicity we assume
here that outcomes are payoffs and that X is the real line.
Any possible act x is characterized by an outcome vector
(x1, . . . , xn) where xi is the outcome of x in state i, for
i = 1, . . . , n. We will denote X = X × . . .×X the homo-
geneous cartesian product containing all possible acts given
S and X . Within X we distinguish constant acts denoted
x̄ = (x, . . . , x) for any x ∈ X (their outcome does not de-
pend on the state of nature). We also define a mixture of acts
as follows: for any A ⊂ S and for any two acts x, y ∈ X ,

let xAy denote the act of X defined by:

(xAy)i =

{
xi if i ∈ A
yi otherwise i = 1, . . . , n.

It represents an act whose possible outcomes are those of
x if event A occurs and those of y otherwise. Mixtures of
constant acts of type x̄Aȳ, x, y ∈ X are binary acts the
outcome of witch is x if A occurs and y otherwise. They
are useful to design informative preference queries in the
elicitation of utilities as we will see later in the paper.

Now, we introduce the Choquet Expected Utility model in
the context of Savage. It is defined from two parameters: a
utility function u modeling the sensitivity of the DM with
respect to outcomes and the capacity v which is a set func-
tion defined on 2S , monotonic w.r.t to set inclusion (i.e.,
v(A) ≤ v(B) whenever A ⊆ B ⊆ S) and normalized (i.e.,
v(∅) = 0 and v(S) = 1) modeling the sensitivity of the
decision maker towards uncertainty (its chance attitude e.g.,
optimism or pessimism, see Wakker [2001]). Given these
two parameters u and v, the CEU model assigns to every
act x an overall value fu

v (x) defined as the discrete Choquet
integral of the utility of the outcome vector which reads as
follows:

fu
v (x) =

∑n
i=1

[
v(X(i))− v(X(i+1))

]
u(x(i)) (1)

=
∑n

i=1

[
u(x(i))− u(x(i−1))

]
v(X(i)) (2)

where (.) is any permutation of S such that x(1) ≤ . . . ≤
x(n), and X(i) = {(i), . . . , (n)} is the event “the out-
come of x is greater or equal to x(i)” for i = 1, . . . , n.
Furthermore we assume that x(0) = 0 and X(n+1) = ∅.
For example, if S = {1, 2, 3} then fu

v (100, 10, 60) =
u(10)v({1, 2, 3})+ [u(60)− u(10)]v({1, 3})+ [u(100)−
u(60)]v({1}) by Equation 2.

CEU theory provides an axiomatic framework under which
the DM’s preferences ≿ over acts are represented by f
[Schmeidler, 1989, Gilboa, 2008]. Formally we have: x ≿
y iff fu

v (x) ≥ fu
v (y). Let us briefly recall some key proper-

ties that illustrate the role of the capacity in the model:

• the monotonicity of v is required to make sure that
fu
v (x) ≥ fu

v (y) when xi ≥ yi for all i ∈ S.

• CEU boils down to Savage’s expected utility when v
is additive (i.e., v(A∪B)+ v(A∩B) = v(A)+ v(B)
for all A,B ⊆ S).

• the preference induced by f satisfies uncertainty aver-
sion if and only if u is concave and v supermodular
(i.e., v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for all
A,B ∈ S) [Chateauneuf and Tallon, 2002]. Uncer-
tainty aversion (a.k.a convexity of preferences) reads
as follows: if the DM is indifferent between x and y
(denoted x ∼ y) then αx+ (1− α)y will be preferred
to x (and also to y by symmetry) for any α ∈ [0, 1].
The convex mixture of x and y reduces the uncertainty
of outcomes w.r.t x and y and makes the DM better off.



• CEU boils down to the rank-dependent utility for de-
cision making under risk whenever v(A) = w(p(A))
where p is the probability measure on events and w is a
monotonic weighting function such that w(0) = 0 and
w(1) = 1 [Quiggin, 2012]. If in addition u is linear
then CEU boils down to Yaari’s model [Yaari, 1987].

Another useful formulation of the CEU model relies on
the Möbius inverse of the capacity. The Möbius inverse
of v is another set function m defined on S by: m(A) =∑

B⊆A(−1)|A\B|v(B) for all A ⊆ S. The coefficients
m(A) are called Möbius masses, they completely character-
ize v. We indeed have v(A) =

∑
B⊆A m(B). The values

of m can be positive or negative but add up to 1 since∑
B⊆S m(B) = v(S) = 1. When v is additive the only

non-null Möbius masses are those of singletons.

Interestingly enough, the CEU model can be directly ex-
pressed from the Möbius inverse [Chateauneuf and Jaffray,
1989] by:

fu
v (x) =

∑
B⊆S m(B)mini∈B{u(xi)} (3)

This formulation shows that fu
v (x) might admit a compact

representation whenever the Möbius inverse is sparse. A
frequent option used to handle capacities with a sparse rep-
resentation is to require that Möbius masses vanish for all
subsets of states larger than a given k smaller than n. In this
case, the resulting capacity is said to be k-additive [Grabisch,
1997] and admits a more compact representation than in the
general case. For instance, when the capacity is 1-additive
then all Möbius masses are null except for singletons where
they are positive due to monotonicity. However, in this case,
Equation 3 shows that f boils down to an expected utility
with a significant loss of expressivity.

A more interesting tradeoff could be obtained with k-
additivity for some small value of k larger than 1 but it
seems difficult to select a suitable value of k without look-
ing at preference data. Moreover it may happen that very
sparse but still n-additive capacities perfectly match prefer-
ence data as illustrated in the following:

Example 1. Assume that the DM is pessimistic and behaves
according to the min criterion refined by an expectation to
ensure strict monotonicity w.r.t Pareto dominance. This be-
havior can be described by f(x) = (1− ϵ)min{u(xi), i ∈
S} + ϵ

∑n
i=1 pixi where pi are subjective (positive) prob-

abilities and ϵ > 0 is chosen arbitrarily small. f is an in-
stance of CEU obtained from Equation 3 with m({i}) = ϵpi,
∀i = 1 . . . n, m(S) = 1− ϵ and m(B) = 0 for all B ⊂ S
such that |B| > 1.

Example 1 shows that preferences induced by f could not be
properly described nor approximated by a k-additive capac-
ity with k < n (because of the drop of the most important
term of weight 1− ϵ). Yet, f can be closely approximated

with the min criterion which admits a very sparse Möbius in-
verse representation. This calls for a more efficient approach
to derive sparse representations of CEU from preference
data. This question will be adressed later in the paper.

In order to illustrate both the descriptive potential of CEU
and its ability to admit a sparse representation in terms of
Möbius inverse we now consider a standard urn example
due to Ellsberg [1961].

Example 2. An urn contains 90 balls including 30 red, and
60 blue or yellow balls in unknown proportion. We consider
four bets, on the one hand x (resp. y) yielding 100 if the
drawn ball is red (resp. blue), and on the other hand z (resp.
w) yielding 100 if the drawn ball is not blue (resp. not red).
Here S = {R,B, Y } for red, blue, yellow, and the acts
under consideration are x = (100, 0, 0), y = (0, 100, 0),
z = (100, 0, 100) and w = (0, 100, 100). Note that the pair
(x, y) compares similarly to the pair (z, w) except that the
common outcome attached to yellow balls moves from 0 to
100. Despite this similarity, most of people prefer x to y but
w to z. It can easily be checked that such preferences are
not representable by EU.

However, these preferences can be represented by CEU. Let
us assume that u(0) = 0 and u(100) = 1 and v({R}) =
1/3, v({B}) = v({Y }) = 0, v({R,B}) = v({R, Y }) =
1/3, v({B, Y }) = 2/3 and v({R,B, Y }) = 1. Note that
for all events, v yields the lower possible probability of the
event according to our knowledge of the urn content. We
have fu

v (x) = 0v({R,B, Y })+(1−0)v({R}) = 1/3. Simi-
larly we obtain fu

v (y) = 0, fu
v (z) = 1/3 and fu

v (w) = 2/3.
Hence, fu

v (x) > fu
v (y) and fu

v (w) > fu
v (z) which is con-

sistent with the observed preferences. Moreover, the Möbius
inverse of v is everywhere 0 except that m({R}) = 1/3 and
m({B, Y }) = 2/3. Hence we get a sparse representation
of f that fits the observed preferences: fu

v (x1, x2, x3) =
u(x1)/3 + 2min{u(x2), u(x3)}/3.

We end the section by mentioning a third representation of
the capacity based on interaction indices, I(A) for all A ⊆
S [Grabisch, 1997] that will be discussed later in the paper.
When A is a singleton {k}, the interaction index I({k})
is nothing else but the so-called Shapley value measuring
the average marginal increment v(B ∪ {k})− v(B) taken
on all events B ⊆ S that do not contain k. The notion of
Shapley interaction index extends to any subset A of S.
Interaction indices can be uniquely defined from v or m
indifferently. Conversely v and m can be obtained from
I . For more details see Grabisch [1997]. In the case of
Example 2, the interaction indices are given by I(∅) = 7/18,
I({1}) = I({2}) = I({3}) = 1/3, I({2.3}) = 2/3, the
other coefficients being null.



3 LEARNING THE CEU MODEL

3.1 RELATED WORK

Fitting the parameters of a decision model based on a Cho-
quet integral to observed preferences is a question present
both in the literature on decision theory (preference elicita-
tion) and in the literature on machine learning (preference
learning). In the context of decision making under risk, some
elicitation protocols proposing a series of preference queries
involving pairs of lotteries have been proposed to construct
methodically a set of points on the utility curve and then on
the probability weighting function defining the capacity in
the RDU model and in cumulative prospect theory (CPT)
[Wakker and Deneffe, 1996, Abdellaoui, 2000].

Another stream of work developed in the literature on mul-
ticriteria decision aid concerns the use of non-linear re-
gression for the identification of the capacity from overall
evaluations prescribed by the DM, and the use of ordinal
regression method from preference examples, assuming the
utilities are known [Grabisch et al., 2008, Grabisch and
Labreuche, 2010]. The prior construction of utility in this
setting is often based on direct queries on difference of at-
tractiveness between attribute values, see e.g., the Macbeth
method [Bana e Costa and Vansnick, 1997].

Another approach developed in AI consists in progressively
reducing the uncertainty about the preference parameters.
A first set of methods proceeds by successive reductions
of the parameter space using preference queries adaptively
selected for their information value (e.g., using the minimax
regret criterion). This incremental approach was used for
the identification of utilities in [Wang and Boutilier, 2003],
for the identification of the probability weighting function
[Hines and Larson, 2010, Perny et al., 2016], and for the
identification of Choquet capacities in [Benabbou et al.,
2017]. A second set of methods proposes another adaptive
elicitation procedure based on a Bayesian approach used
to iteratively revise a probability density on the parameter
space, see e.g. [Chajewska et al., 2000, Bourdache et al.,
2019, Gu et al., 2020].

None of the above mentioned contributions addresses the
question of learning sparse representations of the capac-
ity; however, some of them assume that capacities are k-
additives for a prior reduction of model complexity.

The Choquet integral is also used in machine learning to
replace the linear function of variables which is commonly
used in standard regression methods [Gagolewski et al.,
2019, Beliakov and Wu, 2020, Beliakov and Divakov, 2020].
For example, logistic regression was extended to Choquistic
regression [Tehrani and Hülermeier, 2013, Tehrani et al.,
2012a, 2011]. It is also used for learning to rank with the
Choquet integral [Tehrani et al., 2012b] where the data are
provided with the labels which are preference degrees from

an ordered categorical scale. The Choquet integral was also
introduced as a kernel method [Tehrani, 2021].

In the machine learning community, statistical regularization
is used to find a tradeoff between the model’s generalizing
performance and the model’s complexity [Tibshirani, 1996,
Hastie et al., 2015]. In particular, the Lasso method intro-
duces the L1 penalty to the objective function to obtain a
sparse solution in a high dimensional setting with small
number of observations. It can be used to obtain compact
representations of capacities that include, in the general
case, 2n − 2 free parameters. Several attempts have been
made to reduce the complexity of the non-additive integrals
via the L1 penalty term. For example, the sparsity inducing
penalty was applied to the capacity [Anderson et al., 2014,
Adeyeba et al., 2015]; the penalised sum of squared errors
with Gini-Simpson index regularisation and the L0 norm on
the Shapley values were considered in [Pinar et al., 2017].
The L1 penalty was also applied to capacities represented
by interaction indices in [de Oliveira et al., 2022].

The specificity of our approach is to learn from pairwise
comparisons both a smooth utility function and a sparse
Möbius representation of the capacity with no prior reduc-
tion of the class of admissible capacities, in the framework
of decision making under uncertainty and CEU theory.

3.2 APPROXIMATING PREFERENCES WITH CEU

It is assumed here that utilities and capacities cannot be
directly requested from the decision maker who may have
no idea of the model under consideration. Moreover, overall
values fu

v (x) are not assumed to be observable. We want
to derive preference parameters from observed choices or
from preference statements obtained from the DM on some
pairs of alternatives. Standard preference statements are of
type “x is at least as good as y” (denoted x ≿ y), or “x
and y are indifferent” (denoted x ∼ y). Within CEU theory
the weak preference x ≿ y (resp. the indifference x ∼ y) is
interpreted as fu

v (x) ≥ fu
v (y) (resp. fu

v (x) = fu
v (y)).

We remark that the above inequalities and equalities are
linear in v for any fixed x, y and u by definition of f (see
Equation 2). We assume here that such preference state-
ments are available, either because a preference database is
available or because the DM is able to answer on demand
to some preference queries.

Given a set of indifference statements I = {(xi, yi) ∈ X 2 :
xi ∼ yi, i = 1, . . . , q} and/or a set of preference statements
P = {(xi, yi) ∈ X 2 : xi ≿ yi, i = 1, . . . , p}, we look for
a utility function u and a capacity v that match with the ob-
served preferences. Since the CEU model may not perfectly
match with the preferences expressed by the DM, we look
for an approximate representation of preference data. The
approximation problem can be formulated as follows:



min
∑q

i=1(ϵ
+
i + ϵ−i ) +

∑p
i=1 ϵi (4) fu

v (x
i)− fu

v (y
i) + ϵ+i − ϵ−i = 0, i = 1...q

fu
v (x

j)− fu
v (y

j) + ϵi ≥ 0, ∀(xj , yj), j = 1...p
v(A) ≤ v(A ∪ {i})∀i ∈ S, ∀A ⊆ S \ {i}
ϵ+i ≥ 0, ϵ−i ≥ 0, ϵj ≥ 0, i = 1...q, j = 1...p.

The third line in the system of constraints is here to enforce
the monotonicity of v with respect to set inclusion. We
remark that the above optimization problem is not linear
since Choquet values of type fu

v (x) appearing in constraints
include products of variables defining the utilities u(xi) and
the capacities values v(X(i)) (see Equation 1).

In many contributions on preference learning methods based
on the discrete Choquet integral, the utility function is as-
sumed to be known and the focus is made on fitting the
capacity. In this case, all constraints of the approximation
problem formulated in Equation 4 are linear in v and the
capacity can be obtained using standard linear programming
solvers. This suggests learning the utility function first and
then the capacity.

On the other hand, some recent contributions propose to
learn simultaneously the utility function and the capacity.
Finding exact solutions simultaneously both for the util-
ity function and the capacity is a difficult task, since the
problem is not linear and the constraints are not convex.
Some heuristics to solve this problem were proposed. A
stochastic method was introduced by Angilella et al. [2004],
and Goujon and Labreuche [2013] discussed a fixed-point
method where the problem is split into two iterative linear
tasks. Another heuristic based on a linear approximation
of the product of the utility functions with Shapley val-
ues and interaction indices was considered by Galand and
Mayag [2017]. An approach to find an exact solution for
both utilities and capacities (in the context of the Choquistic
regression) was proposed by Tehrani et al. [2014] where
the utility function was represented as a linear combination
of sigmoid functions. More recently, Bresson et al. [2020]
developed a neural architecture to learn both utilities and the
corresponding parameters of hierarchical Choquet integrals.

As mentionned earlier, Wakker and Deneffe [1996], Ab-
dellaoui [2000] have shown that, by a careful selection of
preference queries, the utility can be indirectly observed and
acquired, regardless the capacity. We would like to use this
specificity of the CEU model to learn the utility in a first
stage. Then, determining the capacity becomes easier and
we can focus on learning sparse representations of v in a
second stage. In this respect, we now discuss the relative
interest of several standard representations of v.

3.3 VARIOUS REPRESENTATIONS OF CAPACITY

In Section 2 we have mentioned two alternative representa-
tions of a general capacity v: the Möbius inverse m, and the
interaction indices I . Let us compare now their ability to
provide compact representations. First of all, we can remark
that, if v({i}) > 0 for some i, then v(A) > 0 for any event
A ⊃ {i}. Moreover, m is at least as compact as v due to the
following proposition.

Proposition 1. Let v be a capacity and m its Möbius inverse,
we have: ||v||0 ≥ ||m||0, where ||.||0 denotes the L0 norm,
i.e., the number of non-zero coefficients.

Proof. Consider a capacity v and its Möbius representation
m. If v(A) = 0 for some A ⊆ S, then v(B) = 0 for all
B ⊆ A. Hence m(A) =

∑
B⊆A(−1)|A\B|v(B) = 0. Then

{A : v(A) = 0} ⊆ {A : m(A) = 0} and ||v||0 = 2n −
|{A : µ(A) = 0}| ≥ 2n−|{A : m(A) = 0}| = ||m||0.

Moreover, the following result shows that the representation
of v in terms of interaction I may lack of compactness e.g.,
when v is a belief function (i.e., when m is non-negative).

Proposition 2. Let v be a capacity and m and I its
Möbius and interaction representations respectively. If
m is non-negative, then ∥I∥0 ≥ 2|T

∗|,where T ∗ =
argmaxT⊆S

{
|T | : m(T ) > 0

}
.

Proof. The interaction index I is linked to m by the follow-
ing equation: I(A) =

∑
T⊇A

1
t−a+1m(T ) for all A ⊆ S

[Grabisch, 1997]. Hence, for any T s.t. m(T ) > 0, we
have I(A) > 1

t−a+1m(T ) > 0 for all A ⊆ T . Let T ∗ be
the subset of maximal cardinality among those such that
m(T ) > 0, then the 2|T

∗| subsets of T ∗ have a strictly
positive interaction index. Hence, ∥I∥0 ≥ 2|T

∗|.

As an illustration, let us consider again the maximin cri-
terion f(x) = mini u(xi) which is an instance of CEU
obtained from Equation 3 with m(A) = 0 for all A ⊂ S
and m(S) = 1. Then the above proposition shows that
I(A) > 0 for all A ⊆ S. In this case the I representation is
of size 2n whereas the Möbius representation is very sparse
(it includes a single non-null coefficient). Considering the
above propositions and the well-known interest of Möbius
masses to identify focal elements in beliefs, we focus here-
after on regularizations based on the Möbius representation
of v aiming to minimize ||m||0.

4 LEARNING THE UTILITY FUNCTION

4.1 ASSESSING UTILITIES FROM
INDIFFERENCE STATEMENTS

Let us remind that the DM is not assumed to be able to
provide the overall value of an act (this would amount to



directly asking utilities values). This is a source of difficulty
because constraints of type fu

v (x) = α frequently used
to perform regressions cannot be obtained by questioning
the DM. However the DM can be asked to compare any
act x to a constant act ȳ = (y, . . . , y) for some y ∈ X .
Hence x ≿ ȳ is equivalent to fu

v (x) ≥ fu
v (ȳ) = u(y).

Whenever the DM is indifferent between x and ȳ we have
fu
v (x) = u(y). In such a case, outcome y is said to be

the certainty equivalent of x. Indifference statements giv-
ing the certainty equivalent y of binary acts of type x̄Az̄
for some x, z ∈ X such that x > z are often considered
for preference elicitation. Indeed, x̄Az̄ ∼ ȳ means that
fu
v (x̄Az̄) = v(A)u(x)+(1−v(A))u(z) = u(y). Hence, if
v(A) is known for some A, this enables to derive u(y) from
u(x) and u(z). Thus, u might be constructed point by point
on a given interval [xm, xM ] from such indifferences, start-
ing with two reference values u(xm) < u(xM ) arbitrary
selected (e.g., u(xm) = 0 and u(xM ) = 1). This process
was used to elicit utilities in the context of risk [Hines and
Larson, 2010, Perny et al., 2016]. However, in our context
we have no simple way to obtain v(A) for some A before
knowing the utility function. For this reason we propose to
learn the utility function by regression from indifference
statements obtained with the tradeoff method [Wakker and
Deneffe, 1996, Abdellaoui, 2000] adapted to the context of
uncertainty.

The tradeoff method initially introduced in the context of
risk involves preference queries using gambles. Here, we
describe a counterpart of this method in the context of
uncertainty, to assess the utilities of outcomes within a
given interval [xm, xM ] using mixtures of constant acts.
This method requires that there exists an event A such
that x̄m ≺ x̄mAx̄M ≺ x̄M . Within CEU theory these
strict preferences translate into fu

v (x̄m) < fu
v (x̄mAx̄M ) <

fu
v (x̄M ) which is equivalent to 0 = u(xm) = fu

v (x̄m) <
u(xm)(1 − v(Ā)) + v(Ā) < fu

v (x̄M ) = u(xM ) = 1, i.e.,
0 < v(Ā) < 1.

So, given such an event A, let us choose z, r, R ∈ X such
that z ≤ xM < r < R and consider the two following
preference queries:

Q(y, z): what is the outcome y such that: ȳAR̄ ∼ z̄Ar̄?
Q(x, y): what is the outcome x such that: x̄AR̄ ∼ ȳAr̄?

With such indifferences, the DM makes a tradeoff be-
tween upgrading r in R and downgrading z in y (or y
in x). Since y ≤ z and x ≤ y, we have fu

v (ȳAR̄) =
u(y)(1 − v(Ā)) + u(R)v(Ā) and fu

v (z̄Ar̄) = u(z)(1 −
v(Ā)) + u(r)v(Ā). Hence fu

v (ȳAR̄) = fu
v (z̄Ar̄) implies

u(y)(1−v(Ā))+u(R)v(Ā) = u(z)(1−v(Ā))+u(r)v(Ā)
and therefore (1−v(Ā))[u(z)−u(y)] = v(Ā)[u(R)−u(r)].
Similarly, x̄AR̄ ∼ ȳAr̄ implies (1− v(Ā))[u(y)−u(x)] =
v(Ā)(u(R) − u(r)]. Since v(Ā) > 0, if u(R) − u(r) > 0
then u(z) > u(y) > u(x) and therefore z > y > x. Finally,
we have (1−v(Ā))[u(z)−u(y)] = (1−v(Ā))[u(y)−u(x)].

Since v(Ā) < 1 we obtain:

u(z)− u(y) = u(y)− u(x) (5)

Such queries are often involved in a standard sequence
that consists in sequentially asking question Q(xi+1, xi)
for i = 0 to N − 1, starting from x0 = xM until
xN ≥ xm. From the observed indifferences, Equation 5
yields u(xi−1) − u(xi) = u(xi) − u(xi+1) and therefore
u(xi+1) = 2u(xi)− u(xi−1). Hence, fixing arbitrarily the
utilities of x0 and x1 completely determines the utilities
u(xi) for i > 1. However, if the DM makes some errors in
assessing xi in the early steps of the sequence, these errors
will propagate and impact the whole sequence [Blavatskyy,
2006]. In order to reduce the error propagation, we propose
to perform a regression from a database of indifference state-
ments obtained from queries of type Q(y, z) and Q(x, y)
rather than performing a standard sequence.

More precisely, our learning approach proceeds as follows:
for various non-null events A, various steps s = R − r
defined by different pairs (r,R) and various z, the two
preference queries Q(y, z) and then Q(x, y) are asked to
the DM. The resulting database of indifference statements
yields a set of necessary linear constraints on utility values
given by Equation 5, for all triplets (x, y, z) obtained from
the answers to Q queries. Then a regression by a monotonic
spline is performed to identify the utility function that best
fits the set of linear constraints on utility values.

4.2 MONOTONIC SPLINE REGRESSION UNDER
UTILITY CONSTRAINTS

In order to represent the utility function, we use a mono-
tonic spline function, i.e., a piecewise polynomial function
of class Ck. Spline functions are widely used for data inter-
polation or approximation due to their ability to smoothly
approximate complex shapes. Moreover they allow for a
compact representation of utilities. Indeed, a spline function
can be expressed as a linear combination of basis functions
and is thus characterized by the coefficients of the combina-
tion. Since utility increases with payoffs, we will use a basis
(Il)

L
l=1 of monotonically increasing spline functions, known

as I-spline functions [Ramsay, 1988] weighted by positive
coefficients (adding up to 1 so as to have u(xM ) = 1). We
use here cubic I-splines (k = 3) because they have match-
ing first and second derivatives while preserving a local
influence of every components. Formally, u is defined by:

∀x ∈ [xm, xM ] , uα(x) =
∑L

l=1 αlIl(x) (6)

where α = (α1, . . . , αL) ∈ [0, 1]L.

For the sake of illustration, we represent in Figure 1 the
I-spline basis for L = 10 (value used in our tests) and an
instance of utility function generated from this basis.



Figure 1: uα(x) generated from the I-splines

Our observations have been obtained using the Q queries
leading to a database B of N triplets (xi, yi, zi), as de-
scribed in the previous subsection. We want to determine
the parameters αl that best fit the associated constraints
2u(yi) − u(zi) − u(xi) = 0, i = 1, . . . , N obtained from
Equation 5. Hence, using Equation 6, the problem can be for-
malized as a linear program P (B) with relaxed constraints
(N + 1 constraints and L+ 2N variables):

P (B) : min z =
∑N

i=1(ϵ
+
i + ϵ−i )

L∑
l=1

αl(2Il(y
i)− Il(z

i)− Il(x
i)) + ϵ+i − ϵ−i = 0,∀i

L∑
l=1

αl = 1

ϵ+i ≥ 0, ϵ−i ≥ 0, αl ≥ 0.

Hereafter let α∗
l denote the optimal solution and z∗ the op-

timal value. Taking into consideration that the number of
observations is always limited we need to assess the level
of uncertainty of the utility function. To this end, we inves-
tigate a neighborhood of the optimal solution defined by
z∗ ≤ z ≤ z∗ + δ where δ is a tolerance threshold. This
neighborhood Vδ(z

∗) contains all spline functions that sat-
isfy the constraints on utilities with an error at most equal
to z∗ + δ. The range of variation of utilities within this
set is a good indicator of the level of uncertainty allowed
by the constraints. It can be measured by the quantity ρ =
maxx∈[xm,xM ]{maxα∈Vδ(z∗) uα(x)−minα∈Vδ(z∗) uα(x)}
estimated by discretization of [xm, xM ]. When ρ is too large,
the constraints are considered too weak to allow for the
identifiability of u; one should carry on the Q queries pro-
cess. The elicitation procedure is formalized in Algorithm 1.

Algorithm 1: Utility elicitation with Q-queries
i← 0, B ← ∅
repeat

Select Ai, xi, Ri, ri

Ask queries Q(xi, yi), Q(yi, zi)
B ← B ∪ {(xi, yi, zi)}
(α∗, z∗)← P (B)
Compute ρ
i← i+ 1

until ρ ≤ ϵ;

Let us illustrate our approach. We simulate a Q queries
process with a DM answering according to a given CEU
model fu

v . Answers to queries of type Q(y, z) for a given
z and a pair (r,R) are simulated by solving the equa-
tion fu

v (ȳAR̄) = fu
v (z̄Ar̄) which gives y = u−1(u(z) +

[u(R)− u(r)](v(A)− 1)/v(A)). Then x is derived from y
using a similar process to simulate the answer to question
Q(x, y). Then the resulting triplet (x, y, z) is slightly dis-
torted using a random uniform noise. This process is iterated
N times for randomly chosen z, r, R, and A. We used the
mathematical programming solver Gurobi (version 9.1.2)
to perform the optimization task. The result of the learning
process is presented on Figure 2 where we increase the size
of the database in order to reduce ρ. In this instance, u is
already well estimated with tight bounds for N = 32.

Figure 2: Identification of the utility function u for N = 4,
N = 16, N = 32 (left to right).

This experiment has been conducted for 1000 utility func-
tions u randomly generated in the space of spline func-
tions. Below we show the decrease of ρ and of the distance
d(u, uα∗) between the estimated utility function uα∗ and
u as the number N of learning examples increases. The
distance is computed as the average absolute difference
between both functions on a discretization of [xm, xM ].

N = 4 N = 16 N = 32

ρ 0.687 0.124 0.072
d(u, uα∗) 0.354 0.024 0.004

Table 1: ρ and d(u, uα∗) w.r.t the number of constraints N .

5 LEARNING THE CAPACITY

Given the utility function u obtained as described in Section
4, we want to learn a sparse Möbius representation of the
CEU model, based on Equation 3. However, since ∥m∥1 ≥∑

B⊆S m(B) = 1 by definition, it is not quite natural to
penalize with ∥m∥1 since its impossibility to decrease to
zero would make ineffective any further reinforcement of
the penalization as soon as ∥m∥1 = 1.



To overcome the problem we use the following representa-
tion of m: m(B) = 1/n+wB if |B| = 1 and m(B) = wB

if |B| > 1, where wB are real coefficients (positive or nega-
tive) such that

∑
B⊆S wB = 0 (hence

∑
B⊆S m(B) = 1).

Note that when all coefficients wB are null, CEU boils down
to a simple instance of Expected Utility where states are
equally weighted. In the general case, w represents the gap
to this basic model. In order to obtain a sparse representation
in terms of Möbius we penalise on ∥w∥1 instead of ∥m∥1.
This leads to solve the following linear program, which is a
regularized version of (4) reformulated with Möbius masses
(mB are variables representing the masses m(B), B ⊆ S):

min
∑q

i=1(ϵ
+
i + ϵ−i ) +

∑p
i=1 ϵi + λ

∑
B⊆S(w

+
B + w−

B)

∑
B⊆S mB(U

xi

B − Uyi

B ) + ϵ+i − ϵ−i = 0, i = 1...q∑
B⊆S mB(U

xi

B − Uyi

B ) + ϵi ≥ 0, i = 1...p

mB = 1/n+ wB , ∀B ⊆ S : |B| = 1
mB = wB , ∀B ⊆ S : |B| > 1
wB = w+

B − w−
B , ∀B ⊆ S∑

C⊆B mC∪{i} ≥ 0, ∀i ∈ S, ∀B ⊆ S\{i}
ϵ+i ≥ 0, ϵ−i ≥ 0, ϵj ≥ 0, w+

B ≥ 0, , w−
B ≥ 0,mB , wB ∈ R

where Uxi

B = minj∈B{u(xi
j)},∀B ⊆ S, ∀i.

The number of variables and constraints are respectively
2n+2 + 2q + p and q + p+ 2n+1 + n2n−1. In practice, the
LP above remains tractable because the number of states n
under consideration is generally low (at most a dozen).

Now, we share the results of our numerical experiments
to illustrate the learned sparse model with the linear pro-
gram described above. Here also the results are obtained
with the Gurobi optimizer. First, we investigate how the
generalizing performance evolves with the sparsity of m.
We generated preference data as follows. A utility function
u and a Möbius-sparse capacity v are randomly generated
and preferences compatible with fu

v are generated. Train-
ing data take the form of N pairs (xi, yi) of acts whose
outcomes are randomly drawn from [xm, xM ]. The prefer-
ences are stated from this pairs as follows: let f̃u

v (x) be a
perturbation of fu

v (x) by uniform noise randomly drawn
from a given interval [−σ, σ], for any act x. If the difference
|f̃u

v (x
i) − f̃u

v (y
i)| ≤ σ, then xi and yi are considered as

indifferent. If the difference is greater than σ, we conclude
to preference. Pairs with Pareto dominance are discarded.

For the sake of illustration, we present the results of our
approach on a toy dataset with n = 7 states and N = 100
preference examples. Hence, we have 27 − 2 parameters to
learn. The learning is performed for various values of λ (the
weight of the regularization term) ranging from 0 to 100 in
order to obtain a sequence of increasingly sparse representa-
tions. For each obtained model, we assess the performance
in generalization by measuring the error rate on a test set

of 1000 preferences. Figure 3 (left) shows various possible
tradeoffs between the test error and the compactness of the
Möbius representation measured by ∥m∥0. The curve shows
that the introduction of the penalization term relevantly re-
duces both the error in tests and the number of non-null
masses up to a point where we get close to the true model.
Beyond this point, we see that further enforcing sparsity is
counterproductive and increases the error in test. Figure 3
(right) represents three Möbius representations of the capac-
ity respectively learned without regularization (λ = 0, plot
(1)), with regularization and optimal tradeoff (λ = 0.5, plot
(2)), and the true one (plot (3)). It shows that the penalty
term is needed to recover a model close to the true one.

Figure 3: Test error versus ∥m∥0

A second experiment aims at highlighting the very special
benefit of the regularization for small preferences databases
in term of predictive performance. Figure 4 illustrates the
advantage of sparse models (obtained by regularization) for
settings where the number of preference examples is small.
We observed the average error rate on datasets of increasing
sizes ranging from N = 50 to N = 1000. The average
is taken on 30 random datasets each time. We observe on
Figure 4 that the smaller the dataset, the bigger the increase
of performance obtained by regularized models.

Finally, we provide the result of a comparison between
our approach (sparse regression) and a method based on
2-additive models (2-ADD) in Tables 2 and 3. We simulated
10 random models fu

v of dimension n = 5 and n = 10
and associated training sets of size N = 70 and N = 400
(and test sets of size 1000). We observe that our approach
which adapts sparsity to preference data has significantly
lower error rates than the method that enforces sparsity with
2-additivity. However, this advantage comes at an additional
computational cost due to the increase of variables.

6 CONCLUSION

We have presented a new approach for learning the utility
function and the capacity in CEU. A spline representation of



Figure 4: Comparative test error for sparse (λ = 0.5) and
dense (λ = 0) models w.r.t the training set size N .

n 5 10

Sparse reg. 5.98± 4.36% 10.28± 3.24%
2-ADD 12.09± 4.98% 15.98± 1.18%

Table 2: Comparative average test error w.r.t n.

n 5 10

Sparse reg. 0.0077± 0.0021 23.52± 6.21
2-ADD 0.0066± 0.0022 0.35± 0.06

Table 3: Comparative average training time (sec) w.r.t n.

utilities is obtained via a regression from selected indiffer-
ence learning examples. Then, a sparse representation of the
capacity is obtained based on Möbius masses. Our tests con-
firm the practical effectiveness of the method. By proposing
various tradeoffs between compactness and performance
in the test phase, our approach allows the simplification
of the general CEU model while maintaining the level of
expressiveness required to describe the preference data.

A natural extension of this work is to develop an active
learning version of our approach where the elicitation bur-
den is oriented towards the determination of the best choice
within a given set of alternatives. Also, an active selection
of preference queries could reduce the number of examples
required to learn a sparse representation of the capacity. Be-
sides, we could extend our approach to the framework of
multiattribute decision making. Q queries could be adapted
to learn a utility function per attribute using spline regres-
sion; then a sparse representation of the capacity could be
learned to reveal the non-essential attributes and determine
a multiattribute utility model keeping non-additive utilities
only when necessary.
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