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ABSTRACT

Recent work in music structure analysis has shown the
potential of deep features to highlight the underlying struc-
ture of music audio signals. Despite promising results
achieved by such representations, dealing with the inher-
ent hierarchical aspect of music structure remains a chal-
lenging problem. Because different levels of segmentation
can be considered as equally valid, specifically designed
representations should be optimized to improve hierarchi-
cal structure analysis. In this work, unsupervised learning
of such representations using a contrastive approach op-
erating at different time-scales is explored. The proposed
system is evaluated on flat and multi-level music segmen-
tation. By leveraging both time and the hierarchical orga-
nization of music structure, we show that the obtained deep
embeddings can encode meaningful patterns and improve
segmentation at various levels of granularity.

1. INTRODUCTION

Common approaches for music structure analysis can usu-
ally be broken down into two main steps: segmentation
and structural grouping [1]. The segmentation task aims at
determining the boundary locations between consecutive
musical sections while the grouping step consists in assign-
ing labels to each of the retrieved segments based on cer-
tain musical similarities. Traditional algorithms for struc-
tural segmentation use different hand-crafted features [2]
and their combinations to detect abrupt changes of partic-
ular musical characteristics or repetitions of certain pat-
terns throughout the song. However, recent progress in
deep learning has given rise to new systems automatically
producing more robust representations which manage to
combine several acoustic characteristics to enhance the
recognition of musical sections [3–5]. While these rep-
resentations have consistently improved downstream seg-
mentation methods, their performance is mostly evaluated
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on flat structural annotations and metrics. However, mu-
sical structure naturally exhibits a hierarchical organiza-
tion where a variety of cues can trigger boundaries be-
tween segments of different length [6], depending on the
time scale at which they are observed [1]. At the lowest
temporal level, short segments might only last a few mea-
sures. Coarser annotation levels are generally composed
of longer segments, grouping various shorter fragments
into larger musically meaningful units (ex: chorus, verse
...). This nested organization of musical events at different
levels holds crucial information about music structure [7].
While the original task of music structure analysis is com-
monly performed at a pre-defined level of granularity (i.e.
flat segmentation), the problem of hierarchical structural
analysis consists in predicting a set of segmentation can-
didates called hierarchy, ordered by their amount of detail
(from the coarsest to the most refined level). Recent efforts
have been made to compile datasets with multi-level struc-
tural annotations [2, 8], which greatly facilitates the study
of musical structure in a hierarchical manner. Although a
few methods have been proposed for such task, the role
of hierarchy in music structure has never been explicitly
considered while building better-suited representations of
audio music signals prior to segmentation.

1.1 Our contributions

In this work, we propose a deep unsupervised hierarchical
metric learning approach for music structure analysis. We
show that leveraging both time information and the hierar-
chical structure of music can help building efficient repre-
sentations for music segmentation at different levels with-
out requiring any supervision from structural annotations.
We demonstrate the effectiveness of these representations
for both flat and multi-level segmentation and show that
they can accommodate structural annotations of varying
styles and levels.

1.2 Related work

The method proposed here builds upon recent work in mu-
sic structure analysis devoted to finding efficient represen-
tations using deep learning methods to improve already ex-
isting downstream algorithms. The work by McCallum [3]
proposes an unsupervised method to learn deep features



using a triplet-based approach. It relies on the assumption
that frames temporally close to each other are more likely
to belong to the same musical section than those separated
by a certain amount of time. Therefore, triplets are sam-
pled in such a way that the temporal distance between the
anchor point and the positive example is smaller than the
distance separating the anchor from the negative example.
Wang et al. [4] adopt a similar approach by using struc-
tural annotations in a supervised fashion to mine informa-
tive sets of frames.

One of the main challenges in estimating the structure
of a musical piece is to account for the different temporal
levels at which it can be decomposed. Up to now, only a
few approaches have been proposed for the task of multi-
level segmentation. McFee and Ellis [9] use spectral clus-
tering to decompose an enhanced self-similarity matrix and
produce segmentations at different temporal levels. This
approach is later improved by Tralie and McFee [10] where
the input self-similarity matrix is obtained by combining
different features using Similarity Network Fusion. Sala-
mon et al. [5] further extend this method by employing two
types of deep embeddings along with CQT features. They
capture local timbral patterns with few shot-learning and
long-term similarities with disentangled deep metric learn-
ing [11]. While these works demonstrate the advantage
of combining multiple representations of a same signal to
extract meaningful structural patterns, our approach shows
instead that these can be directly encoded into the repre-
sentations using time proximity and the hierarchy of music
structure.

2. HIERARCHICAL REPRESENTATIONS

The method introduced here constructs deep representa-
tions which allow for structural segmentations at various
time-scales. To facilitate the decomposition of a song
at different levels, these representations should provide
strong discriminative capabilities for time frames belong-
ing to different musical sections and separated by a large
amount of time. Conversely, they should be more homoge-
neous for frames belonging to the same section and hap-
pening within a short time interval. As section lengths
might vary from one annotator to another due to the am-
biguity of the task [1], the aforementioned constraint is
imposed at different temporal scales. Additionally, most
datasets for music structure analysis come with only one
level of annotations, which motivates us to learn such rep-
resentations in an unsupervised fashion, taking advantage
of large quantities of unlabelled data. A base convolutional
neural network is used to output embeddings which are di-
vided into multiple sub-regions. Each of them is optimized
independently using specific triplets of frames efficiently
sampled to encode the temporal structure of the song at dif-
ferent levels. We show that each level of the final represen-
tations can model frames proximity with its own amount of
granularity.

2.1 Sampling

The objective of the sampling method introduced by Mc-
Callum [3] is to build triplets of frames where the an-
chor and the positive example belong to the same musi-
cal section, while the anchor and the negative example
are labelled differently. The method proposed here can
be viewed as its multi-level extension. A hierarchy is de-
fined as a set of L levels of structural segmentations or-
dered from the coarsest to the most refined. For each level
ℓ ∈ {0; . . . ;L− 1} in the hierarchy, triplets of beat indices
are sampled using a specific set of parameters δ = {δℓp,min,
δℓp,max, δ

ℓ
n,min, δ

ℓ
n,max}. Intuitively, they rule how "close"

or "far away" from the anchor the positive and negative ex-
amples will be sampled throughout the song. More specif-
ically, for a given anchor beat index ia, positive and neg-
ative examples respectively located at beat indices ip and
in are uniformly sampled from the interval Iℓp defined by
δℓp,min and δℓp,max and Iℓn specified by δℓn,min and δℓn,max.
An example for an arbitrary level ℓ is shown in Figure 1.
The δ parameters actually define a notion of temporal dis-
tance dℓ between frames at a given level of the hierarchy
(analogous to a notion of dissimilarity). Therefore, the set
of triplets Tℓ at level ℓ can be expressed as:

Tℓ = {(ia, ip, in; l) | dℓ(xa, xp) < dℓ(xa, xn)} (1)

where xk is the input feature patch observed at beat index
ik, iℓp ∼ U(Iℓp) and iℓn ∼ U(Iℓn).

Figure 1. Initial triplet sampling method at level ℓ.

In order for the learned hierarchy levels to remain con-
sistent with one another, monotonicity is encouraged by
modifying the initial triplet mining technique. In addition
to the time constraint imposed on triplets of the same level,
their probability of being sampled is restricted from one
level in the hierarchy to the next. For a randomly sampled
anchor index at level ℓ = 0, a complete triplet (ia0 , i

p
0, i

n
0 )

is built only using time proximity (i.e. δ parameters). Then



for each level ℓ ∈ {1; . . . ;L − 1}, the positive example is
sampled closer and closer to the same anchor (i.e. δℓp,min

and δℓp,max decrease), whereas the negative is obtained by
selecting the positive example from level ℓ− 1. This way,
going deeper into the hierarchy means that the represen-
tations get more refined to detect short-term musical pat-
terns. The modified sampling method is summarized in
Figure 2. The process is then repeated by starting over
from level 0, going down the hierarchy with the same an-
chor index, transferring the negative example from the cur-
rent to the next level, and uniformly sampling the positive
ones using the right δ parameters. At the end, the whole
training set for all levels of the hierarchy is given by com-
bining every set of triplets Tℓ level-wise: T = {Tℓ}L−1

ℓ=0 .

Figure 2. Modified triplet sampling, moving downwards
in the hierarchy.

2.2 Disentangled hierarchy levels

During training, the model is shown triplets sampled at
different hierarchy levels and should optimize the corre-
sponding sub-regions of the output embeddings. We adapt
the method introduced by Veit et al. [12], called Con-
ditional Similarity Networks. This method has already
proven to be efficient in the context of multi-dimensional
music similarity learning [11], where a joint model learns
compact representations of music audio signals comply-
ing with different similarity criteria, namely genre, mood,
instrumentation and tempo. We propose to extend it to the
hierarchical case: to model the different temporal distances
dℓ, a set of L masking functions mℓ ∈ {0, 1}n that are ap-
plied to the embedding space of size n is defined. Each
mask can be interpreted as an element-wise gating func-
tion selecting the relevant dimensions of the embedding
corresponding to a particular level of the hierarchy. For a
given triplet (xa, xp, xn) at level ℓ, the training objective
becomes:

L(xa, xp, xn) = [Dℓ(xa, xp)−Dℓ(xa, xn) + α]+, (2)

Dℓ(xi, xj) =∥ mℓ ◦ [f(xi)− f(xj)] ∥22 (3)

where ◦ is the Hadamard product, [.]+ denotes the Hinge
loss, α the margin parameter and f(x) is the projection of x
into the embedding space by the convolutional neural net-
work. An example is illustrated in Figure 3, where L = 3
and ℓ = 1. Since going deeper into the hierarchy results in
triplets of frames getting temporally closer to each other,
it is unnecessary for the model to separate samples by the

Figure 3. Training pipeline for ℓ = 1 and L = 3. At each
iteration, the current hierarchy level defines the set of δ
parameters to sample the positive example. The mask here
conserves the sub-region corresponding to level ℓ = 1.

same distance margin at all levels. Therefore, margin val-
ues were evenly distributed within the range [0.05, 0.1] so
that for each level ℓ ∈ {0; . . . ;L−2}, we have αℓ > αℓ+1.

3. EXPERIMENTS

The evaluation of our method is divided into three distinct
parts. First, we consider the problem of boundary detec-
tion on flat annotations using the SALAMI dataset. Sec-
ond, we verify if the learned hierarchical representations
improve multi-level segmentation predictions on that same
dataset using the two-level structural annotations available.
We finally demonstrate the flexibility of our approach and
provide additional results on other commonly used datasets
for music structure analysis where their original flat anno-
tations have been automatically expanded beforehand [13].

3.1 Datasets

We use five different datasets in our evaluation:
SALAMI: the Structural Annotations for Large

Amounts of Music Information (SALAMI) [8] is the most
substantial dataset for music structure analysis. It contains
1, 359 tracks ranging from classical, jazz, popular to world
and live music. Each track is provided with two levels of
structural annotations. We use a subset of 884 songs la-
belled by two different annotators. Therefore, for each
track contained in this subset, we end up with a total of
4 segmentation ground-truths (2 annotators × 2 levels of
granularity). In the rest of this work, this subset is referred
as SALAMI.

BeatlesTUT: a revised version of 174 annotated Beat-
les songs, originally released in the Isophonics dataset [14]
and corrected by researchers from Tampere University of
Technology.

RWC-Pop: the Popular subset of the RWC dataset [15]
contains 100 songs with section annotations. Note that two
versions of these annotations are available online; here the
ones originally provided by the authors (AIST) are used.

RWC-Jazz: the Jazz subset of the RWC dataset [15] is
composed of 50 songs from various Jazz sub-genres such
as Vocal, Big Band, Modal, Funky, Free or Fusion Jazz.



JAAH: the Audio-aligned jazz harmony dataset
(JAAH) [16] is composed of 113 tracks selected from
“The Smithsonian Collection of Classic Jazz” and “Jazz:
The Smithsonian Anthology”, covering various perform-
ers, sub-genres and historical periods.

3.1.1 Obtaining multi-level annotations:

For all datasets but SALAMI, we apply automatic hierar-
chy expansion [13] before evaluating multi-level segmen-
tation. As can be seen in the descriptive statistics from
Table 1, both the distributions of section labels and seg-
ment durations vary from one dataset to another. This dif-
ference can either be explained by the style of annotations
(i.e. label taxonomy, desired level of detail...) or the music
genre. As a consequence, the average number of levels ob-
tained after automatic hierarchy expansion is dependent on
the repetition of section labels and their semantic structure,
which varies with the annotation process as well.

Dataset N Uni Seg Dur Levels

SALAMI0 (upper) 884 5.3 10.9 63.5 2.0
SALAMI0 (lower) 884 10.0 33.1 18.4 2.0
SALAMI1 (upper) 884 5.0 11.2 61.1 2.0
SALAMI1 (lower) 884 9.2 34.1 18.0 2.0

BeatlesTUT 174 5.6 10.1 36.1 2.5
RWC-Pop 100 8.9 16.4 28.5 2.9
RWC-Jazz 50 14.2 19.9 32.1 2.8
JAAH 113 6.2 8.0 63.1 2.0

Table 1. Datasets descriptive statistics. N: number of an-
notated songs. Uni: average number of unique section la-
bels per song. Seg: average number of segments per song.
Dur: average duration of each section per song (in beats).
Levels: average number of annotation levels per song after
automatic hierarchy expansion. SALAMIi: ith annotator.

3.1.2 Training data:

Since this work falls under the scope of unsupervised
learning, a non annotated external audio collection is used
for training. It is composed of 23, 725 tracks, spanning
various musical genres such as rock, popular, rap, jazz,
electronic or classical. These were retrieved from publicly
available playlists and the audio obtained from Youtube.
Care has been taken to discard any track from this external
collection also present in one of the testing datasets.

3.2 Evaluation metrics

3.2.1 Flat segmentation:

For boundary detection, we report the F-measure 1 of the
trimmed boundary detection hit-rate with a 3-second toler-
ance window (F3) on the original annotations. We also
report the F-measure of frame pairwise clustering [18]
(Fpairwise), which gives another view on flat segmentation
performance in terms of frame-wise section assignment.

1 All evaluations are done using the mir_eval package [17].

3.2.2 Multi-level segmentation:

The second part of the evaluation on multi-level segmen-
tation is carried out using the L-measure [7]. This metric
allows for comparing hierarchies of segmentations operat-
ing at different scales. First, the reference hierarchy HR

is decomposed into a finite number of time instants (i.e.
frames). Then, the set A(HR) of all triplets of frames
(i, j, k) such that i and j receive the same label deeper
in the hierarchy than i and k is retrieved. The same pro-
cess is repeated with the same set of time instants for the
estimated hierarchy HE to obtain A(HE). Finally, the L-
precision, L-recall and L-measure are derived by compar-
ing A(HR) against A(HE). As noted in previous work
[5, 10], hierarchies estimated with greater depth than ref-
erence annotations can make the L-precision metric unre-
liable. Therefore, our evaluation focuses on the L-recall,
indicating how much of the reference hierarchy is retrieved
in the estimated one. For this part of the evaluation, the ex-
panded version of each dataset is used except for SALAMI,
where for comparison purposes, the reference hierarchy
only comprises both of the original annotation levels pro-
vided by each annotator (upper and lower).

3.3 Input features

All tracks are resampled at 22.05 kHz. Previous work
has demonstrated that homogeneous regions and sharp
changes of timbral content can be a good indicator of sec-
tion transitions [19]. Therefore, we use log-scaled mel-
spectrograms, with a window and hop size of 2048 and 256
respectively. We compute 60 mel-bands per frame. Beats
are estimated for all tracks using the Librosa [20] imple-
mentation of the beat tracking algorithm from Ellis [21].
For both feature types, patches of 512 frames (≃ 5.94s)
are observed, centered at each detected beat location.

3.4 Implementation details

3.4.1 Network architecture:

We use a basic convolutional neural network architecture
composed of 3 convolutional blocks, each comprising a
convolutional and a max-pooling layer and Relu activa-
tion, followed by two fully-connected layers with Relu
activations and a third fully-connected layer with linear
activation. All convolutional layers use a kernel size of
(6, 4). A common practice in contrastive learning is to
constrain the learned representations to lie within the unit
hypersphere [22]. Therefore, the output embeddings are
L2-normalized prior to distance calculations. The models
were implemented with Pytorch 1.7.1 [23]. The RMSProp
optimizer with default parameters is used. All models are
trained on the non-annotated external audio collection de-
scribed in Section 3.1 for a maximum of 200 epochs. The
learning rate is set to 10−4 and dropout [24] is applied with
probability 0.1 after each convolutional block and 0.2 af-
ter each fully-connected layer. All models 2 return embed-
dings of dimension n = 128.

2 Code: github.com/morgan76/HE



3.4.2 Masks design:

In previous work, it was found beneficial to learn the masks
during training to promote information sharing across sim-
ilarity dimensions [12]. As in the method proposed by Lee
et al. [11], we found that this did not bring any major im-
provement. Since information is already shared implicitly
among the different hierarchy levels by the sampling strat-
egy detailed in Section 2.1, the masks are kept disjoint
from one another with equal length. After some prelim-
inary experiments, the number of hierarchy levels L = 4
has been found as a good compromise between the diver-
sity of triplets at each level and the temporal scale between
the top and bottom ones.

3.4.3 Batch sampling scheme:

During training, mini-batches of size 120 are composed of
10 anchor points uniformly sampled from one song, and
from which 12 triplets are derived (3 for each level). To
choose good sampling parameters, we used both annota-
tion levels of the held-out subset of SALAMI and mea-
sured the amount of true positive and true negative exam-
ples while varying δp,min and δp,max of level ℓ = 0. It was
found that setting δp,min = 32 and δp,max = 64 provided a
good balance between the true positives rate at level ℓ = 0
and the true negatives rate at level ℓ = 1. For the case
where L = 4, the rest of the parameters were set such that
each level spans the same duration in beats (i.e. 16 beats)
under the maximum value of 64 beats. All sampling pa-
rameters δ used for each level are summarized in Table 2.

L ℓ δp,min δp,max δn,min δn,max

1 0 1 16 1 128

4 0 48 64 64 128
1 32 48 48 64
2 16 32 32 48
3 1 16 16 32

Table 2. Sampling parameters (in beats) used in our exper-
iments for L = 1 and L = 4 hierarchy levels.

3.5 Downstream algorithms and baselines

A common way of evaluating deep representations for mu-
sic structure analysis is to measure the improvement made
when combined with downstream segmentation methods.
While there exists a variety music segmentation algorithms
in the literature [1, 2], the one employed in these experi-
ments was chosen to facilitate comparison against previ-
ous work. Boundary detection and section grouping on
flat annotations as well as multi-level segmentation are
performed with spectral clustering [9], as it remains the
only unsupervised method that can output multiple levels
of segmentation while being competitive. Additionally, it
appears as a well-suited downstream method for hierarchi-
cal features since it operates on a graph decomposition of
the audio signal. The proposed triplet sampling method
forces the learned features to discriminate frames tempo-
rally close to one another at different levels in the hier-
archy. Consequently, each sub-region in the embeddings

learns one possible decomposition of the song. Applied
on each of these sub-regions, spectral clustering can take
advantage of the graph sub-structures proper to each level
in order to efficiently retrieve the overall structure of the
song. The original algorithm [9] takes two distinct au-
dio features as input (MFCC and CQT), here, both fea-
tures are replaced by the representations proposed in this
work. Results obtained with the whole embedding ma-
trices are denoted by HE (Hierarchical Embeddings). As
an upper-bound of the proposed system, section group-
ing and multi-level segmentation are also performed using
each individual sub-region of the embeddings (i.e. hier-
archy levels), and the best results obtained across levels
(denoted by HEbest) are reported. In a use case scenario,
this can be seen as selecting the most adapted level of rep-
resentation for each track in the testing set given a desired
amount of granularity. For SALAMI, boundary detection
is performed per annotator. For each, the scores obtained
on both annotation levels (upper and lower) are computed
both separately and combined together (best score between
both levels per annotator is kept, noted combined). As an
example, "HE0,best" corresponds to the score obtained for
the first annotator, selecting for each track the embedding
level which maximizes the metric considered. In addition
to results from previous work [5,9], those obtained here are
compared against the method proposed by McCallum [3]
(which comes down to setting L = 1 as described in Table
2), it is denoted as FE (Flat Embeddings).

4. RESULTS

4.1 Flat segmentation

Flat segmentation results on SALAMI are given in Table 3.
The representations proposed in this work yield competi-
tive results against the reported baselines on all the met-
rics considered. This trend is accentuated when the best
embedding sub-region is selected. For lower annotations,
the learned representations improve over traditional fea-
tures. However, they do not perform better than those from
McCallum [3], since this method uses sampling parame-
ters that are more adapted to this level of annotation. The
best-level scenario shows that the smallest temporal scales
used during training (levels ℓ = 2, 3) allow for the detec-
tion of very small regions of homogeneous timbral content,
which helps detecting section changes at this level of an-
notation. The higher pairwise clustering scores indicate
that these small detected regions are homogeneous enough
to be identically labelled with spectral clustering (k-means
step).

For the upper annotations, the results for boundary de-
tection and pairwise clustering constantly improve over
the reported baselines, indicating that for higher levels in
the hierarchy, the proposed representations improve homo-
geneity inside annotated sections. Long-term similarities
are implicitly captured by the highest embedding levels
(ℓ = 0, 1), yielding discriminative features able to sepa-
rate consecutive musical sections at that level.

Finally, for both annotation levels combined, all models



perform better than when considering each level indepen-
dently. The fact that difficult examples at the lower level
are better managed at the upper one and vice-versa indi-
cates that the representations learned are not specific to any
particular annotation level. The very small performance
gap across annotators also shows that these same repre-
sentations capture relevant structure characteristics that are
shared between them.

Level Method F3 Fpairwise

lower LSD [9] 0.525± 0.19 0.561± 0.16
FE0 [3] 0.624± 0.14 0.561± 0.14
HE0 0.611± 0.16 0.580± 0.15
HE0,best 0.643± 0.15 0.580± 0.15
FE1 [3] 0.611± 0.14 0.563± 0.14
HE1 0.600± 0.15 0.581± 0.14
HE1,best 0.635± 0.15 0.580± 0.14

upper SNF [10] 0.456 0.567
DEF [5] 0.564 0.600

LSD [9] 0.579± 0.15 0.652± 0.13
FE0 [3] 0.568± 0.17 0.694± 0.14
HE0 0.597± 0.18 0.714± 0.14
HE0,best 0.627± 0.16 0.719± 0.14
FE1 [3] 0.559± 0.17 0.697± 0.14
HE1 0.595± 0.18 0.718± 0.14
HE1,best 0.625± 0.16 0.720± 0.14

combined HE0 0.665± 0.13 0.730± 0.14
HE0,best 0.711± 0.12 0.733± 0.14
HE1 0.662± 0.13 0.731± 0.14
HE1,best 0.707± 0.12 0.731± 0.14

Table 3. Boundary detection and section grouping results
on SALAMI.

4.2 Multi-level segmentation

The results obtained for multi-level segmentation are re-
ported in Table 4. When employing the full embedding
representation, the performance on multi-level segmen-
tation is competitive in terms of L-recall with previous
work. As well as for boundary detection, selecting the best
embedding sub-region leads to even further improvement.
The importance of keeping inter-annotator agreement as a
reference for comparison in multi-level segmentation has
previously been argued [10]. It is found that the pro-
posed representations result in multi-level segmentations
that adapt to both annotators, within the range of the inter-
annotator agreement reported by Tralie and McFee [10].

Method L-precision L-recall L-measure

Inter-annot 0.664 0.664 0.654

LSD [7] 0.419 0.636 0.498
SNF [10] 0.431 0.668 0.517
DEF [5] 0.435 0.673 0.520

FE0 [3] 0.412± 0.10 0.677± 0.13 0.505± 0.11
HE0 0.413± 0.11 0.680± 0.13 0.507± 0.11
HE0,best 0.432± 0.11 0.694± 0.13 0.527± 0.11
FE1 [3] 0.413± 0.10 0.663± 0.12 0.503± 0.10
HE1 0.418± 0.11 0.671± 0.13 0.509± 0.11
HE1,best 0.423± 0.11 0.686± 0.13 0.517± 0.11

Table 4. Multi-level segmentation results on SALAMI.
Inter-annot denotes the inter-annotator agreement.

4.3 Additional evaluation

In Table 5, the results obtained for boundary detection, sec-
tion grouping and multi-level segmentation on additional
datasets using the whole embedding matrices are summa-
rized. The boundary detection scores obtained for Beat-
lesTUT and RWC-Pop fall within the same range, where
more specifically, the score on RWC-Pop is higher than
the one obtained by Wang et al. [4] with representations
learned via supervised contrastive learning. However, a
significant drop is observed for the two remaining datasets:
RWC-Jazz and JAAH. If the music genre might play a
role in this performance gap, it is also worth considering
some statistics of these datasets summarized in Table 1.
For RWC-Jazz, the high number of unique section labels
compared to the total number of segments might cause
some errors during the section grouping step done at the
frame level with k-means (last step of the spectral clus-
tering method). Regarding the JAAH dataset, given the
low average number of segments per track, the segmen-
tation method returns more boundaries than those origi-
nally annotated, therefore reducing the hit-rate precision
and F-measure. For all metrics considered, other exper-
iments have shown that hierarchical representations also
performed better than their flat counterparts [3], of which
due to space constraints, the results are not reported here.

Dataset F3 Fpairwise L-P L-R L-M

BeatlesTUT 71.77 72.25 49.32 75.25 59.37
RWC-Pop 68.07 65.35 47.02 77.06 58.30
RWC-Jazz 55.05 58.51 32.89 81.80 45.76
JAAH 55.57 76.72 46.49 81.18 58.55

Table 5. Boundary detection, section grouping and multi-
level segmentation results on additional datasets (in per-
centage) with the whole embedding matrix. L-P: L-
precision, L-R: L-recall, L-M: L-measure.

The L-recall values obtained across datasets remain
within the same range, regardless of the performance
achieved on flat segmentation or section grouping. The
temporal notion induced during sampling helps adapting
to different musical genres or annotation sources. Even
though the learned representations may not always fit with
one specific level in the annotations, most of the reference
structure hierarchies are captured and more refined levels
of segmentation are discovered.

5. CONCLUSION

In this work, unsupervised contrastive learning of deep
representations for music structure analysis at different
time-scales has been explored. By leveraging time infor-
mation and the hierarchical aspect of music structure, the
resulting representations facilitate single and multi-level
segmentation while being robust against different types of
annotations. Future work includes searching for better-
suited architectures to detect musical patterns at different
time scales and automatically combine them to accommo-
date specific annotation styles or levels.
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