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A B S T R A C T
Coupled excitable microlasers have been shown theoretically to sustain saltatory propagation of
solitonic-like excitations and hold good promise for fabrication of advanced and integrated photonic
processing circuits. By studying a model a evanescently coupled excitable microlaser lattices with
integrated saturable absorber, we investigate how pulse interaction can lead to non trivial responses.
In particular, we show in a three-port system that depending on the system parameters and geometry,
two counter-propagating pulses from two input ports can collide and exit or not in a third port, thus
giving rise to the not-linearly separable XOR response function and to universal logic gates.

1. Introduction
Excitability is a nonlinear generic phenomenon that re-

sults in an all-or-nothing response to an input perturbation.
Neurons are endowed with this property [1, 2], producing
a calibrated pulse only if a certain excitation threshold
is reached. Spatially extended excitable systems are well
known to sustain the propagation of nonlinear waves [3, 4,
5, 6]. Among the most well-known examples are excitable
electrical waves in the cardiac tissue [7] and in the chicken
retina [8], chemical excitable waves [9, 10] in the spatially
extended Belousov-Zhabotinsky (BZ) reaction and CO ox-
idation on platinum surfaces [11]. The nonlinear and colli-
sion properties of these waves have motivated the study of
excitable logic in continuous [12, 13, 14, 15, 16] or discrete
lattices [17, 18]. However, the kinetic of chemical reactions
is very slow and it is difficult to get integrated systems with
a small footprint. Photonics technologies may circumvent
these problems offering subnanosecond timescales for the
material recovery times and tens of micrometer scale de-
vices.

Excitable dynamics in optical systems has been studied
and demonstrated since a long time [19, 20]. Optical ex-
citable waves have been predicted in broad area lasers [21]
and studied experimentally in such a system [22] but a clear
demonstration remains elusive. More recently it has been
proposed to use lattices of semiconductor excitable micro-
lasers [23]. These lattices are based on excitable micropillar
semiconductor lasers [24, 25], which are integrated devices
with excitable response in the hundreds of picoseconds
range. The propagation of excitations in chains of coupled
excitable microlasers has been studied with a diffractive
[26, 27] and a diffusive optical coupling [28, 29]. In a related
study, similar waves have been studied in discretely coupled
integrate-and-fire excitatory neurons [30].

When an excitable pulse is ignited in the lattice, a nonlin-
ear soliton-like response can propagate in a saltatory manner
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between excitable nodes. The properties of this nonlinear
propagating pulse are very interesting for optical computing
and in the context of neuromorphic photonics, with the aim
of developing computing optical devices inspired by the
brain [31, 25]. An architecture for an OR gate has been
previously proposed [25], as well as a way to create an
AND gate. It relies on the adjustment of the pumping of
specific pillars in the lattice. Logic gates based on dissipative
localized structures (cavity solitons) have been studied in
[32], based on the local interaction between non-propagative
optical coherent structures.

Here, we investigate suitable architectures to produce
different logic gates allowing universal computation. These
gates are based on the peculiar collision and propagation
properties of the discrete excitable waves in micropillar laser
lattices. As a matter of fact, we will show that a change in the
coupling coefficient or pumping value in a lattice producing
an OR gate can give rise to a XOR gate. We study the physics
involved in this unexpected and non-trivial phenomenon.
The XOR function is also interesting in a machine learning
context as it implements a non separable problem and is of-
ten used as a test-bed for simple neural networks [33, 34, 35].
We demonstrate other logical gates, like the universal gates
NAND and NOR, that can be cascaded to create any logical
function.

2. Model
The architecture of a logical gate is described in Fig 1.

It is the association of N (even) excitable micropillar lasers
[36]. The two inputs of the logical gates are at both ends
of the lattice and the input pulses sent to them are repre-
sented as red beams. The coupling factor 𝜅𝑥 between pillars
is identical for all the chain, expect for the output pillar
connected to the micropillar at the middle of the chain with
a coupling constant 𝜅𝑦. The excitable micropillar laser emits
perpendicularly to the surface.
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Figure 1: Architecture of a logical gate: each micropillar has
a few microns diameter, and is composed of a cavity formed
by a top and a bottom Bragg mirror with an active medium
(red) composed of gain and saturable absorber quantum wells
(see [24] for details). Input pulses are sent at each extremities
(A and B) of a lattice of coupled micropillars with a coupling
factor 𝜅x. The output pillar (C) is coupled to the middle of the
chain with a coupling factor 𝜅y.

The propagation of excitable pulses in this architecture
can be simulated with a model of coupled ODEs [23]:

�̇�𝑗 =
[

(1 − 𝑖𝛼)𝐺𝑗 − (1 − 𝑖𝛽)𝑄𝑗 − 1
]

𝐸𝑗+

⎧

⎪

⎨

⎪

⎩

𝑖𝜅𝑥𝐸𝑗−1 if 1 < 𝑗 ≤ 𝑁 − 1
+ 𝑖𝜅𝑥𝐸𝑗+1 if 1 ≤ 𝑗 < 𝑁 − 1
+ 𝑖𝜅𝑦𝐸𝑁 if 𝑗 = 𝑁∕2
+ 𝑖𝜅𝑦𝐸𝑁∕2 if 𝑗 = 𝑁,

�̇�𝑗 = 𝑏1
[

𝜇1 − 𝐺𝑗(1 + |𝐸𝑗|
2)
]

,

�̇�𝑗 = 𝑏2
[

𝜇2 −𝑄𝑗(1 + 𝑠|𝐸𝑗|
2)
] (2.1)

with 𝐸𝑗 , 𝐺𝑗 , 𝑄𝑗 scaled adimensional variables: 𝐸𝑗 repre-
senting the electric field envelope in the 𝑗𝑡ℎ pillar, 𝐺𝑗 the
carrier density in the gain medium and 𝑄𝑗 the carrier density
in the saturable absorber medium. The parameters are 𝜇1 the
pump, 𝜇2 the linear absorption equal to 2, 𝜅x the coupling
factor between the pillars of the chain along the long axis, 𝜅y
the coupling factor of the output pillar (N𝑡ℎ pillar) with the
middle of the chain, the gain and the carrier recombination
rates 𝑏1 and 𝑏2 both equal to 0.002, the phase-amplitude
coupling factors 𝛼 and 𝛽 respectively equal to 2 and 0, and 𝑠
the saturation coefficient taken equal to 10. Time is rescaled
to the electric-field decay time, which is on the order of a
few picoseconds.

The initial conditions are given by:
𝐸𝑗(𝑡 = 0) =

√

𝐼𝑠𝑠 × 𝑒𝑖𝜙𝑗 +
√

I0j
𝐺𝑗(𝑡 = 0) = 𝜇1
𝑄𝑗(𝑡 = 0) = 𝜇2

(2.2)

with Iss = 10−5, a small intensity due to spontaneous emis-
sion, 𝜙𝑗 a random phase and I0j the input intensity, equal to
zero except for the extremes pillars when there is an input
(𝐴 = 1 for pillar 1 and 𝐵 = 1 for pillar N − 1).
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Figure 2: Numerical simulations of Eqs. (2.1) when one of
the edges is excited. (a) Spatiotemporal evolution of the pulse
propagation. Pink, green, yellow, and red solid lines represents
the response of 𝐷 − 2, 𝐷 − 1, 𝐷, and 𝐶 cavities, respectively.
Region in yellow (light blue) correspond the area where there
is (there is no) an excitable response in C as a function of
the coupling parameters (𝜅𝑥, 𝜅𝑦). (b) Intensity profile (in C)
as a function of time when 𝜅𝑥 = 0.06, 𝜅𝑦 = 0.09. (c) Intensity
profiles measured in C when 𝜅𝑦 = 0.09 (orange solid line) and
𝜅𝑦 = 0.095 (green solid line) with 𝜅𝑥 = 0.3 in both cases. The
red star (⋆) and the green diamond (⋄) indicates that these
intensity profiles correspond to two points in the (𝜅𝑥, 𝜅𝑦)-plane
of the inset in panel (a). (c) Typical intensity profile of an
excitable response with (𝜅𝑥 = 0.2 and 𝜅𝑥 = 0.115). For all
these simulations 𝜇1 = 2.75, 𝛼 = 2, 𝛽 = 0, 𝑏1 = 𝑏2 = 0.002,
𝜇2 = 2, and 𝑠 = 10. Initialization of the system: 𝐼𝑠𝑠, 𝜙𝑗 = 0,
𝐼0𝐴 = 10 (coherent perturbation), and 𝑗 = 1,… , 201.

3. Propagation and collision
Each micropillar modelled with the previous parameters

has an excitable response. It is therefore capable of emitting
a pulse if the initial perturbation goes beyond a certain
threshold, the excitable threshold, as shown theoretically in
Refs. [37, 38]. Excitability in such a micropillar has also
been reported in experiment [24], including the demonstra-
tion of existence of refractory periods, spike latency [39],
and temporal summation [40]. When the micropillars are
coupled through the evanescent tail of their electric-field
mode and one of the cavities is excited, a pulse propagating
in a saltatory manner can be observed . The existence of a
response in a chain of micropillars not only depends on the
initial perturbation but also on the pump and on the coupling
strength [25, 26]. Indeed, in case of small coupling values,
the propagation is triggered when the pump 𝜇1 also goes be-
yond a certain threshold that decreases almost linearly with
coupling. Figure 2 corresponds to numerical simulations of
Eqs. (2.1) and shows how is the pulse propagation along
the cavities when the first cavity (A) is perturbed coherently
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Figure 3: Two different architectures, with input pillars A and
B and output pillar C, and with parameters: 𝜇g = 2.8, 𝜅x = 0.1
and 𝜅y = 0.1 in panel (a), 𝜅y = 0.07 in panel (b). The colors
of the individual pillars correspond to the curves shown beside,
where intensity versus time is plotted. Architecture represented
in (a) corresponds to an OR gate, with a constructive pulse
collision. Architecture represented in (b) behaves as a XOR
gate, with inhibitory pulse collision.

with light. Let us now consider, in the same figure, an output
cavity (C) located in the middle of the main chain and
colored in red. In particular, we use cavity C to study the
properties of the propagation and interaction of pulses as a
function of the coupling strength (between cavity C and the
main chain). From the inset of Fig. 2(a), one can distinguish
two main areas (light blue and yellow) depending on the
coupling values. The yellow and light blue areas show the
combination of (𝜅𝑥, 𝜅𝑦) for which there is and there is no
propagation in cavity C, respectively. The region in which
there is no propagation is split into two zones, 𝑖 and 𝑖𝑖. The no
propagation phenomenon has two different natures. In case
of 𝑖, the pulse can not propagate because for the pump value
in the main chain 𝜇1 = 2.75, the coherent perturbation is
below the excitability threshold [26]. Indeed, the intensity
profile in cavity C is zero, see Fig. 2(b). Contrarily to region
𝑖, in area 𝑖𝑖 the pump is not playing a crucial role because
it is high enough for the couplings (𝜅𝑥 and 𝜅𝑦), i.e., there is
always a pulse propagating over the main chain. In spite of
the propagation, the evanescent tail of electric field coming
from cavity (D) perturbs cavity (C) but is not capable to
trigger an excitable response in it. In this situation, one
measures in C an intensity whose maximum value is smaller
[Fig. 2(c)] than the typical response [Fig. 2(d)]. Note that
for a fixed value of 𝜅𝑥, the output peak intensity measured
in C increases as the coupling strength 𝜅𝑦 increases, as can
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Figure 4: Numerical simulations of Eqs. (2.1) when the edges
of the main chain, i.e., A and B, are excited. (a) Spatiotemporal
evolution of the pulse propagation. Black, pink, green, yellow,
and red solid lines represents the response of 𝐷 − 3, 𝐷 − 2,
𝐷 − 1, 𝐷, and 𝐶 cavities, respectively. (b) Intensity profile
𝐷 − 3, 𝐷 − 2, 𝐷 − 1, 𝐷 as a function of time when 𝜅𝑥 = 0.2
and 𝜅𝑦 = 0.114. (c) Intensity profiles measured in D and C
when 𝜅𝑥 = 0.2 and 𝜅𝑦 = 0.114. The inset corresponds to an
amplification of the same figure. (d) 𝐺 − 𝐼-phase space of the
output cavity when 𝜅𝑦 = 0.114 (red dots, C) and 𝜅𝑦 = 0.115
(red solid line, C’). The inset corresponds to a zoom of the
same figure. For all these simulations 𝜇1 = 2.75, 𝛼 = 2, 𝛽 = 0.
Initialization of the system: 𝐼𝑠𝑠, 𝜙𝑗 = 0, 𝐼0𝐴 = 10 (coherent
perturbation), 𝛾 = 0.002, 𝜇2 = 2, and 𝑗 = 1,… , 201.

be seen in the pulse profiles in figure 2(c). One then expect
the evanescent coupling to overpass a certain threshold that
depends on the coupling values between the main chain and
the output micropillar.

The dynamics becomes richer when the main chain is
simultaneously perturbed at the edges, i.e., at 𝑗 = 1 (A) and
𝑗 = 𝑁 − 1 (B) (see Eqs. (2.2) for the initialization of the
system). Depending on the collision between the pulses in
the cavity , here called D, located at middle of the chain, and
on the coupling value 𝜅𝑦, the propagation in cavity C can
be suppressed. Figure 3 shows the spatiotemporal evolution
of the pulses when they collide and interact “constructively”
so that the cavity C has an excitable response (see panel (a)
of the figure) or when the collision annihilates the excitable
response in C [see panel (b)].

To understand the collision, we study the propagation
throughout the main chain when the two cavities at the
edges (A,B) are excited, see Fig. 4(a). For this purpose we
have conducted simulations using the fourth-order Runge-
Kutta algorithm and considered 201 micropillars to avoid
any boundary or finite-size effect. In particular, we focus on
the colored cavities next to C in figure 4(a). From Fig. 4(b)
one observes that the intensity profile of cavities𝐷−3 (black
line) and 𝐷 − 2 (pink line) are equal. The changes in the
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( A , B ) FALSE AND OR XOR
( 1 , 1 ) 0 1 1 0
( 1 , 0 ) 0 0 1 1
( 0 , 1 ) 0 0 1 1
( 0 , 0 ) 0 0 0 0
( A , B ) NOR NAND XNOR TRUE
( 1 , 1 ) 0 0 1 1
( 1 , 0 ) 0 1 0 1
( 0 , 1 ) 0 1 0 1
( 0 , 0 ) 1 1 1 1

Table 1
The truth table for 8 logic gates: FALSE, logical conjunction
AND, logical disjunction OR, exclusive disjunction XOR,
logical NOR, logical NAND, logical biconditional XNOR and
tautology TRUE.

intensity profile become observable as the counterpropaga-
tive pulses reach cavity C. Indeed, the evanescent interaction
makes the pulses smaller at cavity 𝐷 − 1 (green line) since,
almost at the same time, cavity D is excited. Moreover, from
the inset of the same figure, it can be observed how the right
side of the pulses becomes monotonous as the propagation
reaches the middle of the micropillar chain. Note that the
collision of the evanescent tail of electric field at cavities
𝐷−1 makes the response in cavity D almost symmetric. The
latter reveals that almost all the dynamic due to the collision
is concentrated in cavity D.

Let us remind that the pulse propagation occurs due to
the perturbation made at one (or two) of the edges. This
perturbation may generate an excitable response which may
propagate to the next cavity by means of the evanescent tails
of the electric field intensity. Note that this mechanism also
holds for the interaction between the main chain and the out-
put cavity (C). We then explore this evanescent interaction
between cavity D and C when there is no output in C, as it
is shown in Fig. 4(c). From the inset of this figure one can
observe that at the same time the pulse in cavity D reaches its
higher value, the evanescent tail of the electric field perturbs
cavity C, however this perturbation is not enough to excite
it. Figure 4(d) illustrates the main features of this excitable
system [38, 37]. In particular, the red dots account for the
situation in which there is an excitable response with 𝜅𝑥 =
0.2 and 𝜅𝑦 = 0.115 whereas the solid red line corresponds to
the no propagation situation with 𝜅𝑥 = 0.2 and 𝜅𝑦 = 0.114. It
can be observed from the inset of this figure that, for the same
perturbation Eq.(2.2) with slightly different 𝜅𝑦, the trajectory
does a long (the pulse) or short excursion in the phase space
before it returns to the stable state (𝐺𝐶 = 2.75, 𝐼𝐶 = 0).

Throughout this section, we have stated that in order
to have pulse propagation along the entire micropillar lat-
tice, the system must be initialized in such a way that
the parameters (pump and coupling strength) go beyond of
certain value. The latter holds independently of whether
the propagation is triggered in one (A) or the two (A o B)
micropillar edges. It is worth to note that the interaction
and the subsequent collision of pulses make this system

capable to compute Boolean functions as is shown in the next
sections.

4. Logical gates
The architecture presented in Fig. 1 can be used to realize

logical gates. This is based on the results demonstrated in
the previous section, where a small change of the coupling
factor 𝜅y can radically change the nature of the collision and
subsequently of the signal in cavity C. Figure 3 shows the
evolution of the electric-field intensity following numerical
integration of the model (Eqs. 2.1) for two different gates,
using this phenomenon. In the first one the coupling factors
are all equal with 𝜅x = 0.1 and 𝜅y = 0.1. We can see in
Fig 3(a) that when two input perturbations (A=1 and B=1)
are present, two counter-propagating pulses propagate in the
chain from both sides, join in the middle micropillar, and
reach the output pillar. In the same way, the gate produces a
signal if only one perturbation is sent, and of course nothing
when no perturbation are sent (results not shown). This is
the behavior of an OR gate (see Table 1).

μ1 = 2.7

μ1 

μx 

μy

κx=κy

κx=0.075

κx=κy

OR
AND
XOR
FALSE

μ1 = 2.8

(a)

(b)

(c)

(d)

(e)

Figure 5: Nature of the logical gate for different parameters:
uniform pumping but different 𝜅x and 𝜅y for (b) and (c)
[schematic in (a)] uniform coupling (𝜅x = 0.075) but different
pumping for cavity C [in (e), schematic in (d)].

The second architecture, we describe in figure 3 uses
the behaviour described in section 3. Thus, it differs from
the first one only by the coupling factor 𝜅y for the output
pillar, now at 0.07. That is, we increase the excitable thresh-
old of the output micropillar. In practice, this is obtained
by a larger center to center distance between the coupled
pillars. In this case the propagation of two perturbations [cf.
Fig. 3(b)] simultaneously arriving at the middle pillar do
not produce an output pulse at the output pillar. However,
a single perturbation sent at one of the ends of the lattice can
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(c)

Figure 6: NAND gate : (a) architecture with 𝜇g = 2.7, 𝜅x = 0.15 and 𝜅y = 0.12. The overpumped pillar (in gray) is pumped at
𝜇g2 = 3.15. (b) Propagation in the gate when the two inputs are equal to 0. (c) With one input equal to 1. (d) The two input
equal to 0.

elicit a response at the output pillar, that is can overcome the
increase of the excitable threshold. This is the behaviour of
a XOR gate (see Table 1).

The study of the influence of different factors on the out-
put state of the gate is presented in figure 5. The figures 5(b)
and (c) show the gate resulting from the pulse collision in
the (𝜅𝑥, 𝜅𝑦) plane for different pumping values. We can see
that the area of parameters for the OR behavior is dominant,
and increases with the pump 𝜇1. Small zones for the AND
gate appear at the limit with FALSE areas. These are limit
cases when the coupling is so high that the propagation
deviates from the pure saltatory propagation mode [26].
Most interestingly is the apparition of a large XOR zone
where 𝜅y is smaller to 𝜅x. This XOR zone moves to smaller
𝜅y when the pumping increases [26]. Furthermore, we can
obtain XOR gates by tuning the pumping of the output pillar
alone, for a fixed coupling constant throughout the lattice as
shown in figure 5(e). We see that we can also find a large
zone of parameters for the XOR gate, without changing the
architecture of the gate. This method offers a flexible way to
tune the type of gate, since the coupling constant is fixed at
the fabrication stage but the pump can be tuned during the
experiment.

5. Universal gates
To complete the study, we explore the possibility to do

universal gates, with which any logical operation is possible.
We study in particular the NAND and NOR gates (see Table
1). These two logical operations bring another difficulty, as
they require the generation of a signal without any pertur-
bation (A=B=0 and C=1). We circumvent this difficulty by
adding a pillar to the gate. This particular pillar is coupled
to the middle of the chain and pumped over the self-pulsing
threshold (𝜇th = 3), for a certain amount of time. Thus,
this pillar produces pulses even with no input. Here, this
pillar is pumped at (𝜇g2 = 3.15), which results to a self-
pulsing regime with a very long period, far higher than the
simulation time. Thus, we see only one pulse produced by
this pillar. The figure 6 presents the architecture of a NAND
gate achieved with this solution. To achieve the NAND

behavior (always ´1´ except when the two inputs are ´1´),
we keep the parameters used for the XOR gate, and we add
the overpumped pillar. Then, if the two inputs are activated,
the XOR behavior comes into play and annihilates the output
signal in C [Fig. 6(a)].

A study of the influence of the parameters has also been
done for this new architecture. It is shown in figure 7, where
𝜇1 and 𝜅y vary. We can see zones of NAND and NOR
behavior at the frontier between the FALSE (always ´0´) and
the TRUE (always ´1´). We observe a linear dependence with
the coupling 𝜅y and the pumping 𝜇1. This is due to the fact
that these two parameters influence the propagation speed.
Actually, the speed is a critical factor in the determination of
the nature of the gate, because it relies on the synchronisation
of the pulses: for changing a NAND gate to a NOR gate
(when 𝐴 = 1 and 𝐵 = 0, 𝐶 = 0 instead of 1), we
need to decrease a little the speed of the propagation in
the main chain, so that when it arrives to the pillar D, it
collides with the pulse of the overpumped pillar, giving no
output. If we decrease even more the speed, the propagating
pulse does not have time to reach the output before the end
of the simulation, giving a FALSE. On the other hand, if
we increase the speed, the XOR behavior is suppressed,
so the gate always gives an output (TRUE). Indeed, the
synchronisation of the pulses relies also on the pump 𝜇g2because it determines the time when its pulse is produced.
So, the map showed Fig. 7 will be slightly different with
another 𝜇g2.

Consequently, this new architecture can produce all the
logical gates described in Table 1.

6. Conclusion
In this paper, we propose architectures for realizing pho-

tonic logical gates, based on pulse collisions in microlaser
lattices that can sustain solitonic-like excitation propaga-
tion. We have demonstrated that depending on the system
parameters (coupling or pumping) we can get an OR gate
or a XOR gate. Actually, there exists a sizeable range of
parameters where two counterpropagative pulses annihilate
the signal in the output cavity, whereas only one input pulse
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NOR
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Figure 7: Nature of the logical gate with an overpumped cavity
at 𝜇g2 = 3.15, for different 𝜇1 and 𝜅y, with 𝜅x = 0.2

does not. These architectures are flexible since one can tune
either the pump or coupling strength to realise a specific
gate. Moreover, we extended this study to the design of
universal gates, which can produce any logical function
and can be cascaded. Besides excitable logic, these demon-
strations open interesting prospects for the experimental
realization of more complex on-chip computing tasks taking
advantage of the fast timescales and small system footprint,
e.g. for spike time pattern recognition at high speed. On a
more fundamental viewpoint, this system could also form
an interesting photonic platform to study the propagation of
nonlinear excitations in more complex lattice architectures
or to investigate topological and non hermitian lattices [41].
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