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Compton scatter tomography in annular domains

Introduction

One way to image the inner parts of an object is to use penetrating (or ionizing) radiation to illuminate it and analyze the emerging radiation in view of reconstructing its internal structure. If non scattered radiation is recorded along the same incident radiation direction, this is known as Computed Tomography (CT), which reconstructs the object attenuation coefficient density via the inversion of the classical Radon transform (CRT). On the other hand, if scattered radiation is recorded at fixed scattered radiation energy, † To whom correspondence should be addressed (truong@u-cergy.fr) in a variety of directions, different from the incident direction -the great majority of this scattered radiation being from first order Compton scattering -, one speaks of Compton scatter tomography (or CST). In this case, it is the electric charge density which is reconstructed on the basis of its integrals on a dense family of two parameter circular arcs, connecting the radiation point source to the radiation detection site. The related mathematical problem will be called CST Radon problem and to each family of two parameter circular arcs corresponds a well defined CST modality.

So far there exits several CST modalities, for which the inversion formula of their corresponding CST Radon transforms can be established explicitly. The aim of this paper is to discuss a specific CST modality, which is proposed and solved in 2010 [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF], under a new presentation and tackle one of its possible missing data problems, namely when scanning areas are limited to annular domains in the plane. Such a situation arises also recently for the Radon transform on circles centered on a fixed circle, which supports Photo-Acoustic Tomography (PAT) and Thermo-Acoustic Tomography (TAT), and for which the scanning areas are also limited to annular domains by Ambartsoumian et al in [START_REF] Ambartsoumian | Inversion of the circular Radon transform on an annulus[END_REF]. Missing (or limited) data problems are known in conventional tomography when the ranges of the two variables labeling the data are restricted, leading to indeterminacy in image reconstruction.

The paper is organized as follows. Section 2 reviews briefly the basic concept of Compton Scatter Tomography (CST) and its first modality suggested by S. J. Norton in 1994 [START_REF] Norton | Compton scattering tomography[END_REF]. Then the second CST modality is introduced in section 3. Then the two sub-modalities of CST-2 (interior and exterior, in sections 4 and 5) are presented under a new formulation, which is more transparent for the purpose of missing data problem. This is achieved by a change of radial variable, which is just the one introduced by Webber and Holman in the treatment of the so-called spindle transform [START_REF] Webber | Microlocal analysis of a spindle transform[END_REF] in three dimensions. This change of variable leads naturally and elegantly to a connection with the interior and the exterior classical Radon transforms, for which explicit standard inversion formulas are available. In section 6, we report new geometric properties of the interior and exterior CST-2 Radon transforms, which shall be relevant later for treating the missing data problem. Lastly, we come to the main section 7, in which the CST-2 Radon problem in annular domains is solved thanks to established results (mainly by E. T. Quinto) on the exterior classical Radon problem. A conclusion follows with opened perspectives for other CST modalities and objectives in studying and setting up computational algorithms for this CST-2 modality.

Compton Scatter Tomography and first Compton Scatter Tomography modality (CST-1)

CST has been known for decades, since N. N. Kondic suggested collecting Compton scattered data on isogonal circular arcs in 1978 for imaging purposes [START_REF] Kondic | Density field determination by an external stationary radiation source using a kernel technique[END_REF], a process based on the Compton formula expressing the scattered radiation energy E (ω) in terms of the scattering angle ω, for a review see e.g. [START_REF] Truong | Recent developments on Compton scatter tomography: theory and numerical simulations[END_REF]. However, it is only in 1994 that S. J. Norton came up with the first design of a CST scanner [START_REF] Norton | Compton scattering tomography[END_REF]. In this scanner, the object under study is "scanned" by circular arcs having one fixed end point S and another end point D moving on a line ∆ passing through S and situated above ∆ (see Fig. 1). This setup can be achieved by placing in the neighborhoods of S and D plate collimators parallel to the line ∆ to confine all radiation to one side of ∆. At S is an isotropic monoenergetic point 

Φ D (ω) = K (ω) × ∫ M ∈ SD d l M f (M ), (1) 
where K (ω) is a factor containing the differential cross section of the Compton effect and some kinematic terms. The circular arc SD is the locus of scattering sites M , subtending an inscribed angle (π -ω), which is constant when E (ω) is fixed. Thus in this context, the problem is to reconstruct f (M ) using the data Φ D (ω)/K (ω), i.e. its integrals on this family of two parameter circular arcs. The solution to this problem has been discussed at length in many published works, see e.g. [START_REF] Norton | Compton scattering tomography[END_REF][START_REF] Truong | Recent developments on Compton scatter tomography: theory and numerical simulations[END_REF]. The Norton CST scanner places the object to be imaged on one side of a line ∆ (horizontal line in Fig. 1). This is convenient for large objects. However it does not lend itself to the setting of a compact radiation shielding protecting human operating personnel because of its "open space" concept. We shall denote this modality by CST-1-Line ‡.

In 2010, we have introduced a new CST-2 modality [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF][START_REF] Truong | Recent developments on Compton scatter tomography: theory and numerical simulations[END_REF], which is conceived for efficient use in scanning large objects (outer scanning) as well as small objects (inner scanning), with adequate compact radiation shielding for the protection of operating personnel.

Second Compton Scatter Tomography modality (CST-2)

Historically, interior (resp. exterior) CST-2 Radon transform was introduced in [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF]. We have then followed A. M. Cormack's procedure, which consists in inverting a Chebyshev ‡ Recently, a CST-1-Circle modality has been introduced and discussed in [START_REF] Rigaud | Compton scattering tomography: feature reconstruction and rotation-free modality[END_REF][START_REF] Tarpau | A novel modality of Compton Scattering Tomography: image formation and reconstruction[END_REF] integral equation linking angular Fourier components of the unknown function (called "circular components") to those of the measured CST-2 Radon data. Soon after Palamodov, recognizing that the Cormack's type of reconstruction formula is not stable, has managed, using his equivalence of CST-2 Radon transform with the Minkowski-Funk transform [START_REF] Palamodov | An analytic reconstruction for the Compton scattering tomography in a plane[END_REF], to derive an alternative reconstruction formula which is stable for function circular components. In this section, we give a change of radial variable which directly converts the CST-2 Radon transform into the classical Radon transform. Then using the stable form of the inversion formula of the classical Radon transform, which is widely known, we derive a stable inversion formula for our CST-2 Radon transform. In the meantime, A. M. Cormack had also realized that his inversion approach did lead to instabilities and has proposed a way out by taking into account the so-called "consistency conditions" on the Radon data [START_REF] Cormack | Radon's problem -Old and New[END_REF]. In this way, stable inverse formulas for Radon transforms on his α (resp. β) curves, (see [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF]) have been established. This is how he recovered a stable inversion formula for the classical Radon transform, which is in fact a Radon transform on α = 1 curves (or straight lines). Hence a direct short-cut to stable inversion formulas for CST-2 Radon transform can be deduced easily.

Furthermore, it will be shown that the proposed change of variable also converts the CST-2 Radon transforms in annular scanning domains into the exterior classical Radon transform for which well established inversion results due to E. T. Quinto exist. Consequently, the CST-2 Radon problems in annular domains are automatically and elegantly solved thanks to these mappings. Had we attempted to formulate these CST-2 Radon problems in annular domains by conventional integral Chebyshev transform, we would be facing with modified integration limits (see for example (eq.7) of reference [START_REF] Ambartsoumian | Inversion of the circular Radon transform on an annulus[END_REF]), which render the usual inversion impossible. In this situation, perhaps the technique of converting this problem into a Volterra's problem [START_REF] Ambartsoumian | Inversion of the circular Radon transform on an annulus[END_REF] may work, but at this point this has not been done.

Our change of variable is just the one of Webber-Holman in [START_REF] Webber | Microlocal analysis of a spindle transform[END_REF], which is designed to map their spindle Radon transform (a three dimensional version of our CST-2 Radon transform [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF]) to Radon transform on circular cylinders in R 3 .

Let f (M ) be a non negative real function representing the electric charge density of an object with compact support inside (resp. outside) a disk D(O, p), of center O (taken as the coordinate system origin) and of radius p. Its boundary is a circle Γ(O, p) = ∂D(O, p). The concept of CST-2 is presented as follows. An isotropic mono-energetic point source S is located at some position on Γ(O, p), whereas an energy sensitive point detector D is diametrically positioned on Γ(O, p), as shown in Fig. 2. At both S and D are plate collimators to confine radiation to a half space delimited by the line SD. Again (under the assumption of overwhelming dominance of first order scattering) original radiation coming from S is scattered by the object electric charge at some site M and the scattered flux density registered at D is also given by equation [START_REF] Webber | Microlocal analysis of a spindle transform[END_REF]. If site D records only scattered radiation of energy E (ω), the locus of scattering sites M is a circular arc SD with end points on a rotating diameter of Γ(O, p), subtending an inscribed angle (π-ω). So such a scanning arc is characterized by ω and ϕ, the polar angle of the scanning arc axis of symmetry perpendicular to SD. It can be seen that there are two classes of such scanning arcs: those which are inside D(O, p) (when 0 < ω < π/2) and those which are outside D(O, p) (when π/2 < ω < π). This distinguishes an interior CST-2 Radon problem from its exterior CST-2 counterpart. The problem posed by these two CCT-2 modalities is the reconstruction of f (M ) (inside and outside D(O, p)) from its integrals on corresponding families of such scanning arcs. 

Interior CST-2 Radon problem

We consider first the interior problem for which the support of f (M ) is contained inside D(O, p). The corresponding Radon problem is formulated in the following proposition

Proposition 4.1 Let f (r i , θ i ) be an integrable function of compact support in D(O, p) in polar coordinates (r i , θ i ). The interior CST-2 Radon transform maps f (r i , θ i ) to f i (τ, ϕ) according to f i (τ, ϕ) = τ 2 + 1 τ ∫ p p( τ 2 +1-τ) d r i √ 1 -1 4τ 2 ( p r i - r i p ) 2 { f (r i , γ i + ϕ) + f (r i , -γ i + ϕ)}, ( 2 
)
where 0 < τ < ∞, 0 < ϕ < 2π and

γ i = cos -1 1 2τ ( p r i - r i p ) . ( 3 
)
The parameter τ is related to the physical Compton scattering angle ω by τ = cot ω with 0 < ω < π/2.

Proof: Consider Fig. 2 with polar coordinates centered at O. An interior scanning circle for 0 < ω < π/2 has a center at Ω on the mediator line of the source-detector line SD below it. Then OΩ = p cot ω. Its radius is ΩD = p/ sin ω. Now a running point M on this circle is given by its polar coordinates (r i , θ i ), with OM = r i and θ i = γ i + ϕ, where γ = γ i and ϕ are given in Fig. 2. In triangle OM Ω, we have the cosine identity

M Ω 2 = OΩ 2 + OM 2 -2OΩOM cos ΩOM .
Since M Ω = ΩD = p/ sin ω and ΩOM = (π-γ i ), we get the interior scanning circle equation

cos γ i = 1 2τ ( p r i - r i p ) , (4) 
which is equivalent to equation (3), see [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF].

Then by solving r i in terms of γ i , one gets the equation of a CST-2 interior scanning circular arc (parameterized by (τ, ϕ))

r i (γ i ) = p ( √ τ 2 cos 2 γ i + 1 -τ cos γ i ) , (5) 
where

γ i = (θ i -ϕ) with (-π/2 < γ i < π/2).
As pointed out, τ is related to the scattering angle by τ = cot ω with (0 < ω < π/2). We observe that r i (γ i ) is an increasing function of γ i , and p(

τ 2 + 1 -τ) < r i (γ i ) < p.
Then straightforwardly one has

d r i = r i d γ i τ sin γ i √ τ 2 cos 2 γ i + 1 . ( 6 
)
The scanning arc integration element d l i = √ dr 2 i + r 2 i d γ 2 i can be obtained from equation [START_REF] Kondic | Density field determination by an external stationary radiation source using a kernel technique[END_REF], via the computation of d r i using equation ( 5), (see equation ( 8) of [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF]) as

d l i = √ τ 2 + 1 r i (γ i ) d γ i √ τ 2 cos 2 γ i + 1 . ( 7 
)
The integral of f (r i , θ i ) on this interior CST-2 scanning arc is

f i (τ, ϕ) = √ τ 2 + 1 ∫ π/2 -π/2 r i (γ i ) d γ i √ τ 2 cos 2 γ i + 1 f ( r i (γ i ), γ i + ϕ ) . ( 8 
)
Since we have a γ i → -γ i symmetry in d l i , equation ( 8) can be rewritten as

f i (τ, ϕ) = √ τ 2 + 1 ∫ π/2 0 r i (γ i ) d γ i √ τ 2 cos 2 γ i + 1 { f ( r i (γ i ), γ i + ϕ ) + f ( r i (γ i ), -γ i + ϕ ) }. ( 9 
)
Now by using equation ( 6), we can get an alternative expression of d l i in terms of dr i

d l i = τ 2 + 1 τ d r i √ 1 - 1 4τ 2 ( p r i - r i p ) 2 . ( 10 
)
Then equation ( 9) becomes equation (2).

Connection to the full plane classical Radon transform

We now show that, under a radial change of variable, f i (τ, ϕ) can be expressed as a line integral for a transformed input function. Such a conversion is analogous to geometric inversion which connects the classical Radon transform (on lines) § to the Radon transform on circles passing through a fixed point [START_REF] Quinto | Null spaces and ranges for the clasical and spherical Radon transforms[END_REF][START_REF] Quinto | Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform[END_REF][START_REF] Yagle | Inversion of spherical means using geometric inversion and Radon transforms[END_REF]. The change of variable considered here is the one proposed by Webber-Holman to treat the so-called spindle transform in three dimensions [START_REF] Webber | Microlocal analysis of a spindle transform[END_REF].

Proposition 4.2 Under the assumptions of proposition 4.1 and the change of variable r i → ρ i , given by

r i = p (√ p 2 ρ 2 i + 1 - p ρ i ) , ( 11 
)
the integral of f (r, θ) on an interior CST-2 scanning arc becomes an integral on a line with parameters (s, ϕ) (or of equation s = ρ i cos(θ i -ϕ))

f i (τ, ϕ) = τ 2 + 1 τ ∫ ∞ s d ρ i √ 1 -s 2 ρ 2 i {h(ρ i , γ i + ϕ) + h(ρ i , -γ i + ϕ)}, ( 12 
)
for the function

h(ρ i , θ i ) = p 2 ρ 2 i (√ p 2 ρ 2 i + 1 - p ρ i ) √ p 2 ρ 2 i + 1 f ( p (√ p 2 ρ 2 i + 1 - p ρ i ) , θ i ) , ( 13 
)
where s = p/τ with 0 < s < ∞ (since 0 < τ < ∞) and 0 < ϕ < 2π and

γ i = cos -1 ( s ρ i
) .

Equation [START_REF] Yagle | Inversion of spherical means using geometric inversion and Radon transforms[END_REF] has the standard form of the classical Radon transform of h(ρ i , θ i ) expressed in radial variable ρ i , see e.g., [START_REF] Perry | Reconstructing a function by circular harmonic analysis of its Radon transform[END_REF], page 4, equation (1.9).

Remark 4.3

The mapping [START_REF] Quinto | Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform[END_REF] may look peculiar but it has a simple geometric interpretation. Since OΩ = pτ and s = p/τ, s being the distance from the origin to the straight line, with unit normal vector n = (cos ϕ, sin ϕ) and transform of the interior scanning circular arc, we conclude that OΩ • s = p 2 . As s > 0, we may consider a point Ω * symmetric of Ω with respect to O such that OΩ * = pτ also. Then one may view the line as the geometric polar line of Ω * with respect to the fixed circle Γ(O, p). Generalized change of variables of this type have been found for other CST modalities in [START_REF] Truong | Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality[END_REF]. Their geometric aspects and consequences have been discussed in [START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF]. [START_REF] Nguyen | Inversion of a new circular arc Radon transform for Compton scattering tomography[END_REF]. The problem may be reformulated as a Volterra type inversion problem as in [START_REF] Ambartsoumian | Inversion of the circular Radon transform on an annulus[END_REF]. But this has not been done yet.

Remark 4.4 The proof of injectivity has been already given in

On the other hand, we choose to consider CST-2 stability properties as deduced from well established stability properties of the associated classical Radon transform obtained by the previous change of variable.

Proof: To prove this statement, we proceed to rewrite f i (τ, ϕ) in terms of the new variable ρ i . From equation ( 11), we get

d r i = p 2 ρ 2 i (√ p 2 ρ 2 i + 1 - p ρ ) d ρ i √ p 2 ρ 2 i + 1 , ( 14 
)
and using the fact that 1 2τ

( p r i - r i p ) = s ρ i , (15) 
we end up with equations ( 12) and ( 13).

Inversion of the interior CST-2 Radon transform

As the interior CST-2 Radon problem is now connected to the full plane classical Radon problem, the classical Radon transform has a reconstruction formula, given e.g. by equation ( 21) of [START_REF] Nievergelt | Elementary inversion of Radon's transform[END_REF][START_REF] Cormack | Radon's problem -Old and New[END_REF]. Hence we have 

f (r i , θ i ) = - 1 2π 2 2p 2 (p 2 + r 2 i ) (p 2 -r 2 i ) 2 ∫ 2π 0 d ϕ ∫ ∞ 0 d τ 1 p τ - 2p 2 p 2 -r 2 i r i cos(θ i -ϕ) ∂ ∂τ ( τ f i (τ, ϕ) τ 2 + 1
) ,( 16)

where (r i , θ i ) ∈ D(O, p).
Proof: To obtain the result of equation ( 16), we start from the reconstruction formula of the classical Radon transform for the intermediate function h(ρ i , θ), given e.g. in [START_REF] Nievergelt | Elementary inversion of Radon's transform[END_REF][START_REF] Cormack | Radon's problem -Old and New[END_REF], which is

h(ρ i , θ i ) = - 1 2π 2 ∫ 2π 0 d ϕ ∫ ∞ 0 d s 1 s -ρ i cos(θ i -ϕ) ∂ ∂s ( τ τ 2 + 1 f i (τ, ϕ) ) . ( 17 
)
Then we use the definition of h(ρ i , θ) given by equation ( 13) and replace ρ i by its expression in terms of r i

ρ i = r i 2p 2 p 2 -r 2 i . ( 18 
)
Finally using s = p/τ, by reexpressing s-differentiation in terms of τ-differentiation and replacing d s by d τ, we obtain the desired result of equation ( 16).

Exterior CST-2 Radon problem

The exterior CST-2 Radon problem bears many similarities with the interior CST-2 Radon problem. However we choose to present the derivation of its inversion along the line of the previous section for clarity and to emphasize its complementarity to the previous one. 

f e (τ, ϕ) = τ 2 + 1 τ ∫ p( τ 2 +1-τ) p dr e √ 1 -1 4τ 2 ( r e p - p r e ) 2 { f (r e , γ e + ϕ) + f (r e , -γ e + ϕ)}, ( 19 
)
where 0 < τ < ∞, 0 < ϕ < 2π and

γ e = cos -1 1 2τ ( r e p - p r e ) . ( 20 
)
Proof: In polar coordinates centered at O (see Fig. 2), where M = (r e , θ e ), the equation of a CST-2 exterior scanning circular arc is obtained in a similar way as in the case of CST-2 interior scanning circular arc

r e (γ e ) = p ( √ τ 2 cos 2 γ e + 1 + τ cos γ e ) , (21) 
where γ e = (θ e -ϕ) with (-π/2 < γ e < π/2). The parameter τ is now connected to the scattering angle (π/2 < ω < π) by τ =cot ω. We observe that r e (γ e ) is a decreasing function of γ e , and p < r e (γ e ) < p( τ 2 + 1 + τ). The scanning arc integration element d l e can be obtained from equation ( 21) (analogously to the interior problem via the computation of d r e ) as

d l e = √ τ 2 + 1 r e (γ e ) d γ e √ τ 2 cos 2 γ i + 1 . ( 22 
)
The integral of f (r e , θ e ) on this exterior CST-2 scanning arc is

f e (τ, ϕ) = √ τ 2 + 1 ∫ π/2 -π/2 r e (γ e ) d γ e √ τ 2 cos 2 γ e + 1 f ( r e (γ e ), γ e + ϕ ) . ( 23 
)
Since we have a γ e → -γ e symmetry in d l e , equation ( 23) can be rewritten as

f e (τ, ϕ) = √ τ 2 + 1 ∫ π/2 0 r e (γ e ) d γ e √ τ 2 cos 2 γ e + 1 { f ( r e (γ e ), γ e + ϕ ) + f ( r e (γ e ), -γ e + ϕ ) }. ( 24 
)
Now switch to r e variable,

d l e = τ 2 + 1 τ d r e √ 1 - 1 4τ 2 ( r e p - p r e ) 2 , (25) 
then equation [START_REF] Perry | On reconstructing a function on the exterior of a disk from its Radon transform[END_REF] becomes equation [START_REF] Helgason | The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds[END_REF].

Connection to the full plane classical Radon transform

We now show that, under an analogous radial change of variable, f e (τ, ϕ) can be expressed as a line integral for a transformed input function. By definition, Proposition 5.2 Under the assumptions of proposition 5.1 and the change of variable r e → ρ e , given by

r e = p (√ p 2 ρ 2 e + 1 + p ρ e ) , ( 26 
)
the integral of f (r e , θ e ) on an exterior CST-2 scanning arc becomes an integral on a line with parameters (s, ϕ)

f e (τ, ϕ) = τ 2 + 1 τ ∫ ∞ s d ρ e √ 1 -s 2 ρ 2 e {h(ρ e , γ e + ϕ) + h(ρ e , -γ e + ϕ)}, ( 27 
)
for the function

h(ρ e , θ e ) = p 2 ρ 2 e (√ p 2 ρ 2 e + 1 + p ρ e ) √ p 2 ρ 2 e + 1 f ( p (√ p 2 ρ 2 e + 1 + p ρ e ) , θ e ) , ( 28 
)
where s = p/τ with 0 < s < ∞ (since 0 < τ < ∞)and 0 < ϕ < 2π, and

γ e = (θ e -ϕ) = cos -1 ( s ρ e
) .

Equation [START_REF] Quinto | Exterior and limited-angle tomography in non-destructive evaluation[END_REF] has the standard form of the classical Radon transform of h(ρ e , θ e ) expressed in radial variable ρ e , see e.g., [START_REF] Perry | Reconstructing a function by circular harmonic analysis of its Radon transform[END_REF], page 4, equation (1.9). This change of variable has not appear before as it has emerged from earlier work on this subject [START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF] and now sheds new light on this problem.

Proof: To prove this statement, we proceed to rewrite f e (τ, ϕ) in terms of the new variable ρ e . From equation [START_REF] Quinto | Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform[END_REF], we get

d r e = p 2 ρ 2 e (√ p 2 ρ 2 e + 1 - p ρ e ) d ρ e √ p 2 ρ 2 e + 1 , (29) 
and using the fact that 1 2τ

( r e p - p r e ) = s ρ e , (30) 
we end up with equation ( 27) and (28).

Inversion of the exterior CST-2 Radon transform

As the interior CST-2 Radon problem is now connected to the full plane classical Radon problem, the classical Radon transform has a reconstruction formula, given e.g. by equation ( 21) of [START_REF] Cormack | Radon's problem -Old and New[END_REF]. Hence we have Proposition 5.3 Under the assumptions of proposition 5.1, the reconstruction of f (r e , θ e ) outside the disk D(O, p) with complete data is given by f (r e , θ e ) = -

1 2π 2 2p 2 (r 2 e + p 2 ) (r 2 e -p 2 ) 2 ∫ 2π 0 d ϕ ∫ ∞ 0 d τ 1 p τ - 2p 2 r 2 e -p 2 r e cos(θ e -ϕ) ∂ ∂τ ( τ f i (τ, ϕ) τ 2 + 1 ) ,( 31 
)
where r e > p and 0 < θ < 2π.

Proof: To obtain the result of equation ( 31), we start from the reconstruction formula of the classical Radon transform for the intermediate function h(ρ e , θ e ), given in [START_REF] Cormack | Radon's problem -Old and New[END_REF], which is

h(ρ e , θ e ) = - 1 2π 2 ∫ 2π 0 d ϕ ∫ ∞ 0 d s 1 s -ρ e cos(θ e -ϕ) ∂ ∂s ( τ τ 2 + 1 f e (τ, ϕ) ) . ( 32 
)
Then we use the definition of h(ρ e , θ e ) given e.g. by equation ( 28) and replace ρ e by its expression in terms of r e ρ e = r e 2p 2

r 2 ep 2 .

(33)

Finally using s = p/τ, by reexpressing s-differentiation in terms of τ-differentiation and replacing d s by d τ, we obtain the desired result of equation [START_REF] Marr | On the reconstruction of a function on a circular domain from a sampling of its line integrals[END_REF].

Remark 5.4 We may view the change of variable r → ρ as a map from type-2 Compton

Scatter Tomography (CST-2) to an apparent Computed Tomography (CT), whereby the real electric charge density f (r, θ) is mapped to an apparent attenuation coefficient density h(ρ, θ).

Geometric connection between interior and exterior CST-2 Radon transforms

In this section, we point out a remarkable connection between interior and exterior CST-2 Radon transforms, discussed in sections 4 and 5 above: they are linked by geometric inversion in the circle Γ(O, p) ∥. This is described by the following statements. Proof: Use equations ( 5) and [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications[END_REF] to show that r i (γ) • r e (γ) = p 2 . Next use equations ( 18) and (33) to show that ρ i = ρ e = ρ. This explains why both interior and exterior arcs are mapped to the same line s = ρ i ,e cos(θ i ,e -ϕ), which is just the polar line of the center of the exterior arc with respect to circle Γ(O, p) [START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF].

∥ We use the denomination of geometric inversion to avoid confusion with inversion of an integral operator, as in [START_REF] Yagle | Inversion of spherical means using geometric inversion and Radon transforms[END_REF]. 

) 34 
where r e > p and (0 < θ e = θ i < 2π). The converse, in which the indices (i ) and (e) are exchanged, is also true, provided that one replaces "inside D(O, p)" by "outside D(O, p)".

Proof:

We start from the expression of f i (τ, ϕ) as an integral over r i , given by equation ( 2).

Then insert the geometric inverse relation r i = p 2 /r e and calculate dr i in terms of d r e to re-express this equation in terms of r e

f i (τ, ϕ) = τ 2 + 1 τ ∫ p( τ 2 +1+τ) p dr e √ 1 -1 4τ 2 ( r e p - p r e ) 2 p 2 r 2 e { f ( p 2 r e , γ e + ϕ) + f ( p 2 r e , -γ e + ϕ) } ,( 35 
)
where 0 < τ < ∞, 0 < ϕ < 2π and γ e = γ i . Thus this is the exterior CST-2 Radon transform of g (r e , θ e ) as defined above.

Had we started out with f e (τ, ϕ), the proof can be repeated by exchanging the indices (i ) (e) and changing the integration bounds to (p( 1 + τ 2 -τ) → p). Remark 6.3 Lastly, for imaging the full plane, it is necessary to use both ( albeit separately) interior and exterior CST-2 scanning. It is amusing to compare this double CST-2 scanning (at supplementary scattering angles) to the double scanning (also at supplementary scattering angles) advocated for CST-1-Line Radon transform in [START_REF] Truong | New properties of the V-line Radon transform and their imaging applications[END_REF], which was shown to be equivalent to the scanning by the so-called V-line by application of geometric inversion.

The CST-2 Radon problem in an annular domain and its inversion

Theoretical reconstruction of electric charge density in CST requires complete data, as in conventional CT. In practice restrictions on measurements have led to the problem of missing (or limited data). Since the CST-2 data is labeled by two parameters (τ, ϕ), there will be two possible classes of missing data related either to restricted τ or to restricted ϕ. Here, assuming that SD can move freely around its center O, we shall be concerned only with restrictions on τ.

Origin of the problem -mapping to the exterior classical Radon problem

As known CST relies on the measurement of scattered radiation flux at given scattered energy. This is done by radiation detector crystals, which have bounded energy detection ranges. More specifically,

• for interior CST-2, one may not be able to pick up data for grazing scattering angle ω ∼ 0(ω > 0), so that the effective range of Compton scattering angle is restricted to (0 < ω mi n < ω < π/2). Consequently the τ-range is now 0 < τ < τ mi n since τ = cot ω, or s mi n < s < ∞, since s = p/τ. The scanning arcs are located inside an circular annulus A (p( 1 + τ 2 -τ), p), between interior radius p( 1 + τ 2 -τ) and exterior radius p, see left image of Fig. 3. Following the radial mapping r i → ρ i , as no restriction is imposed on ϕ, one gets, instead of the full plane classical Radon problem, now the so-called exterior classical Radon problem, since the new scanning lines in (ρ i , θ i ) space do not intersect the disk D(O, s mi n ),

• for exterior CST-2, one may not be able to pick up data for grazing scattering angle ω ∼ π, (ω < π), so that the effective range of Compton scattering angle is restricted to π/2 < ω < ω max . Consequently the τ-range is now 0 < τ < τ max since τ =cot ω, or The question is now how to use the results on the exterior Radon problem to build up a function reconstruction procedure for CST-2 Radon transform on annular domains.

s max < s < ∞, since s = p/τ.
However, if the compact support of f (r, θ) is strictly inside A (p( 1 + τ 2 -τ), p) (or inside A (p, p( 1 + τ 2 + τ))), then the inversion is given by formula (16) (or by formula [START_REF] Marr | On the reconstruction of a function on a circular domain from a sampling of its line integrals[END_REF]), as in the case of available full data. But in general this is not the case and we have to resort to using the reconstruction in exterior classical Radon problem, which is most comprehensively worked out by E. T. Quinto in [START_REF] Quinto | Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform[END_REF][START_REF] Quinto | Tomographic reconstructions from incomplete data -numerical inversion of the exterior Radon transform[END_REF][START_REF] Quinto | Computed tomography and rockets[END_REF][START_REF] Quinto | Exterior and limited-angle tomography in non-destructive evaluation[END_REF]. We shall follow the exposition of his method in describing the reconstruction algorithm.

The exterior classical Radon problem associated to interior/exterior CST-2 Radon problems

In this subsection, we review the status of the exterior Radon problem, now associated to both interior and exterior CST-2 Radon problems. We shall denote (ρ i ,e , θ i ,e ) by (ρ, θ) and (s mi n,max ) by q, see right image of Fig 4 . In principle, the exterior classical Radon problem is soluble for integrable functions with compact support, which is the case of all physical densities of interest, as asserted by general theorems [START_REF] Helgason | The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds[END_REF][START_REF] Ludwig | The Radon transform on Euclidean space Communications in[END_REF] and the socalled "hole theorem" of A. M. Cormack [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications[END_REF][START_REF] Natterer | Exploiting the ranges of Radon transforms in tomography[END_REF]. However the reconstruction via the "hole theorem" is unstable. A stable version of it was obtained later [START_REF] Cormack | Radon's problem -Old and New[END_REF][START_REF] Natterer | Exploiting the ranges of Radon transforms in tomography[END_REF], which agrees with the one found by Perry [START_REF] Perry | Reconstruction of a function by circular harmonic analysis of its Radon transform[END_REF]. The first investigation on the exterior classical Radon transform is due to M. Perry [START_REF] Perry | On reconstructing a function on the exterior of a disk from its Radon transform[END_REF], who established the Singular Value Decomposition (SVD) of the classical Radon integral operator including its null space. Perry concluded that no complete function reconstruction can be achieved. But later on, E. T. Quinto, in a series of papers, produces, for smooth functions with compact support, a reconstruction algorithm which effectively inverts the exterior classical Radon transform in [START_REF] Quinto | Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform[END_REF][START_REF] Quinto | Tomographic reconstructions from incomplete data -numerical inversion of the exterior Radon transform[END_REF][START_REF] Quinto | Computed tomography and rockets[END_REF][START_REF] Quinto | Local algorithms in exterior tomography[END_REF]. We shall follow Quinto's approach for our purposes. a) The exterior Radon transform concerns intermediate functions h(ρ, θ), defined on E = {(ρ, θ) : (q < ρ < ∞) ∪ (0 < θ < 2π)}, the exterior of a disk D(O, q) in R 2 , which are assumed to be square integrable, i.e. h(ρ, θ) ∈ L 2 (E ) with respect to the integration measure

ρ q √ 1 - q 2 ρ 2 ρ d θ d ρ. ( 36 
)
This classical exterior Radon transform maps h(ρ, θ) to h(s, ϕ), which is defined on E ′ = {(s, ϕ) : (q < s < ∞) ∪ (0 < phi < 2π)}, the exterior of a disk D ′ (O, q) in R 2 . It is also assumed that h(s, ϕ) ∈ L 2 (E ′ ), with respect to the integration measure q s d ϕ d s.

(37)

Note that the physical dimension of h(s, ϕ) is equal to the physical dimension of h(ρ, θ) times a length, since h(ρ, θ) is integrated over a straight line.

b) There exists, in L 2 (E ), the following orthonormal basis, for m = N and l ∈ Z,

h l m (ρ, θ) = q 2 ρ 2 Q m ( - 1 2 , 1 2 , q 2 ρ 2
) e i l θ , for l even,

h l m (ρ, θ) = q 3 ρ 3 Q m ( 1 2 , 1 2 , q 2 ρ 2 ) e i l θ , for l odd, (38) 
where

Q m (α, β, t ) = (2 1+α+β /h (β,α) m ) P (α,β) m (2t -1), P (α,β) m (2t -1)
is the standard (α, β) Jacobi polynomial [START_REF] Magnus | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF] and h (β,α) m is a numerical factor given by equation 4.3.3 of [START_REF] Szegö | Orthogonal Polynomials[END_REF].

On the other hand, in L 2 (E ′ ),

h l m (s, ϕ) = q l +2 s l +1 Q m ( l , 0, q 2 s 2 ) e i l ϕ , (39) 
form a basis in L 2 (E ′ ), for m = N and l ∈ Z.

c) The exterior classical Radon transform maps h l m (ρ, θ) to h l m (s, ϕ) according to

h l m (ρ, θ) → 0, for m < [ |l | 2 ] , → √ 2π |l | + 2m ′ + 1 h l m (s, ϕ) for m > [ |l | 2 ] , (40) 
where

m ′ = (m -[|l |/2]
) and [t ] is the largest integer at most equal to t . d) In [START_REF] Quinto | Tomographic reconstructions from incomplete data -numerical inversion of the exterior Radon transform[END_REF], Quinto has designed a numerical inversion algorithm to uniquely recover h(ρ, θ), of compact support and made up of two components h(ρ, θ) = h R (ρ, θ) + h N (ρ, θ), where h N (ρ, θ) is the so-called null component since its classical Radon transform is zero and h R (ρ, θ) is the "regular" component. His procedure consists of the following steps -Decompose the data h(s, ϕ) on the basis formed by the h l m (s, ϕ) as

h(s, ϕ) = ∑ l ,m c l ,m h l m (s, ϕ). ( 41) 
-Recover the "regular" part h R (ρ, θ) of the unknown function h(ρ, θ), as

h R (ρ, θ) = ∑ l ,m c l ,m √ 2π |l |+2m ′ +1 h l m (ρ, θ). ( 42 
)
-The next step is to determine h N (ρ, θ), by determining its circular component h N ,l (ρ), which is the angular Fourier component of h

N (ρ, θ) in h N (ρ, θ) = ∑ l ∈Z h N ,l (ρ) e i l θ . (43) 
Quinto, in [START_REF] Quinto | Tomographic reconstructions from incomplete data -numerical inversion of the exterior Radon transform[END_REF][START_REF] Quinto | Computed tomography and rockets[END_REF][START_REF] Quinto | Exterior and limited-angle tomography in non-destructive evaluation[END_REF] has shown that h N ,l (ρ) is a polynomial in 1/ρ of the same parity as l , of degree at most |l | and with lowest order term in 1/ρ of degree at least equal to two. Therefore the first three circular components h N ,0 (ρ) and h N ,±1 (ρ) are zero. As h(ρ, θ) is of compact support, we know that there exist K > q such that for all ρ > K we have h N ,l (ρ) = -h R,l (ρ). This condition fixes uniquely h N ,l (ρ) for ρ > q, because it is a polynomial in 1/ρ. This completes the determination of h(ρ, θ).

Application to the inversion of the CST-2 Radon transform in annular domain from an interior (resp. exterior) CST-2 Radon problem

We are now in a position to reconstruct fully the interior CST-2 Radon transform in an annular domain. Once h(ρ i , θ i ) (resp. h(ρ e , θ e )) is obtained from the previous algorithm, we invert equation ( 13) (resp. equation ( 28)) using also the expression of ρ i (resp. of ρ e ) in equation ( 18) (resp. equation ( 33)) to get the sought functions 

f (r i , θ i ) = 2p 2 (p 2 + r 2 i ) (p 2 -r i ) 2 h ( r i 2p 2 (p 2 -r 2 i ) ) , (44) 
) , (45) 
which is the set objective of this work.

Conclusion and perspectives

In this paper, we have presented a particular modality of Compton scatter tomography, called CST-2 and introduced in 2010, under a new approach and studied one of its missing data problem, which amounts to restrict the scanning area to an annular domain instead of the interior (or exterior) of a disk. We have shown that this problem, through an appropriate change of radial variable is reduced to the exterior classical Radon transform. The function reconstructive procedure in the case of the exterior classical Radon transform, worked out by E. T. Quinto, has been applied to reconstruct the unknown function of compact support in the two CST-2 sub-modalities.

Interior CST-2 has potentially more imaging applications (nuclear medicine, nondestructive testing and evaluation, etc...) as exterior CST-2, which by, its structure is meant for imaging large two-dimensional areas, e.g. two dimensional search for land mines using Compton effect. In both operating modes, there is a need to protect operating personnel from strayed radiation. As already mentioned, CST-2 lends itself nicely to the installation of a circular shield as pictured in Fig. 5. For interior CST-2 scanning, the operator is positioned outside the circular shield, while the object under study lies inside the circle Γ(O, p). For exterior CST-2 scanning, the operator is placed inside the circular shield since the exterior of the shield is subjected to scanning radiation from the moving source S. In this case, strong radiation sources are expected to be used in order to have sensible measurement results. Note that this modality is more practical for scanning large areas than Norton's CST-1-line modality. We have not touched upon the problem of numerical inversion algorithm, which is quite formidable and reserve it for a future publication with a serious theoretical study of finite discretization of the data as well as of the inversion algorithm, along the lines of R. B. Marr's work [START_REF] Marr | On the reconstruction of a function on a circular domain from a sampling of its line integrals[END_REF].

An extension of this work to what we may call CST-3 [START_REF] Truong | Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality[END_REF], in which scanning arcs have end points on the boundary circle Γ(O, p) but remain orthogonal to Γ(O, p). In this case, there exists also radial mappings which converts the interior and exterior problems into the same interior classical Radon problem, allowing elegant inversion formulas to be derived. Then the problem of missing data, due to limited energy range of radiation detectors, will be reduced to the CST-3 problem in annular domains. We hope to be able to deal with more new CST modalities through generalizations of the radial change of variables in order to be able to map these problems to the well-known classical Radon transform, for which a rich host of properties and techniques are readily available.
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 1 Figure 1. CST-1-Line. Scanning circular arcs SD in lower half plane (left) and in upper half-plane (right)
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 2 Figure 2. CST-2. Interior problem with 0 < ω < π/2 (left) and exterior problem with π/2 < ω < π (right)

Proposition 4 . 5

 45 Under the assumptions of proposition 4.1, the reconstruction of f (r i , θ i ) inside the disk D(O, p) with complete data is given by

Proposition 6 . 1

 61 For the same angle γ i = γ e = γ, we have r i (γ) • r e (γ) = p 2 and ρ i = ρ e = ρ.
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 3 Figure 3. Annular interior (left) and exterior (right) CST-2
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 4 Figure 4. CST-2-Parameters values s (red curve) and ω (blue curve)
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 5 Figure 5. Interior (left) and exterior (right) CST-2 shielding

  The exterior CST-2 Radon problem is formulated in the following proposition Proposition 5.1 Let f (r i , θ i ) be an integrable function of compact support outside the disk D(O, p) in R 2 . The exterior CST-2 Radon transform maps f (r e , θ e ) to f e (τ, ϕ) according to

  Proposition 6.2 Let f (r i , θ i ) be a non-negative integrable function in the disk D(O, p) and f i (τ, ϕ) its interior CST-2 Radon transform. Then f i (τ, ϕ) can be expressed as the exterior CST-2 Radon transform of g (r e , θ e ), given by

	g (r e , θ e ) =	p 2 r 2 e	f	(	p 2 r e	θ e	)	,	(

  The scanning arcs are located inside an circular annulus A (p, p( 1 + τ 2 + τ)), between interior radius p and exterior radius p( 1 + τ 2 + τ), see right image of Fig.3. Following the radial mapping r e → ρ e , as no restriction is imposed on ϕ, one gets, instead of the full plane classical Radon problem, now the socalled exterior classical Radon problem, since the new scanning lines in (ρ

i , θ i ) space do not intersect the disk D(O, s max ).

§ Following reference[START_REF] Quinto | Null spaces and ranges for the clasical and spherical Radon transforms[END_REF], we use the denomination of classical Radon transform to speak of the original integral transform introduced by J. Radon in 1917.
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