
HAL Id: hal-03780128
https://hal.science/hal-03780128

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Bi-infinite and Conjugate Post Correspondence
Problems

Olivier Finkel, Vesa Halava, Tero Harju, Esa Sahla

To cite this version:
Olivier Finkel, Vesa Halava, Tero Harju, Esa Sahla. On Bi-infinite and Conjugate Post Correspondence
Problems. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), 2023, 57, Article number
7, p. 1-11. �hal-03780128�

https://hal.science/hal-03780128
https://hal.archives-ouvertes.fr

On Bi-infinite and Conjugate Post
Correspondence Problems

Olivier Finkel1, Vesa Halava∗2, Tero Harju2, and Esa Sahla2

1Institut de Mathématiques de Jussieu - Paris Rive Gauche,
CNRS, Université Paris Cité, Sorbonne Université, Paris, France.

finkel@math.univ-paris-diderot.fr
2Department of Mathematics and Statistics, University of Turku,

Finland. {vesa.halava,harju,esa.sahla}@utu.fi

September 10, 2022

Abstract

We study two modifications of the Post Correspondence Problem (PCP),
namely 1) the bi-infinite version, where it is asked whether there exists
a bi-infinite word such that two given morphisms agree on it, and 2) the
conjugate version, where we require the images of a solution for two given
morphisms are conjugates of each other. For the bi-infinite PCP we show
that it is in the class Σ0

2 of the arithmetical hierarchy and for the con-
jugate PCP we give an undecidability proof by reducing it to the word
problem for a special type of semi-Thue systems.

Keywords: Bi-infinite words, Conjugate words, Post Correspondence Prob-
lem, Undecidability

1 Introduction

The original formulation of the Post Correspondence Problem (PCP) by Emil
Post in [16] is the following:

∗Supported by emmy.network foundation under the aegis of the Fondation de Luxembourg.

1

Problem 1 (PCP). Let A be a finite alphabet. Given a finite set of pairs of
words over A, say (u1, v1), (u2, v2), . . . , (un, vn), does there exists a nonempty
sequence i1, . . . , ik of indices such that

ui1ui2 · · ·uik = vi1vi2 · · · vik ?

Post proved that the PCP is undecidable in [16]. Since then the PCP and
its many variants have been used as a bridge from combinatorial undecidable
problems of computational systems and formal rewriting systems to decision
problems in algebraic settings. The PCP is usually defined as a problem in
free word monoids (as A∗ is the free monoid of all finite words over A with
catenation as the operation). Indeed, the PCP is equivalent to asking for two
given morphisms g, h : B∗ → A∗, whether or not there exists a non-empty word
w such that

g(w) = h(w).

Note that we may choose set B = {1, . . . , n}, and g(i) = ui, h(i) = vi for
all i = 1, . . . , n where (ui, vi) is a pair in the original formulation of the PCP.
The variants of the PCP also reveal the boundary between decidability and
undecidability. It is known that the PCP is decidable for n = 2, see [4, 10],
and undecidable for n = 5, see [14]. On the other hand, it is known that the
infinite PCP, asking whether there is a (right) infinite sequence i1, i2, . . . of the
indices such that the words agree, is decidable for two pairs of words, see [11],
and undecidable for 8 pairs, see [3]. It has been proved that the infinite PCP is
not "more complex" than the PCP with respect to the arithmetical hierarchy,
see [7], where it was proved that the infinite PCP is Π0

1-complete as the PCP is
known to be Σ0

1-complete.
In this paper we study two variants of the PCP. The first variant is called

the bi-infinite Post Correspondence Problem (ZPCP), where it is asked whether
or not there exits a bi-infinite sequence of the indices such that the words agree.
The morphisms version of the ZPCP is the following:

Problem 2. Given two morphisms h, g : A∗ → B∗, does the exist a bi-infinite
word w such that h(w) = g(w).

Note that already the equality of the images of bi-infinite words needs to be
defined properly: for a bi-infinite word w, h(w) = g(w) if and only if there is a
constant s ∈ Z such that for all letters h(w)(i) = g(w)(i + s) for all positions
i ∈ Z. An instance of the Z PCP is a pair of morphisms (h, g) and a bi-infinite
word w satisfying h(w) = g(w) is said to be a solution of the instance (h, g).

2

Our second variant deals with conjugate words. Two words x and y are
conjugates if there exist words u and v such that x = uv and y = vu.

We call the following problem the conjugate-PCP.

Problem 3. Given two morphisms h, g : A∗ → B∗, does there exist a word
w ∈ A+ such that h(w) = uv and g(w) = vu for some words u, v ∈ B∗.

The behaviour of the instances of the conjugate-PCP differ vastly from the
more traditional variants where a valid presolution (prefix of a candidate solu-
tion) can be verified by aligning the matching parts of the images. Working with
the possible solutions of the instances of the conjugate-PCP is less intuitive.

For example let us have morphisms h, g and we guess that a solution w

begins with the letter a. Then the situation is the following:

h(w) = h(a) · · · g(a) · · ·

g(w) = g(a) · · · h(a) · · ·

u v

v u

The validity of the presolution a cannot be verified because there may not be
any matching between h(a) and g(a). Moreover the factorization of the images
to u and v need not be unique even for minimal solutions:

Example. Let h, g : {a, b}∗ → {a, b}∗ be morphisms defined by

h(a) = aba, g(a) = bab,

h(b) = b, g(b) = a.

Now ab is a minimal solution for the conjugate-PCP instance (h, g) having two
factorizations: u = a, v = bab or u = aba, v = b.

Both variants defined above were originally proved to be undecidable in [18]
using linearly bounded automata (LBA)1. Indeed, the conjugate-PCP was not
directly proved in [18], although it is claimed so in [19]. Let us consider the
terminology of Ruohonen in [19] in a bit more details: Let u and v be words,
and denote u ∼m v if there exist words u1, . . . , um and a permutation τ on the
set {1, . . . ,m} such that u = u1 · · ·um and v = uτ(1) · · ·uτ(m).

1Note that in [18] the ZPCP is called doubly infinite PCP

3

Problem 4 ((m,n)-permutation PCP). Given morphisms g, h : A∗ → B∗ does
there exists words u, v ∈ A∗ such that

u ∼m v and g(u) ∼n h(v).

Obviously, our formulation of the conjugate-PCP is the (1,2)-permutational
PCP of Ruohonen. Now in [19], it is mentioned that (1,2)-permutational PCP
was proved to be undecidable in [18], but the problem is not explicitly men-
tioned there. On the other hand, the (2,2)-permutational PCP is shown to be
undecidable in [18]2. It is possible that Ruohonen uses the later result without
details, because of the following simple lemma, which follows from special cyclic
shift property of permutations.

Lemma 1. For morphisms g, h : : A∗ → B∗, the instance (g, h) has a solution
to the (1, 2)-permutational PCP if and only if it has a solution to the (2, 2)-
permutational PCP.

Proof. Firstly, a solution to the (1, 2)-permutational PCP is a solution to the
(2, 2)-permutational PCP where the first permutation on the pre-image being
trivial.

Secondly, assume that there exists a solution u = xy, v = yx, two (2, 2)-
permutational PCP. So g(xy) = zw and h(yx) = wz for some w, z ∈ B∗. We
have two cases, either h(y) is a prefix of w, or vice versa.

In the first case, w = h(y)r for some word r ∈ B∗, and h(xy) = rzh(y) and
g(xy) = zw = zh(y)r and, therefore, xy is a solution for the (1, 2)-permutational
PCP.

In the second case, h(y) = wr, z = rh(x), for some word r ∈ B∗. Then
g(xy) = rh(x)w and h(xy) = h(x)wr, implying that xy is again a solution for
the (1, 2)-permutational PCP.

We stress that the undecidability of the (m,n)-permutational PCP was
proved in [19], using the machinery of LBA’s used already in [18], for all m and n.
This extends the result is [18] where it was shown that the (n, 1)-permutational
PCP is undecidable for all n3.

The proof in [18] and [19] are rather involved because of the employment
of the computations of LBA’s, and there is a quest for simpler treatments of
the problems. There is a line of new simplified proofs for Ruohonen’s results

2Note that (2, 2)-permutational PCP is called the PCP for circular words in [18]
3Note that in [18] (n.1)-permutational PCP is called n-permutational PCP.

4

on the permutational PCP’s, which use of a word problem of the special type
of semi-Thue systems: For the case of (2, 1)-permutational PCP a somewhat
simpler proof was given in [9], where the problem was called the circular PCP.
In [5] a simplified proof for (n, 1)-permutational PCP (or n-permutational PCP)
was given for all positive n. For ZPCP a simpler proof was given in [12].

In the next section we give a new proof to undecidability of the conjugate-
PCP by reducing it to the word problem for a special type of semi-Thue systems.
These are is indeed the same special semi-Thue systems that were used for
provingundecidability of the ZPCP in [12], but the construction here is different
due to differences in the ZPCP and the conjugate-PCP. By Lemma 1, this also
proves undecidability of the (2, 2)-permutational PCP.

In the final section we show that the ZPCP is in the class Σ0
2 of the arith-

metical hierarchy. This reflects to the result in [7], where it was proved that the
infinite PCP is Π0

1-complete as the PCP is known to be Σ0
1-complete.

At first sight, it may seem that the ZPCP and the conjugate PCP do not
have anything in common, but that is not the case. In both of these problems,
solutions have a shift, in the ZPCP the shift makes the images, two bi-infinite
words, equal and in the conjugate PCP the images are equal over a cyclic shift
of the word. Therefore, the construction in the next section for the conjugate
PCP has similar ideas as the construction for the ZPCP in [12].

2 The proof of undecidability of the conjugate-

PCP

We shall shortly recall the construction of the semi-Thue system TM in [12].
First of all, a semi-Thue system T is a pair (Γ, R) where Γ = {a1, a2, . . . , an}
is a finite alphabet, the elements of which are called generators of T , and the
relation R ⊆ Γ∗ × Γ is the set of rules of T . We write u −→T v, if there exists a
rule (x, y) ∈ R such that u = u1xu2 and v = u1yu2 for some words u1, u2 ∈ Γ∗.
We denote by −→∗

T the reflexive and transitive closure of −→T , and by −→+
T the

transitive closure of −→T . Note that the index T is omitted from the notation,
when the semi-Thue system studied is clear from the context. If u −→∗ v in T ,
we say that there is a derivation from u to v in T .

In the word problem for semi-Thue systems, is it asked, for a given semi-Thue
system T and words w and u, whether w −→∗

T u. In a circular word problem on
the other hand, it is asked whether there exists a word u for a given semi-Thue

5

system T such that u −→+
T u.

In [12], a special kind of semi-Thue system was constructed which harnesses
the structure of a given deterministic Turing machine. Assume that a Turing
machine, TM for short, M is of the form M = (Q,Σ, Γ, δ, q0, F), where Q is
a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
satisfying Σ ⊆ Γ, containing a special blank symbol □ ∈ Γ \ Σ, q0 is a unique
initial state, δ is a transition mapping from Q×Γ to subsets of Q×Γ×{L,R, S},
and F ⊆ Q is the set of accepting states. We assume that in a TM, the transition
mapping is a partial function as the TM’s are assumed to be deterministic.

For purposes of this section we also assume that F = {H}, that is, there ex-
ists a unique accepting state H ∈ Q, called the halting state. It can be assumed
that a computation of a TM halts (i.e., no more transitions are applicable) if
and only it arrives to state H. We denote a configuration of M by a word uqv□,
if the contents of the non-blank part of the tape is uv, and M is reading the
first symbol of v□ in state q ∈ Q.

A semi-Thue system SM = (Λ, RS) imitating the computation of a fixed
deterministic TM M is constructed using the following ideas originally given in
[13]: Λ = Q∪Σ∪Γ∪{L,R}, where L and R are end markers. Indeed, the initial
configuration q0w of M corresponds to a word Lq0wR ∈ Λ+ and the rules of
RS are implied by the transition function δ so that, for example,

(aqb, acp) ∈ RS if δ(q, b) = (p, c, R),

and similarly for the other types of transitions. Now it is straightforward to see
that a TM M halts on input w in the configuration uHv for some words u and
v if and only if Lq0wR −→∗

SM
LuHvR. Since the halting problem of TM’s on

empty tape is undecidable, we may assume in the above that w = □.
We obtain a simple proof for undecidability of the the word problem, see

[13], by adding letter-by-letter cancellation rules such that LuHvR −→∗ LHR

to the semi-Thue system SM. Furthermore, by adding a special rule

(LHR,Lq0wR) (1)

we have a semi-Thue system with undecidable circular word problem. The semi-
Thue system constructed is Q-deterministic meaning that in all rules (u, v), both
u and v contain exactly one symbol from set Q.

In order to prove that the conjugate-PCP is undecidable, we need to modify
the above construction a bit. First of all, we take another copy of the alphabet

6

Λ, say Λ = {a | a ∈ Λ} and add also overlined copies of all rules except the
rule (1) to the system. The special rule (1) is replaced by two new rules,

(LHR,Lq0□R) and (LHR,Lq0□R). (2)

Now the circular derivation

Lq0□R −→∗
SM

LuHvR −→∗ LHR −→ Lq0□R

is transformed into circular derivation

Lq0□R −→∗ LuHvR −→∗ LHR −→ Lq0□R −→∗ LuHvR −→∗ LHR −→ Lq0□R

in our new system.
Finally, we simplify the alphabet Λ (and Λ). Indeed, we encode injectively

the letters in Λ \ (Q ∪ {L,R}) into {a, b}+, and denote the new alphabets
A = {a, b, L,R} and B = Q. We have now constructed a semi-Thue system
TM = (Σ,R) with the following properties:

1. Σ = A ∪ A ∪ B ∪ B with pairwise disjoint alphabets A,A,B,B. Notably
A = {a, b, L,R} where L,R are markers for the left and right border of
the word, respectively.

2. TM is (B ∪B)-deterministic in the following way:

(i) R ⊆ (A∗BA∗×A∗BA∗)∪ (A∗BA∗×A∗BA∗)∪ (A∗BA∗×A∗BA∗)∪
(A∗BA∗ ×A∗BA∗).

(ii) If ti is a rule in R where none of the symbols are overlined, then
the corresponding overlined rule ti, where all symbols are overlined
is also in R, and vice versa.

(iii) For all words w ∈ (A ∪ A)∗(B ∪ B)(A ∪ A)∗, if there is a rule in R
giving w −→T w′ then the rule is unique.

(iv) There is a single rule from A∗BA∗ × A∗BA∗ and a single rule from
A∗BA∗ × A∗BA∗, moreover these rules are such that they re-write
everything between the markers L and R, namely if there are rules
giving u −→TM w0 and u −→TM w0 for a u ∈ A∗BA∗ then the rules
are (u,w0) and (u,w0), respectively. These rules are the rules in (2)
coded into Σ.

7

3. TM has an undecidable circular word problem. In particular it is undecid-
able whether T has a circular derivation w0 −→∗

TM
w0 where w0 ∈ A∗BA∗

is the word appearing in the rules of 2(iv). Note that w0 and u in the case
2(iv) are fixed words from the construction of the semi-Thue system TM

for a particular Turing machine M , and w0 ̸= u.

The special (B ∪ B)-determinism of TM can be interpreted as derivations
being in two different phases: the normal phase and the overlined phase. Tran-
sitioning between phases happens via the unique rules from 2(iv). It is straight-
forward to see that all derivations do not go through phase changes and that the
phase is changed more than once if and only if T has a circular derivation. The
system considered is now fixed from the context and we write the derivations
omitting the index T simply as −→.

We now add a few additional rules to TM: we remove the unique rule (u,w0)

and replace it with one extra step by introducing rules (u, s) and (s, w0) where
s is a new symbol for the intermediate step. The corresponding overlined rules
(u, s) and (s, w0) are added also to replace the rule (u,w0). These new rules are
needed in identifying the border between words u and v, and adding them has
no effect on the behaviour of TM.

By the case 3 of the properties of TM we have the following lemma.

Lemma 2. Assume that the semi-Thue system TM is constructed as in the the
above. Then TM has an undecidable individual circular word problem for the
word w0.

We now reduce the individual circular word problem of the system TM to
the conjugate-PCP.

Let R = {t0, t1, . . . , th−1, th}, where the rules are ti = (ui, vi). We denote
by lx and rx the left and right desynchronizing morphisms defined by

lx(a) = xa, rx(a) = ax

for all words x. In the following we consider the elements of R as letters.
Denote by Aj the alphabet A where letters are given subscripts j = 1 and 2,
respectively. Define the morphisms h, g : (A1∪A2∪A1∪A2∪{#,#, I}∪R)∗ →
{a, b, d, e, f,#, $,£}∗ according to the following table:

8

h g

I $ld2(w0#)d £ee,

x1 dxd xee, x ∈ {a, b}
x2 ddx xee, x ∈ {a, b}
ti d−1ld2(vi) re2(ui), ti ̸∈ {th−1, th}
th−1 dsff re2(u#)

th f$£le2(w0#)ee sfff£$dd

dd#d #ee

x1 xee xdd, x ∈ {a, b}
x2 exe xdd, x ∈ {a, b}
ti e−2le2(vi)e rd2(ui), ti ̸∈ {th−1, th}
th−1 sf rd2(u#)

th ff£ sfff$

e#ee #dd

Here the re-writing rules are of the form ti = (ui, vi), for ui, vi. The following
rules play important roles:
th−1 = (u, s), where u is the unique word such that (u,w0) ∈ R, and
th = (s, w0).

We begin by examining the forms of the images of h and g. The morphisms
are modified from the ones in [12] with slight alterations made such that it is
possible to have (finite) solutions to the instance of the conjugate-PCP with
easily identifiable borders between the factors u and v using special symbols
$ and £. The symbols d, e and f function as desynchronizing symbols. The
desynchronizing symbols d and e make sure that in the solution w the factors
that will represent the configurations of the semi-Thue system TM are of correct
form, that is of the form where determinism is kept intact. This follows from
the forms of h and g: under g all images are desynchronized by either e2 (non-
overlined letters) or d2 (overlined letters). To have similarly desynchronized
factors in the image under h we note that in the pre-image the words between
two #-symbols (similarly for overlined symbols #) are of the form αtβ where
α ∈ {a1, b1}, β ∈ {a2, b2} and t ∈ R (with end markers L and R omitted from
α and β). The symbol f is not really used in desynchronizing but makes sure
that the change between phases is carried out correctly.

The following lemma is useful in our proof:

Lemma 3. The words h(w) and g(w) are conjugates if and only if h(w1) and

9

g(w2) are conjugates for all conjugates w1 and w2 of w.

Proof. If h(w1) and g(w2) are conjugates for all conjugates w1 and w2 of w then
of course h(w) and g(w) are conjugates.

Assume then that h(w) and g(w) are conjugates and let w1 and w2 be
conjugates of w. There are then suffixes x and y of w such that w1 = xwx−1

and w2 = ywy−1. Denote wx−1 = w′ and wy−1 = w′′. Now h(w1) = h(xw′) =

h(x)h(w′) is a conjugate of h(w′)h(x) = h(w′x) = h(w) and g(w2) = g(yw′′) =

g(y)g(w′′) is a conjugate of g(w′′)g(y) = g(w′′y) = g(w). By our assumption
also h(w1) and g(w2) are conjugates.

Next we will show that a circular derivation beginning from a fixed word w0

exists in TM if and only if there is a solution to the conjugate-PCP instance
(h, g). We prove the claim in the following two lemmata.

Lemma 4. If there is a circular derivation in TM beginning from w0, then there
exists a non-empty word w such that h(w) ∼2 g(w).

Proof. Assume that a circular derivation exists. The derivation is then of the
form w0 = α1u1β1 → α1v1β1 = α2u2β2 → · · · → u → s → w0 = α1u1β1 →
· · ·u → s → w0, where s and u as defined earlier for TM. This derivation can
be coded into a word

w = Iw1#w2#w3# · · ·#th−1thw1#w2#w3# · · ·#th−1th,

where wi = αitiβi for each i, where ti = (ui, vi) is the unique rewriting rule used
in each derivation step. The rules th−1 and th appear right before transition to
overlined part of the derivation as they correspond to the final and intermediate
steps before the transition. Let us consider the images of w under the morphisms
h and g defined in the above:

h(w) = $ld2(w0#α1v1β1#α2v2β2# · · ·#s)fff$£le2(w0#α1v1β1 · · ·#s)fff£)

and

g(w) = re2(£α1u1β1#α2u2β2# · · ·#u#)sfff£rd2($α1u1β1 · · ·#u#)sfff$).

These images are indeed very similar. They match at all positions that do not
contain a desynchronizing symbol (d or e) or a special symbol ($ or £). Thus, if
we erase all of these non-matching symbols we would have equality (and of the
form q2 for a word q). Also the non-matching symbols are such that d is always

10

matched with e and $ is always matched with £. It is clear that the factors
in both h(w) and g(w) beginning and ending with the same special symbol
are the same, that is, the factor of the form $ · · · $ and the factor of the form
£ · · ·£ both images are equal. It follows that h(w) ∼2 g(w), which proves our
claim.

Lemma 5. If there exists a non-empty word w such that h(w) ∼2 g(w), then
there is a circular derivation in TM beginning from w0.

Proof. Firstly we show that the factor f3 must appear in h(w) and hence th−1th

or th−1th has to be a factor in w. Assume on the contrary: there is no factor
f3 in h(w).

From the construction of g we know that also h(w) must be desynchronized
so that between the letters there is either a factor d2 or e2. Conjugation of g(w)
does not break this property except possibly in the beginning and the end of
h(w) (h(w) could start and end in a single desynchronizing symbol).

Take now the first letter c of w. We can assume that it is a non-overlined
letter as the considerations are similar for the overlined case. The letter c

cannot be th−1 as it would have to be followed by th: f2 does not appear as
a factor under g without f3, and th−1th produces f4, which is uncoverable by
g. From the construction of h we see that the letters following c must also
be non-overlined, otherwise the desynchronization would be broken. Thus the
desynchronizing symbol is the same for all the following letters. But as we can
see from the form of the morphisms h and g, we have a different desynchronizing
symbols under g for c and its successors. It is clear that h(g) must contain both
d and e and so w must have both non-overlined and overlined letters. If there
is a change in the desynchronizing symbol in h(w) then it contradicts the form
of the images under g. Hence we must have the factor th−1th in w to make the
transition without breaking the desynchronization.

The images of the factor th−1th are

h(th−1th) = dsfff$£le2(w0#)ee

and
g(th−1th) = re2(u#)sfff$£dd.

As we can see the desynchronizing symbols do not match. Hence we also
must have the overlined copy of this factor in w, that is a factor th−1thI, the
images of which are (the letter I is a forced continuation to the overlined factor
to account for the special symbols $ and £):

11

h(th−1thI) = sfff£$ld2(w0#)d

and
g(th−1thI) = rd2(u#)sfff$£ee.

One of either of these factors has one swap between the symbols d and e. From
the above we concluded that we need an even number of these swaps as for
every factor th−1th we must also have the factor th−1thI and vice versa. It is
possible that h(w) ends in the letter f . In this case the swap happens "from the
end to the beginning", i.e., the prefix of a factor doing the swap is at the end of
w and the remaining suffix is at the beginning of w. The following proposition
shows that we can in fact restrict ourselves to the case where the factors th−1th

and th−1th are intact, that is, the swap does not happen from the end to the
beginning of h(w) as a result of the conjugation between h(w) and g(w). At
this point we make an observation.

Observation. It may be assumed that the first and last symbols of h(w) are $

and £.

Indeed, if h(w) is not of the desired form then it has £$ as a factor (by above
the symbols from th−1thI are in w). Images of the letters under h do not have
£$ as a factor so there is a factorization w = w1w2 such that h(w1) ends in £

and h(w2) begins with $ (w1 ends in th and w2 begins with I). By Lemma 3,
h(w) and g(w) are conjugates if and only if h(w2w1) and g(w2w1) are, where
now h(w2w1) has $ as the first symbol and £ as the last symbol.

Now by the observation we may assume that w begins with I and ends with
th. From this it also follows that if h(w) = uv and g(w) = vu the word u has
$ as the first and the last symbol and v has £ as the first and the last symbol.
It follows that w = I · · · th · · · th, where the border between u and v is in the
image h(th):

h(w) = $ld2(w0#)d · · · f$£le2(w0#)ee · · · ff£

g(w) = £ee · · · sfff£$dd · · · sfff$

u v

v u

Here the border between u and v need not be in the image of the same
instance of th. Nevertheless we know by above that in the image under g the

12

word u begins with $ld2(w0#)d. To get this image as a factor of g(w) we must
have thα1t1β1# in w, where t1 = (u1, v1) is the first rewriting rule used and
w0 = α1u1β1. Now

h(thα1t1β1#) = f$£le2(w0#α1v1β1#)ee

which shows that
Iα1t1β1#α2t2β2# occurs in w (3)

where by the (B ∪ B)-determinism of T the rule t2 ∈ R is the unique rule and
α1, α2 ∈ L{a1, b1}∗ ∪ {ε} and β1, β2 ∈ {a2, b2}∗R ∪ {ε} are unique words such
that g(α2t2β2) = re2(α2u2β2) = re2(α1v1β1). Again,

h(Iα1t1β1#α2t2β2#) = $ld2(w0#α1v1β1#α2v2β2#)d

which is also a factor of g(w) and implies that

thα1t1β1#α2t2β2#α3t3β3# occurs in w (4)

for a unique t3 ∈ R and α3 ∈ L{a1, b1}∗ ∪ {ε}, β3 ∈ {a2, b2}∗R ∪ {ε}.
We can see that the words given by this procedure beginning with I or th (as

in 3 and 4, respectively) contain derivations of the system TM starting from w0

where configurations are represented as words between #-symbols and consec-
utive configurations in these words are also consecutive in TM (as is explained
in the beginning of the proof), that is, we get from the former to the latter by
a single derivation step.

From the finiteness of w it follows that long enough factors of w of the forms
3 and 4 represent cyclic computations: the configuration s is reached eventually
and from there we have the rule (s, w0) which starts a new cycle. We conclude
that TM must have a cyclic computation starting from configuration w0.

Lemmas 2, 4 and 5 together yield our main theorem:

Theorem 1. The conjugate-PCP is undecidable.

This result does not generalize to more complex (1, n))-permutations using
this same construction by say, adding more desynchronizing symbols and bor-
der markers for each element in the permutation. The generalization of the
conjugate-PCP would be the (1, n)-permutational PCP, stated below:

13

Problem (Image Permutation Post Correspondence Problem). Given two mor-
phisms h, g : A∗ → B∗, does there exist a word w ∈ A+ and an n-permutation
σ such that h(w) = u1u2 · · ·un and g(w) = uσ(1)uσ(2) · · ·uσ(n) for some words
u1, . . . , un ∈ B∗?

The reason that our construction does not work for the general (1, n)-case
is that allowing more factors to be permuted can force solutions that do not
describe TM computations. This is because of special cases for different values
of n and σ, but also by the fact that the permutated factors may be single letters.
In fact any solution w that produces Abelian equivalent words h(w) and g(w)

also has a permutation that makes one of the words into the other. A "simple"
proof using the techniques in this chapter is for now deemed unlikely, and some
other approach may prove to be more fruitful. Note that the undecidability
of the Image Permutation PCP follows already from proof of Ruohonen for
(m,n)-permutational PCP in [19].

As a related result we note that the PCP for the instances where one of the
morphisms is a permutation of the other are undecidable. Indeed, it was shown
by Halava and Harju in [8] that the PCP is undecidable for instances (h, hπ),
where h : A∗ → B∗ is a morphism and π : A∗ → A∗ is a permutation.

3 Complexity of ZPCP

In this section, we will consider the ZPCP defined in the introduction. As men-
tioned, undecidability of the ZPCP was proved in [12] using similar techniques
than in the previous section for the conjugate-PCP. We begin by reformulating
the problem in more details:

Problem 2 (ZPCP). Let A be a finite alphabet. Given a finite set of pairs of
words over A, say (u1, v1), (u2, v2), . . . , (un, vn), does there exist a bi-infinite
sequence . . . i−k . . . i−1, i0, i1, . . . , ik, . . . of the indices such that

· · ·ui−k
· · ·ui−1

ui0ui1 · · ·uik · · · = · · · vi−k
· · · vi−1

vi0vi1 · · · vik · · · ?

The equality of two bi-infinite words is an equivalence of the sequences of
symbols modulo a finite shift s ∈ Z in the positions of the sequences.

An instance of the ZPCP is given by a finite set of pairs of words over A

(which can be coded by an integer via a recursive coding) and a solution to this
instance is a bi-infinite sequence (ik)k∈Z ∈ {1, 2, . . . , n}Z.

14

We shall need in the sequel the notion of a Turing machine reading infinite
words. We now recall these notions.

The first infinite ordinal is ω. An ω-word over an alphabet Σ is an ω-sequence
a1a2a3 · · · , where for all integers i ≥ 1, ai ∈ Σ. The set of ω-words over the
alphabet Σ is denoted by Σω. An ω-language over an alphabet Σ is a subset of
Σω. For an ω-word σ = a1a2a3 · · · , we denote the prefix a1 · · · an by σ[n].

As in the previous section, assume that a Turing machine M is of the form
M = (Q,Σ, Γ, δ, q0, F), where F ⊆ Q is the set of accepting states. Turing
machines reading of infinite words have considered in [2, 20]. A Turing machine
M accepts a word σ ∈ Σω with the 2-acceptance condition iff there is an infinite
run of M on input σ visiting infinitely often states from F . The 2-acceptance
condition is also now known as the Büchi acceptance condition. On the other
hand, a Turing machine M accepts a word σ ∈ Σω with 2′-acceptance condition
iff there is an infinite run of M on σ visiting only finitely often the accepting
states in F . The 2′-acceptance condition is also now known as the co-Büchi
acceptance condition.

We require in this article that an accepting run should be infinite on the
input σ ∈ Σω, as in [20], and not that it is complete (i.e. we do not require
that all the cells of the right-infinite tape of the Turing machine are visited nor
that all letters of σ are read), or even non-oscillating, as in [2]. We refer the
interested reader to [6] and papers cited in [20, 6] for a comparison between
these modes of acceptance of infinite words by Turing machines.

We assume the reader to be familiar with the arithmetical hierarchy on
subsets of N, as a general reference we give [17, 15]. We now recall the definition
of the arithmetical hierarchy on subsets of Σω for a finite alphabet Σ, see [20].
An ω-language L ⊆ Σω belongs to the class Σ0

n iff there exists a recursive relation
RL ⊆ Nn−1 × Σ⋆ such that

L = {σ ∈ Σω | ∃x1Q2x2 . . . Qnxn (x1, . . . , xn−1, σ[xn + 1]) ∈ RL},

where Qi for i = 2, . . . , n is one of the quantifiers ∀ or ∃ (not necessarily in
an alternating order). An ω-language L ⊆ Σω belongs to the class Π0

n iff its
complement Σω − L belongs to the class Σ0

n. The inclusion relations that hold
between the classes Σ0

n and Π0
n are the same as for the corresponding classes

of the Borel hierarchy. The classes Σ0
n and Π0

n are strictly included in the
respective classes Σ0

n and Π0
n of the Borel hierarchy.

An important result is that the modes of acceptance of ω-languages by de-
terministic Turing machines are connected to the classes of the arithmetical

15

hierarchy. In particular, an ω-language is in the arithmetical class Π0
2 (respec-

tively, Σ0
2) if and only if it is accepted by a deterministic Turing machine with

2-acceptance condition, i.e. Büchi acceptance condition (respectively, with 2′-
acceptance condition, i.e. co-Büchi acceptance condition), see Corollary 2.3 in
[20].

We now state the main result of this section.

Theorem 2. The bi-infinite PCP is in the class Σ0
2 \Π0

1.

In the above statement the arithmetical classes refer to classes of sets of integers.
Indeed, this means that the set of instances of the bi-infinite PCP having a
solution can be recursively coded by a set of integers in the class Σ0

2 \Π0
1.

Proof. We firstly show that the ZPCP is not in the class Π0
1. This is actually

a direct consequence of the proof of the undecidability of the ZPCP in [12].
Indeed, the proof shows that there exists a reduction of the halting problem
for Turing machines to the ZPCP. On the other hand, it is well known that
the halting problem for Turing machines is Σ0

1-complete, hence the ZPCP is
Σ0

1-hard and, in particular, it is not in the class Π0
1.

Secondly, we prove that the ZPCP is in the class Σ0
2. Let us consider an

instance of the ZPCP given by a finite set of pairs of words over A, where A is
a finite alphabet, say Ins = {(u1, v1), (u2, v2), . . . , (un, vn)}.

In the first step, we are going to associate to this instance a deterministic
Turing machine with co-Büchi acceptance condition which accepts exactly the
codes of the solutions to the instance Ins. For this we encode a bi-infinite
sequence of integers in {1, 2, . . . , n}

. . . i−k . . . i−2i−1i0i1i2 . . . ik . . . (5)

of a possible solution of the instance Ins for the ZPCP into a pair of infinite
sequences

i0i1i2 . . . ik . . . and i0i−1i−2 . . . i−k

Now both of these sequences are infinite words over the alphabet {1, 2, . . . , n},
so that we can code the bi-infinite sequence in (5) into an ω-word over the finite
alphabet {1, 2, . . . , n} × {1, 2, . . . , n} so that (ij)j∈Z corresponds to

(i0, i0)(i1, i−1)(i2, i−2) . . . (ik, i−k) (6)

Next we show that the set of (codes of) solutions of the instance Ins of
the ZPCP are accepted by a deterministic Turing machine M with co-Büchi

16

acceptance condition, (with set of final states F for the co-Büchi acceptance
condition). We informally explain the behaviour of this Turing machine:

The TM M works with integers s denoting the shift in the images. In-
deed, first the shift s = 0. For an input of the form (6), denote by u =

. . . ui−k
. . . ui−2ui−1ui0ui1ui2 . . . uik . . . and v = . . . vi−k

. . . vi−2vi−1vi0vi1vi2 . . . vik . . .

There is a (possibly infinite test) we call TEST:

TEST: For m = 0, 1 . . . , check that u(m) = v(m+ s) and u(−m) = v(−m+

s).

If the TEST fails and for some m one of the equations does not hold (that
is, M found an error and the sequence is not a solution with the shift s), then
M enters in some state in F , and sets s := −s if the TEST is done odd number
of times and s := |s| + 1 it is done even number of times, and does the TEST
for that new s.

It is rather obvious that if M visits states of F only finitely many times,
the sequence (6) codes a solution of the instance Ins as for some shift s M
found no error, that is, u = v modulo some shift s ∈ Z. Indeed, then the TM
M accepts the coding (6) of the bi-infinite sequence of integers (5) with co-
Büchi acceptance condition. Conversely, if the sequence (6) codes a solution to
the instance Ins of ZPCP, then (6) is accepted by the TM M with co-Büchi
acceptance condition.

We do not go into the details of defining M but note that it is an easy exercise
to construct such a deterministic Turing machine with co-Büchi acceptance
condition from the instance Ins.

Now the set of infinite words accepted by such a deterministic Turing ma-
chine with co-Büchi acceptance condition is known to be an effective Σ0

2 set.
Moreover, Cenzer and Remmel proved in [1, Theorem 4.1.(iii)] that the non-
emptiness problem for such effective Σ0

2 sets is in the class Σ0
2. Thus the problem

to determine whether a given instance Ins of the ZPCP has a solution is in the
class Σ0

2.

The next goal of this study of the complexity of the ZPCP would be to
determine its exact complexity. In particular, is it located at the second level
of the arithmetical hierarchy? Is it Σ0

2-complete? We leave these questions as
an open problem for further study.

17

References

[1] D. A. Cenzer and J. B. Remmel. Index sets for omega-languages. Mathe-
matical Logic Quaterly, 49(1):22–33, 2003.

[2] R. Cohen and A. Gold. ω-computations on Turing machines. Theoretical
Computer Science, 6:1–23, 1978.

[3] J. Dong and Q. Liu. Undecidability of infinite Post correspondence problem
for instances of size 8. RAIRO Theor. Inform. Appl., 46(3):451–457, 2012.

[4] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg. The (generalized) Post
correspondence problem with lists consisting of two words is decidable.
Theoret. Comput. Sci., 21(2):119–144, 1982.

[5] M. Ernvall, V. Halava, and T. Harju. On the n-permutation Post corre-
spondence problem. Theoretical Computer Science, 601:15–20, oct 2015.

[6] O. Finkel. Ambiguity of ω-languages of Turing machines. Logical Methods
in Computer Science, 10(3:12):1–18, 2014.

[7] O. Finkel. The exact complexity of the infinite Post correspondence prob-
lem. Inform. Process. Lett., 115(6-8):609–611, 2015.

[8] V. Halava and T. Harju. Some new results on Post correspondence problem
and its modifications. Bull. EATCS, 73:131–141, 2001.

[9] V. Halava and T. Harju. New proof for the undecidability of the circular
PCP. Acta Inform., 50(5-6):331–341, 2013.

[10] V. Halava, T. Harju, and M. Hirvensalo. Binary (generalized) Post corre-
spondence problem. Theoret. Comput. Sci., 276(1-2):183–204, 2002.

[11] V. Halava, T. Harju, and J. Karhumäki. Decidability of the binary infinite
Post correspondence problem. Discrete Appl. Math., 130(3):521–526, 2003.

[12] V. Halava, T. Harju, and E. Sahla. A new proof for undecidability of the
bi-infinite Post correspondence problem. Fund. Inform., 154(1-4):167–176,
2017.

[13] G. Huet and D. Lankford. On the uniform halting problem for term rewrit-
ing systems. Rapport Laboria 283, INRIA, 1978.

18

[14] T. Neary. Undecidability in binary tag systems and the Post correspon-
dence problem for five pairs of words. In 32nd International Symposium
on Theoretical Aspects of Computer Science, volume 30 of LIPIcs. Leibniz
Int. Proc. Inform., pages 649–661. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2015.

[15] P. Odifreddi. Classical Recursion Theory, Vol I, volume 125 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 1989.

[16] E. L. Post. A variant of a recursively unsolvable problem. Bull. Amer.
Math. Soc., 52:264–268, 1946.

[17] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[18] K. Ruohonen. On some variants of Post’s correspondence problem. Acta
Inform., 19(4):357–367, 1983.

[19] K. Ruohonen. A Note on Permutational Variants of Post‘s Correspondence
Problem. Number 46 in Tampere University of Technology, Dept of Electr.
Eng., Mathematics, Report. Tampere University of Technology, 1984.

[20] L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages
339–387. Springer, Berlin, 1997.

19

