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Abstract. A quantitative version of the Bianchi–Egnell inequality concerning the stability
of the Sobolev inequality is proved with explicit constants. For the proof we study a flow that
interpolates continuously between a function and its symmetric decreasing rearrangement.

1. introduction and main result

In [9] Brezis and Lieb posed the question whether it is possible to bound the ‘Sobolev deficit’

‖∇f‖2
L2(Rd) − Sd ‖f‖

2
L2∗ (Rd)

from below in terms of some natural distance from the manifold of optimizers. Here d ≥ 3,
2∗ = 2 d/(d− 2) is the ‘Sobolev exponent’, and

Sd = 1
4
d (d− 2) |Sd|2/d

is the sharp Sobolev constant. The function f belongs to the homogeneous Sobolev space
Ḣ1(Rd), that is, it is in L1

loc(Rd), its distributional gradient is a square-summable function and
it vanishes at infinity in the sense that |{x ∈ Rd : |f(x)| > ε}| < ∞ for all ε > 0. Here |A|
denotes the Lebesgue measure of a measurable set A. Throughout this paper we deal with
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real-valued functions. With minor additional effort our arguments can be extended to the
case of complex-valued functions.

Rodemich [39], Aubin [3] and Talenti [43] (see also [41]) proved that the Sobolev deficit
is non-negative. Moreover, it was shown by Lieb [35], Gidas, Ni and Nirenberg [34] and
Caffarelli, Gidas and Spruck [14] that the deficit vanishes if and only if the function f is of
the form

f(x) = c
(
a+ |x− b|2

)− d−2
2 , (1)

where a ∈ (0,∞), b ∈ Rd and c ∈ C are constants. These functions are often called ‘Aubin–
Talenti functions’. LetM denote the (d+2)-dimensional manifold of functions of the form (1).

The question of Brezis and Lieb was answered by Bianchi and Egnell [4]: there is a strictly
positive constant cBE such that for any f ∈ Ḣ1(Rd) \M

E(f) :=
‖∇f‖2

L2(Rd)
− Sd ‖f‖2

L2∗ (Rd)

infg∈M ‖∇f −∇g‖2
L2(Rd)

≥ cBE . (2)

We denote by cBE the optimal, that is, largest possible constant in (2).
Lions [37] has shown that, if the Sobolev deficit is small for some function f , then f has to

be close to the manifold M of Sobolev optimizers. The closeness is in the strongest possible
sense, namely with respect to the norm in Ḣ1(Rd). The Bianchi–Egnell inequality (2) makes
the qualitative result of Lions quantitative. In particular, it shows that the distance to the
manifold vanishes at least like the square root of the Sobolev deficit. Such ‘stability’ estimates
have been established in other contexts as well, e.g., for the isoperimetric inequality or for
classical inequalities in real and harmonic analysis. In fact, stability has attracted a lot of
attention in recent years and we refer to [33, 21, 28, 22, 18, 16, 19, 27, 20, 42, 31, 32, 29, 7]
and the references within for a list of works in this direction. In several of them the strategy
of Bianchi and Egnell or its generalizations play an important role.

An interesting point about (2) and other inequalities obtained by this method is that nothing
seems to be known about the optimal value of the constant cBE except for the fact that it is
strictly positive. The proof in [4] proceeds by a spectral estimate combined with a compactness
argument and hence cannot give any information about cBE. Explicit quantitative estimates
are known only for a distance toM measured by a weaker norm than (2), functions of Ḣ1(Rd)
satisfying additional constraints or superquadratic estimates of the distance which degenerate
in a neighbourhood of M and much more is known for subcritical interpolation inequalities
than for Sobolev-type inequalities: see [6, 26, 25, 24, 7, 30] for some references.

It is the aim of this article to address the question of proving (2) with an explicit lower
bound on cBE. To formulate the result, let us introduce the notations

ν(δ) :=

√
δ

1− δ
(3)

for any δ ∈ (0, 1) and, with q = 2∗ the Sobolev exponent,

m(ν) := 4
d+4
− 2

q
νq−2 if d ≥ 6 ,

m(ν) := 4
d+4
− 1

3
(q − 1) (q − 2) ν − 2

q
νq−2 if d = 4, 5 ,

m(ν) := 4
7
− 20

3
ν − 5 ν2 − 2 ν3 − 1

3
ν4 if d = 3 .

(4)

With
κd := sup

0<δ<1
δm
(
ν(δ)

)
, (5)
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here is our theorem.

Theorem 1. Let d ≥ 3 and f ∈ Ḣ1(Rd) \M. Then

E(f) ≥ 1
2
κd ,

where m(ν) and ν(δ) are defined by (4) and (3). If additionally f ≥ 0, then we have

E(f) ≥ κd .

Thus, the optimal constant in (2) satisfies

cBE ≥ 1
2
κd .

We refer to Appendix B for considerations on the numerical values of our estimates. Concern-
ing its behavior in high dimensions we will prove that

1
2
κd &

2d

e2 d1+ d
2

as d→ +∞ . (6)

Moreover, we have the upper bound

cBE ≤
4

d+ 4
(7)

for any d ≥ 3, see Proposition 20.
A question that remains open is what the optimal value of the constant cBE in (2) is

and whether it is attained for an extremal function. After a first version of this paper has
appeared on the arXiv we learned that T. König has shown that the inequality in (7) is strict
in any dimension d ≥ 3. This is reminiscent of the planar isoperimetric inequality, where the
constant in the quanitative isoperimetric inequality with Frankel asymmetry is strictly smaller
than the constant in the corresponding spectral gap inequality. In that case one can prove the
existence of an optimizing function; see [5]. For further studies under an additional convexity
assumption, see [15, 2, 23].

Let us describe the strategy of the proof of Theorem 1. It consists of two parts. In a first
part we prove a lower bound on E(f) for non-negative functions f . In a second part we show
that this implies a lower bound for general functions f . The two parts are independent of
each other in the sense that the second part does not rely on the method by which in the first
part a lower bound was obtained.

Let us begin by describing the strategy of proving a bound for non-negative functions.
Superficially, the proof is analogous to that by Bianchi and Egnell [4], namely, one splits the
problem into two regions, one where f is close to the manifold of Sobolev optimizers and the
other where it is far away. These regions are defined in terms of the quantity infg∈M ‖∇f −
∇g‖2

L2(Rd)
/‖∇f‖2

L2(Rd)
, specifically by requiring that this quantity is either less or equal than δ,

or (strictly) bigger than δ. Here δ > 0 is a free parameter that we will optimize over at the
end. Note that, since infg∈M ‖∇f − ∇g‖2

L2(Rd)
≤ ‖∇f‖2

L2(Rd)
, we may always assume that

δ ≤ 1 and even δ < 1.
In Section 3, for δ ∈ (0, 1) small enough, we estimate µ(δ) such that

E(f) ≥ µ(δ) (8)

whenever

0 < inf
g∈M
‖∇f −∇g‖2

L2(Rd) ≤ δ ‖∇f‖2
L2(Rd) (9)
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and prove that µ(δ) is positive. The argument in this regime is similar to that of Bianchi and
Egnell and is based on a spectral gap inequality. We make the qualitative expansions of [4]
quantitative and obtain for all δ ∈ (0, 1) a remainder bound smaller than an explicit, strictly
positive constant.

In Section 2, we obtain a lower bound on E(f) in case infg∈M‖∇f−∇g‖2
L2(Rd)

> δ ‖∇f‖2
L2(Rd)

for an arbitrary non-negative function f . To handle this regime we use an idea taken from
a paper by Christ [20] in which he establishes a quantitative error term for the Riesz re-
arrangement inequality. The idea, in a rough outline, is to construct a continuous family of
rearrangements fτ , 0 ≤ τ < ∞, such that f0 = f , ‖fτ‖L2∗ (Rd) = ‖f‖L2∗ (Rd), τ 7→ ‖∇fτ‖L2(Rd)

is non-increasing and infg∈M ‖∇(fτ − g)‖2
L2(Rd)

→ 0 as τ →∞. Clearly

E(f) ≥
‖∇f‖2

L2(Rd)
− Sd ‖f‖2

L2∗ (Rd)

‖∇f‖2
L2(Rd)

= 1− Sd
‖f‖2

L2∗ (Rd)

‖∇f‖2
L2(Rd)

≥
‖∇fτ‖2

L2(Rd)
− Sd ‖fτ‖2

L2∗ (Rd)

‖∇fτ‖2
L2(Rd)

.

Starting with infg∈M ‖∇f −∇g‖2
L2(Rd)

> δ ‖∇f‖2
L2(Rd)

, one would like to run the flow until at

a certain point τ0 one has

inf
g∈M
‖∇(fτ0 − g)‖2

L2(Rd) = δ ‖∇fτ0‖2
L2(Rd) (10)

and, using (8), one would conclude that

E(f) ≥
‖∇fτ0‖2

L2(Rd)
− Sd ‖fτ0‖2

L2∗ (Rd)

‖∇fτ0‖2
L2(Rd)

= δ
‖∇fτ0‖2

L2(Rd)
− Sd ‖fτ0‖2

L2∗ (Rd)

infg∈M ‖∇(fτ0 − g)‖2
L2(Rd)

≥ δ µ(δ) .

The details of this argument are more involved than presented here, mostly because the
function τ 7→ ‖∇fτ‖L2(Rd) need not be continuous, so the existence of a τ0 as in (10) is not
guaranteed.

Collecting the results of Sections 2 and 3 provides us with bounds on E(f) for non-negative
functions f : see Proposition 19. This concludes the first part of the proof.

In the second part of the proof, in Section 4, we prove a lower bound on E(f) for sign-
changing functions f . The proof exploits a concavity property inherent in the problem and
shows that only one of the positive and negative parts is really relevant for the problem at
hand. More precisely, if, say ‖f−‖2

L2∗ (Rd)
≤ ‖f+‖2

L2∗ (Rd)
, then ‖∇f−‖2

L2(Rd)
is bounded by a

constant times the Sobolev deficit. This allows one to essentially reduce the problem to the
non-negative function f+.

Additional results on the symmetric decreasing rearrangement and the numerical values of
our estimates are given in two appendices, A and B, at the end of the paper.

In order to make notations lighter, we will write ‖ · ‖q = ‖ · ‖Lq(Rd) whenever the space is Rd

with Lebesgue measure.

2. Competing symmetries, the sequence and the flow

In a first step one uses ‘competing symmetries’ to move a non-negative initial function f
close, but not exactly to the desired location (9). This is done by building a sequence (fn)n∈N
and considering in Lemma 5 two alternatives, (a) and (b). In case (a), the whole sequence
stays outside the neighbourhood (9) as well as its limit. In case (b), in a further step one uses
a continuous rearrangement (flow) to achieve (10) or, actually, a substitute for it.
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2.1. Competing symmetries. The functional E(f) is conformally invariant in the sense
that if C : Rd ∪ {∞} → Rd ∪ {∞} is a conformal map, the function

fC(x) = |detDC(x)|1/2∗f
(
C(x)

)
satisfies

E(fC) = E(f) .

In order to verify this, we recall that any conformal map is a composition of scalings, trans-
lations, rotations and inversions. For scalings, translations and rotations in Rd the claimed
invariance is easy to see. The additional map to consider is the inversion I(x) = x

|x|2 and a

straightforward change of variables shows that

‖∇fI‖2
2 = ‖∇f‖2

2 , ‖fI‖2
2∗ = ‖f‖2

2∗ .

The equality

inf
g∈M
‖∇(fI − g)‖2

2 = inf
g∈M
‖∇f −∇g‖2

2

follows from

inf
g∈M
‖∇(fI − g)‖2

2 = inf
g∈M
‖∇(f − gI)‖2

2 = inf
g∈M
‖∇f −∇g‖2

2

since I2 = I and g → gI maps the set M to itself in a one-to-one and onto fashion.
Another and perhaps easier way to see the conformal invariance is to pull the problem

up to the sphere via the stereographic projection. We denote by s = (s1, s2, . . . , sd+1) the
coordinates in Rd+1. Then the unit sphere Sd ⊂ Rd+1 can be parametrized in terms of
stereographic coordinates by

sj =
2xj

1 + |x|2
, j = 1, . . . , d , sd+1 =

1− |x|2

1 + |x|2
.

We set

F (s) =

(
1 + |x|2

2

) d−2
2

f(x) (11)

and find by a straightforward computation that

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

=
‖∇F‖2

L2(Sd)
+ 1

4
d (d− 2) ‖F‖2

L2(Sd)
− Sd ‖F‖2

L2∗ (Sd)

infG∈M

{
‖∇F −∇G‖2

L2(Sd)
+ 1

4
d (d− 2) ‖F −G‖2

L2(Sd)

} ,
where G is a function of the form

G(s) = c
(
a+ b · s

)− d−2
2 ,

and a > 0, b ∈ Rd and c ∈ C are constants, and M is the corresponding set of func-
tions. On the sphere the inversion I takes the form of the reflection (s1, . . . , sd, sd+1) →
(s1, . . . , sd,−sd+1).

A second ingredient for the construction of the flow is the technique of ‘competing symme-
tries’, invented in [17]. Consider any non-negative function f ∈ Ḣ1(Rd) and its counterpart
F ∈ H1(Sd) given by (11). Set

(UF )(s) = F (s1, s2, . . . , sd+1,−sd) ,
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which corresponds to a rotation by π/2 that maps the ‘north pole’ axis (0, 0, . . . , 1) to
(0, . . . , 1, 0). Reversing (11) the function that corresponds to UF on Rd is given by

(Uf)(x) =

(
2

|x− ed|2

) d−2
2

f

(
x1

|x− ed|2
, . . . ,

xd−1

|x− ed|2
,
|x|2 − 1

|x− ed|2

)
, (12)

where ed = (0, . . . , 0, 1) ∈ Rd. It follows that

E(Uf) = E(f) .

The operation U is obviously linear, invertible and an isometry on L2∗(Rd).
We also consider the symmetric decreasing rearrangement

Rf(x) = f ∗(x) .

The most important properties are that f and f ∗ are equimeasurable and that ‖∇f ∗‖2 ≤
‖∇f‖2. For elementary properties of rearrangements the reader may consult [36]. Being
equimeasurable, this map is also an isometry on L2∗(Rd). It is when using the decreasing
rearrangement that we use the fact that f is a non-negative function. For functions that
change sign one conventionally defines their rearrangement as the rearrangement of their
absolute value. Passing from a function to its absolute value does not alter the numerator of
E(f) but may decrease the denominator so that other arguments are needed.

On Rd, let

g∗(x) := |Sd|−
d−2
2 d

(
2

1 + |x|2

) d−2
2

. (13)

Note that ‖g∗‖2∗ = 1 because it is obtained as the stereographic projection of the constant
function on Sd with 2∗-norm equal to 1. The following theorem was proved in [17].

Theorem 2. Let f ∈ L2∗(Rd) be a non-negative function. Consider the sequence (fn)n∈N of
functions

fn = (RU)nf ∀n ∈ N . (14)

Then
lim
n→∞

‖fn − hf‖2∗ = 0

where hf = ‖f‖2∗ g∗ ∈ M. Moreover, if f ∈ Ḣ1(Rd), then (‖∇fn‖2
2)n∈N is a non-increasing

sequence.

It does not seem clear whether the functional E(f) decreases or increases under rearrange-
ment. The next lemma helps to explain this point. Define M1 to be the set of the elements
in M with 2∗-norm equal to 1.

Lemma 3. For any f ∈ Ḣ1(Rd), we have

inf
g∈M
‖∇f −∇g‖2

2 = ‖∇f‖2
2 − Sd sup

g∈M1

(
f, g2∗−1

)2
.

Here (·, ·) is the L2(Rd) inner product or, more precisely, the duality pairing between L2∗(Rd)
and L(2∗)′(Rd).

Proof. Let g be any Aubin–Talenti function with ‖g‖2∗ = 1. The function g is an optimizer of
the Sobolev inequality, i.e., ‖∇g‖2

2 = Sd ‖g‖2
2∗ = Sd and is a solution of the Sobolev equation

−∆g = Sd
g2∗−1

‖g‖2∗−2
2∗

= Sd g
2∗−1 .
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Hence for any non-negative constant c we find

‖∇(f − c g)‖2
2 = ‖∇f‖2

2 − 2 c (∇f,∇g) + c2 ‖∇g‖2 = ‖∇f‖2
2 − 2 c Sd

(
f, g2∗−1

)
+ Sd c

2

and minimizing with respect to c we find the lower bound ‖∇f‖2
2−Sd

(
f, g2∗−1

)2
, which proves

the lemma. �

Under the decreasing rearrangement, the term ‖∇f‖2
2 does not increase whereas the term

supg∈M1

(
f, g2∗−1

)2
increases. To see this, note that the supremum is attained at some Aubin–

Talenti function of the form (1) that is a strictly symmetric function about the point b ∈ Rd.

Replacing f by its symmetric decreasing rearrangement about that point increases
(
f, g2∗−1

)2
,

in fact strictly unless f is already symmetric decreasing about the point b. Thus, while the
numerator in E(f) decreases under rearrangements so does the denominator and there are no
direct conclusions to be drawn from this. The next lemma summarizes what we have shown.

Lemma 4. For the sequence (fn)n∈N in Theorem 2 we have that n 7→ supg∈M1

(
fn, g

2∗−1
)2

is
strictly increasing, n 7→ infg∈M ‖∇fn −∇g‖2

2∗ is strictly decreasing and

lim
n→∞

inf
g∈M
‖∇fn −∇g‖2

2 = lim
n→∞

‖∇fn‖2
2 − Sd ‖hf‖2

2∗ = lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗ .

Proof. From

inf
g∈M
‖∇fn −∇g‖2

2 = ‖∇fn‖2
2 − Sd sup

g∈M1

(
fn, g

2∗−1
)2

we see that the first term converges since (‖∇fn‖2
2)n∈N is a non-increasing sequence. For the

second term, which is strictly increasing, we have by Hölder’s inequality

sup
g∈M1

(
fn, g

2∗−1
)2 ≤ ‖fn‖2

2∗ = ‖f‖2
2∗

and since g∗ as defined in (13) is in M1 we have

lim inf
n→∞

sup
g∈M1

(
fn, g

2∗−1
)2 ≥ lim inf

n→∞
(fn, g∗)

2 = ‖f‖2
2∗

by Theorem 2. �

Lemma 5. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

and let (fn)n∈N be the sequence defined by (14). Then one of the following alternatives holds:

(a) for all n = 0, 1, 2 . . . we have

inf
g∈M
‖∇fn −∇g‖2

2 ≥ δ ‖∇fn‖2
2

(b) there is a natural number n0 such that

inf
g∈M
‖∇fn0 −∇g‖2

2 ≥ δ ‖∇fn0‖2
2

and
inf
g∈M
‖∇fn0+1 −∇g‖2

2 < δ ‖∇fn0+1‖2
2 .

Proof. Assume that alternative (a) does not hold. Then there is a largest value n0 ≥ 0 such
that infg∈M ‖∇fn0 −∇g‖2

2 ≥ δ ‖∇fn0‖2
2. �
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Lemma 6. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

and suppose that in Lemma 5 alternative (a) holds for the sequence (fn)n∈N defined by (14).
Then

E(f) ≥ δ .

Proof. We have

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f‖
2
2 − Sd ‖f‖2

2∗

‖∇f‖2
2

≥ ‖∇fn‖
2
2 − Sd ‖f‖2

2∗

‖∇fn‖2
2

, (15)

where the second inequality is a consequence of ‖∇fn‖2
2 ≤ ‖∇f‖2

2 for all n = 0, 1, 2,. . . proved
in Theorem 2. By the assumption that alternative (a) holds and by Lemma 4, we learn that

lim
n→∞

‖∇fn‖2
2 ≤

1

δ
lim
n→∞

inf
g∈M
‖∇fn −∇g‖2

2 =
1

δ

(
lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗

)
.

Since

lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗ ≥ δ lim
n→∞

‖∇fn‖2
2 ≥ δ Sd lim

n→∞
‖fn‖2

2∗ = δ Sd ‖f‖2
2∗ > 0 ,

we can take the limit as n→∞ on the right side of (15) and compute the limit of the quotient
as the quotient of the limits. This proves the lemma. �

2.2. Continuous rearrangement. Next, we analyze the case where the alternative (b) in
Lemma 5 holds. Let us introduce

µ(δ) := inf

{
E(f) : 0 ≤ f ∈ Ḣ1(Rd) \M , inf

g∈M
‖∇f −∇g‖2

2 ≤ δ ‖∇f‖2
2

}
. (16)

Lemma 7. For any δ ∈ (0, 1], we have µ(δ) ≤ 1.

Proof. By Lemma 3, we have

inf
g∈M
‖∇f −∇g‖2

2 = ‖∇f‖2
2 − Sd sup

g∈M1

(
f, g2∗−1

)2

and it follows from Hölder’s inequality that

sup
g∈M1

(
f, g2∗−1

)2 ≤ ‖f‖2
2∗ .

Thus, the denominator in E(f) that enters the definition of µ(δ) is at least as large as the
numerator, so the quotient is at most 1. �

Our goal in this subsection is to prove the following lower bound.

Lemma 8. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

for some δ ∈ (0, 1) and suppose that in Lemma 5 alternative (b) holds for the sequence (fn)n∈N
of Theorem 2 defined by (14). Then, with µ(δ) defined by (16), we have

E(f) ≥ δ µ(δ) .
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For the proof of this lemma we introduce a continuous rearrangement flow, which interpo-
lates between a function and its symmetric decreasing rearrangement. The basic ingredient
for this flow is similar to a flow that Brock introduced [10, 11] and which interpolates be-
tween a function and its Steiner symmetrization with respect to a given hyperplane. Brock’s
construction, in turn, is based on ideas of Rogers [40] and Brascamp–Lieb–Luttinger [8]. Our
flow is obtained by glueing together infinitely many copies of Brock’s flows with respect to a
sequence of judiciously chosen hyperplanes. A similar construction was performed by Bucur
and Henrot [12]; see also [20].

More specifically, for a given hyperplane H, Brock’s flow interpolates between a given
function f and f ∗H , the Steiner symmetrized function with respect to H. The family that
interpolates between f and f ∗H is denoted by fHτ , τ ∈ [0,∞], and we have

f0 = f , fH∞ = f ∗H .

Further, for any τ , fHτ and f are equimeasurable, i.e.,∣∣{x ∈ Rd : fHτ (x) > t
}∣∣ =

∣∣{x ∈ Rd : f(x) > t
}∣∣ ∀ t > 0 .

Moreover, if f ∈ Lp(Rd) for some 1 ≤ p <∞, then τ 7→ fHτ is continuous in Lp(Rd).
By choosing a sequence of hyperplanes we construct another flow τ 7→ fτ that has the

same properties but interpolates between f and f ∗, the symmetric decreasing rearrangement.
In Appendix A we explain this in more detail and prove the following properties that are
important for our proof, assuming f ∈ Ḣ1(Rd). From the L2∗(Rd) continuity of the flow we
will deduce that

lim
τ→τ0

sup
g∈M1

(fτ , g)2 = sup
g∈M1

(fτ0 , g)2 . (17)

Concerning the gradient we prove the monotonicity

‖∇fτ2‖2 ≤ ‖∇fτ1‖2 , 0 ≤ τ1 ≤ τ2 ≤ ∞ ,

and the right continuity

lim
τ2→τ+1

‖∇fτ2‖2 = ‖∇fτ1‖2 , 0 ≤ τ1 <∞ . (18)

Proof of Lemma 8. We begin by motivating and explaining the strategy of the proof. As
before, we bound

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f‖
2
2 − Sd ‖f‖2

2∗

‖∇f‖2
2

≥ ‖∇fn0‖2
2 − Sd ‖fn0‖2

2∗

‖∇fn0‖2
2

. (19)

We could bound the right side further from below by replacing fn0 by fn0+1. This bound,
however, might be too crude for our purposes and we proceed differently. The move from fn0

to fn0+1 consists of two steps, namely first applying a conformal rotation and second applying
symmetric decreasing rearrangement. The first step leaves all terms on the right side invariant
and we do carry out this step. The second step leaves the 2∗-norm invariant, while the gradient
term does not go up. In fact, the gradient term might go down too far. Therefore, we replace
the application of the rearrangement by a continuous rearrangement flow. In order to make
the notation less cumbersome we shall denote Ufn0 by f0 where U denotes the conformal
rotation (12). We denote by fτ , 0 ≤ τ ≤ ∞, the continuous rearrangement starting at f0 and
let

f∞ = fn0+1 . (20)
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Ideally, we would like to find τ0 ∈ [0,∞) such that

inf
g∈M
‖∇fτ0 −∇g‖2

2 = δ ‖∇fτ0‖2
2 .

Then the right side of (19) is equal to

1− Sd
‖f0‖2

2∗

‖∇f0‖2
2

≥ 1− Sd
‖fτ0‖2

2∗

‖∇fτ0‖2
2

= δ
‖∇fτ0‖2

2 − Sd ‖fτ0‖2
2∗

infg∈M ‖∇fτ0 −∇g‖2
2

,

which can be bounded from below by δ µ(δ), since fτ0 is admissible in the infimum (16). This
would prove the desired bound.

The problem with this argument is that the existence of such a τ0 ∈ [0,∞) is in general not
clear, since neither of the terms infg∈M ‖∇fτ −∇g‖2

2 and ‖∇fτ‖2
2 needs to be continuous in τ .

Nevertheless, we will be able to adapt the above argument to yield the same conclusion.
We now turn to the details of the argument. Recalling that

inf
g∈M
‖∇f0 −∇g‖2

2 ≥ δ ‖∇f0‖2
2 ,

we define

τ0 := inf

{
τ ≥ 0 : inf

g∈M
‖∇fτ −∇g‖2

2 < δ ‖∇fτ‖2
2

}
with the convention that inf ∅ = ∞. If τ < τ0 ∈ (0,∞], similarly as before, the right side
of (19) is equal to

‖∇f0‖2
2 − Sd ‖f0‖2

2∗

‖∇f0‖2
2

= 1− Sd
‖f0‖2

2∗

‖∇f0‖2
2

≥ ‖∇fτ‖
2
2 − Sd ‖fτ0‖2

2∗

‖∇fτ‖2
2

≥ δ
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

infg∈M ‖∇fτ −∇g‖2
2

,

where the last inequality arises from infg∈M ‖∇fτ−∇g‖2
2 ≥ δ ‖∇fτ‖2

2 for any τ ∈ [0, τ0). Taking
the limit inferior as τ → τ−0 , we obtain

‖∇f0‖2
2 − Sd ‖f0‖2

2∗

‖∇f0‖2
2

≥ δ
limτ→τ−0

‖∇fτ‖2
2 − Sd ‖fτ0‖2

2∗

lim infτ→τ−0 infg∈M ‖∇fτ −∇g‖2
2

. (21)

Note that the denominator appearing here does not vanish. Indeed, we have

inf
g∈M
‖∇fτ −∇g‖2

2 ≥ δ ‖∇fτ‖2
2 ≥ δ Sd ‖fτ‖2

2∗ = δ Sd ‖f‖2
2∗ > 0 ∀ τ ∈ [0, τ0)

and, as a consequence,

lim inf
τ→τ−0

inf
g∈M
‖∇fτ −∇g‖2

2 ≥ δ Sd ‖f‖2
2∗ > 0 .

The same inequality (21) remains valid if τ0 = 0 and if we interpret limτ→τ−0
and lim infτ→τ−0

as evaluating at τ0 = 0.
At this point we find it convenient to apply Lemma 3 and use the representation

inf
g∈M
‖∇fτ −∇g‖2

2 = ‖∇fτ‖2
2 − Sd sup

g∈M1

(
fτ , g

2∗−1
)2
.

Using (17), that is, the continuity of τ 7→ supg∈M1

(
fτ , g

2∗−1
)2

, we see that

lim inf
τ→τ−0

inf
g∈M
‖∇fτ −∇g‖2

2 = lim
τ→τ−0

‖∇fτ‖2
2 − Sd sup

g∈M1

(
fτ0 , g

2∗−1
)2
.
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Thus, the relevant quotient is equal to

limτ→τ−0
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

limτ→τ−0
‖∇fτ‖2

2 − Sd supg∈M1
(fτ0 , g

2∗−1)2 . (22)

Our goal in the remainder of this proof is to show that this quotient is larger or equal than
µ(δ). We will use the fact that

sup
g∈M1

(
fτ0 , g

2∗−1
)2 ≤ ‖fτ0‖2

2∗ , (23)

which follows from Hölder’s inequality. We also note that equality holds here if and only if
fτ0 ∈M.

Let us first handle the case where fτ0 ∈ M. Then by (2.2) and because of equality in (23),
the quotient (22) is equal to 1, which by Lemma 7 can be further bounded from below by µ(δ),
leading to the claimed bound. This completes the proof in the case fτ0 ∈M and in what follows
we assume

fτ0 6∈ M .

As a consequence of this assumption and (23), we have

‖∇fτ0‖2
2 > Sd ‖fτ0‖2

2∗ ≥ Sd sup
g∈M1

(
fτ0 , g

2∗−1
)2
. (24)

Next, we observe that for α > β the function x 7→ (x − α)/(x − β) is monotone increasing
on the interval (β,∞). This, together with the strict inequality in (24), implies that the
quotient (22) can be bounded from below by

limτ→τ−0
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

limτ→τ−0
‖∇fτ‖2

2 − Sd supg∈M1
(fτ0 , g

2∗−1)2 ≥
‖∇fτ0‖2

2 − Sd ‖fτ0‖2
2∗

‖∇fτ0‖2
2 − Sd supg∈M1

(fτ0 , g
2∗−1)2 . (25)

We now claim that
inf
g∈M
‖∇fτ0 −∇g‖2

2 ≤ δ ‖∇fτ0‖2
2 . (26)

Once this is proved, we can bound the right side of (25) from below by µ(δ). This inequality
is the claimed inequality after taking into account (21).

To prove (26), we first note that it is verified if τ0 = ∞. Indeed, f∞ = fn0+1 by (20) and
therefore, by assumption of alternative (b), infg∈M ‖∇f∞ −∇g‖2

2 < δ ‖∇f∞‖2
2.

Now let τ0 <∞. We argue by contradiction and assume that

inf
g∈M
‖∇fτ0 −∇g‖2

2 > δ ‖∇fτ0‖2
2 . (27)

Because of this strict inequality and the definition of τ0 there are σk ∈ (τ0,∞) for any k ∈ N
with limk→∞ σk = τ0 such that infg∈M ‖∇fσk −∇g‖2

2 < δ ‖∇fσk‖2
2, that is,

‖∇fσk‖2
2 − Sd sup

g∈M1

(
fσk , g

2∗−1
)2
< δ ‖∇fσk‖2

2 ∀ k ∈ N .

Letting k → ∞ and using (17) as well as the right continuity of ‖∇fτ‖2
2, see (18), we deduce

that
‖∇fτ0‖2

2 − Sd sup
g∈M1

(
fτ0 , g

2∗−1
)2 ≤ δ ‖∇fτ0‖2

2 .

This is the same as infg∈M ‖∇fτ0 −∇g‖2
2 ≤ δ ‖∇fτ0‖2

2 and contradicts (27). This proves (26)
and completes the proof of the lemma. �
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Remark 9. The above argument would be simpler if τ 7→ ‖∇fτ‖2
2 were continuous for an

appropriate choice of hyperplanes (see Appendix A) in the definition of the flow. Since the flow
is weakly continuous in Ḣ1(Rd), continuity of the norm is equivalent to (strong) continuity of
the flow in Ḣ1(Rd). Thus, for continuity of the norm for an appropriate choice of hyperplanes,
it is necessary that there is such a choice for which the Steiner symmetrizations approximate
f ∗ in Ḣ1(Rd). According to a theorem of Burchard [13] this holds if and only if f is co-area
regular, i.e, if and only if the distribution function

h 7→ |{x ∈ Rd : f(x) > h, ∇f(x) = 0}|
has no absolutely continuous component. As shown by Almgren and Lieb [1], both co-area
regular and co-area irregular functions are dense for d ≥ 2.

2.3. Summary. Let us summarize the result of this section.

Corollary 10. Take δ ∈ (0, 1) and assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2 .

Then, with µ(δ) defined by (16), we have

E(f) ≥ δ µ(δ) .

Proof. By Lemma 5 either alternative (a) or (b) holds. In the first case, we apply Lemmas 6
and 7, and in the second case, we apply Lemma 8. �

3. Analysis close to the manifold of optimizers

In this section we analyze the case of δ > 0 small and bound µ(δ) from below by an explicit
function of δ.

3.1. Expansions with remainder terms. Our goal in this subsection is to prove the fol-
lowing proposition.

Proposition 11. Let X be a measure space and u, r ∈ Lq(X) for some q ≥ 2 with u ≥ 0 and
u+ r ≥ 0. Assume also that

∫
X
uq−1 r dx = 0.

• If 2 ≤ q ≤ 3, then

‖u+ r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
(q − 1)

∫
X

uq−2 r2 dx+
2

q

∫
X

rq+ dx

)
.

• If 3 ≤ q ≤ 4, then

‖u+ r‖2
q ≤‖u‖2

q

+ ‖u‖2−q
q

(
(q − 1)

∫
X

uq−2 r2 dx+ 1
3

(q − 1) (q − 2)

∫
X

uq−3 r3 dx+ 2
q

∫
X

|r|q dx
)
.

• If q = 6, then

‖u+ r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
5

∫
X

uq−2 r2 dx+ 20
3

∫
X

uq−3 r3 dx

+ 5

∫
X

uq−4 r4 dx+ 2

∫
X

uq−5 r5 dx+ 1
3

∫
X

r6 dx
)
.
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Similar bounds can also be derived for q ∈ (4,∞) \ {6}. They become increasingly more
complicated as q passes an integer. We restrict ourselves to the case q = 6, which is the only
case in (4,∞) that we need, as it corresponds to the Sobolev exponent in dimension d = 3.
For the proof of the proposition, we need two lemmas, which we discuss next.

Lemma 12. We have the upper bounds following expansions.

• If 2 ≤ q ≤ 3, then, for all x ≥ − 1,

(1 + x)q ≤ 1 + q x+ 1
2
q (q − 1)x2 + xq+ .

• If 3 ≤ q ≤ 4, then, for all x ≥ − 1,

(1 + x)q ≤ 1 + q x+ 1
2
q (q − 1)x2 + 1

6
q (q − 1) (q − 2)x3 + |x|q .

• If q = 6, then, for all x ≥ − 1,

(1 + x)6 = 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6 .

Proof. We begin with the case 2 ≤ q ≤ 3 and set

f(x) := (1 + x)q − 1− q x− 1
2
q (q − 1)x2 − xq+ .

For any x ≥ − 1, we compute

f ′(x) = q
(
(1 + x)q−1 − 1− (q − 1)x− xq−1

+

)
,

f ′′(x) = q (q − 1)
(
(1 + x)q−2 − 1− xq−2

+

)
.

For −1 ≤ x ≤ 0 we clearly have (1 + x)q−2 − 1 − xq−2
+ = (1 − |x|)q−2 − 1 ≤ 0. For x ≥ 0 we

have, by a well-known elementary inequality, (1+x)q−2−1−xq−2
+ = (1+x)q−2−1−xq−2 ≤ 0.

To summarize, f is concave on [−1,∞). We conclude that, for all x ≥ − 1,

f(x) ≤ f(0)− f ′(0)x .

Since f(0) = f ′(0) = 0, this is the claimed inequality.
We now turn to the case 3 ≤ q ≤ 4 and set this time

f(x) := (1 + x)q − 1− q x− 1
2
q (q − 1)x2 − 1

6
q (q − 1) (q − 2)x3 − |x|q .

Again, we compute

f ′(x) = q
(
(1 + x)q−1 − 1− (q − 1)x− 1

2
(q − 1) (q − 2)x2 − |x|q−2 x

)
,

f ′′(x) = q (q − 1)
(

(1 + x)q−2 − 1− (q − 2)x− |x|q−2
)
.

Since again f(0) = f ′(0) = 0, the claimed inequality will follow if we can show concavity of f
on [−1,∞), that is, g ≤ 0 on [−1,∞) where

g(x) := (1 + x)q−2 − 1− (q − 2)x− |x|q−2 .

We compute

g′(x) = (q − 2)
(
(1 + x)q−3 − 1− |x|q−4 x

)
,

g′′(x) = (q − 2) (q − 3)
(
(1 + x)q−4 − |x|q−4

)
.

We discuss g separately on [−1, 0] and on (0,∞).

◦ We begin with the second case. For x > 0 we have, by the same elementary inequality
as before, (1+x)q−3−1−xq−3 < 0. Thus, g′ < 0 on (0,∞). Since g(0) = 0, we deduce
g < 0 on (0,∞).
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◦ Now let us consider the interval [−1, 0]. We see that g′′ > 0 on (−1,−1/2) and g′′ < 0
on (−1/2, 0). Therefore g′ is increasing on (−1,−1/2) and decreasing on (−1/2, 0).
Since g′(−1) = g′(0) = 0, we conclude that g′ > 0 on (−1, 0) and therefore g is
increasing on (−1, 0). Since g(0) = 0 we conclude that g < 0 on [−1, 0), as claimed.

If q = 6 we simply expand (1 + x)6. This completes the proof of the lemma. �

We will also use the following elementary lemma.

Lemma 13. If q ≥ 2, then, for all x ≥ 0,

(1 + x)
2
q ≤ 1 + 2

q
x .

Proof of Proposition 11. We only give the proof in the case 2 ≤ q ≤ 3. We have, by Lemma 12,
almost everywhere on X,

(u+ r)q ≤ uq + q uq−1 r + 1
2
q (q − 1)uq−2 r2 + rq+ .

Integrating this and using the assumed orthogonality condition, we obtain∫
X

(u+ r)q dx ≤
∫
X

uq dx+ 1
2
q (q − 1)

∫
X

uq−2 r2 dx+

∫
X

rq+ dx .

Applying Lemma 13, we obtain(∫
X

(u+ r)q dx

) 2
q

≤
(∫

X

uq dx

) 2
q

+

(∫
X

uq dx

) 2−q
q
(

(q − 1)

∫
X

uq−2 r2 dx+ 2
q

∫
X

rq+ dx

)
.

This is the claimed inequality for 2 ≤ q ≤ 3. The proof in the remaining cases proceeds
similarly. �

3.2. Application to the Sobolev functional. Throughout this subsection, we assume that
d ≥ 3 and we set

q = 2∗ =
2 d

d− 2
.

We recall that we denote by Sd the optimal constant in the Sobolev inequality ‖∇f‖2
2 ≥ Sd ‖f‖2

q

and by M the set of all optimizers in this inequality.

Proposition 14. Let q = 2∗, 0 ≤ f ∈ Ḣ1(Rd) and u ∈M be such that

‖∇f −∇u‖2 = inf
g∈M
‖∇f −∇g‖2 .

Set r := f − u and σ := ‖r‖q/‖u‖q.
• If d ≥ 6, we have

‖∇f‖2
2 − Sd ‖f‖2

q ≥
∫
Rd

(
|∇r|2 − Sd (q − 1) ‖u‖2−q

q uq−2 r2
)
dx− 2

q
‖∇r‖2

2 σ
q−2 .

• If d = 4, 5, we have

‖∇f‖2
2 − Sd ‖f‖2

q

≥
∫
Rd

(
|∇r|2 − Sd (q − 1) ‖u‖2−q

q uq−2 r2
)
dx− ‖∇r‖2

2

(
1
3

(q − 1) (q − 2)σ + 2
q
σq−2

)
.

• If d = 3, we have

‖∇f‖2
2 − Sd ‖f‖2

q ≥
∫
Rd

(
|∇r|2 − 5S3 ‖u‖−4

6 u4 r2
)
dx− ‖∇r‖2

2

(
20
3
σ + 5σ2 + 2σ3 + 1

3
σ4
)
.
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Proof. This follows directly from Proposition 11 in the previous section. We note that the
orthogonality conditions

(∇r,∇u) = (∇f −∇u,∇u) = 0 and (r, uq−1) = (f − u, uq−1) = 0 (28)

are satisfied because of the choice of u. Indeed, since M is closed under multiplication by a
scalar, we find that

0 = d
dα
‖∇f − α∇u‖2

2

∣∣
α=1

= 2 (∇f,∇u)− 2 ‖∇u‖2
2 = 2 (∇r,∇u) = 2 cu (r, uq−1) ,

where, in the last equality, we used the equation −∆u = cu u
q−1 with cu := ‖∇u‖2

2/‖u‖qq.
Finally, we use the Sobolev inequality Sd ‖r‖2

q ≤ ‖∇r‖2
2 for the term multiplying the quantity

involving σ. �

Let us recall a spectral gap inequality which appears, for instance, in Rey’s paper [38,
Appendix D] slightly before the work of Bianchi and Egnell [4].

Lemma 15. Let d ≥ 3, q = 2∗, f ∈ Ḣ1(Rd) and u ∈ M be such that ‖∇f − ∇u‖2 =
infg∈M ‖∇f −∇g‖2. Then r := f − u satisfies∫

Rd

(
|∇r|2 − Sd (q − 1) ‖u‖2−q

q |u|q−2 r2
)
dx ≥ 4

d+ 4

∫
Rd
|∇r|2 dx .

Proof. By translation and dilation invariance, we may assume that u(x) = c
(
1 + |x|2

)−(d−2)/2

for some constant c > 0. Then, by inverse stereographic projection and the discussion in
Subsection 2.1, the question becomes to prove the inequality∫

Sd

(
|∇R|2 − d |R|2

)
dω ≥ 4

d+ 4

∫
Sd

(
|∇R|2 + 1

4
d (d− 2) |R|2

)
dω (29)

for all R that are orthogonal to spherical harmonics of degrees ` ≤ 1. Diagonalizing the
Laplace–Beltrami operator, the inequality becomes

` (`+ d− 1)− d ≥ 4

d+ 4

(
` (`+ d− 1) + 1

4
d (d− 2)

)
for all ` ≥ 2 .

This is elementary to check. �

Remark 16. If we look at the quadratic form r 7→
∫
Rd
(
|∇r|2 − Sd (q − 1) ‖u‖2−q

q |u|q−2 r2
)
dx,

one may wonder why no essential spectrum should be taken into account. This is indeed an
issue (see for instance [7, Proposition 1.16]) if the form is defined on L2(Rd), but not anymore
if we consider the operator −u2−q ∆ − Sd (q − 1) ‖u‖2−q

q on L2(Rd, uq−2 dx) as the image

of H1(Sd) through the stereographic projection is compactly embedded in L2(Rd, uq−2 dx), so
that only discrete spectrum has to be taken into account. With r ∈ Ḣ1(Rd) ↪→ L2∗(Rd) ↪→
L2(Rd, uq−2 dx), the spectral gap computation in the proof of Lemma 15 is justified as already
noted in [4, Appendix].

Now we insert the spectral gap inequality in the expansion and obtain the following.

Corollary 17. Let q = 2∗ and 0 ≤ f ∈ Ḣ1(Rd). Set D(f) := infg∈M ‖∇f − ∇g‖2 and
τ := D(f)/(‖∇f‖2

2 −D(f)2)1/2.

• If d ≥ 6, we have

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
d+4
− 2

q
τ q−2

)
D(f)2 .
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• If d = 4, 5, we have

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
d+4
− 1

3
(q − 1) (q − 2) τ − 2

q
τ q−2

)
D(f)2 .

• If d = 3, we have

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
7
− 20

3
τ − 5 τ 2 − 2 τ 3 − 1

3
τ 4
)
D(f)2 .

Proof. Let u ∈ M be such that r = f − u satisfies ‖∇r‖ = D(f). Set σ := ‖r‖q/‖u‖q. Then,
by combining Proposition 14 and Lemma 15, we obtain the following bounds.

◦ If d ≥ 6,

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
d+4
− 2

q
σq−2

)
D(f)2 .

◦ If d = 4, 5,

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
d+4
− 1

3
(q − 1) (q − 2)σ − 2

q
σq−2

)
D(f)2 .

◦ If d = 3,

‖∇f‖2
2 − Sd ‖f‖2

q ≥
(

4
7
− 20

3
σ − 5σ2 − 2σ3 − 1

3
σ4
)
D(f)2 .

We slightly weaken these inequalities, but convert them into a more explicit form. Set

ρ := D(f)/‖∇f‖2 .

We recall that (∇f,∇u) = ‖∇u‖2
2 was shown in (28). This implies

ρ2 ‖∇f‖2
2 = D(f)2 = ‖∇f −∇u‖2

2 = ‖∇f‖2
2 − ‖∇u‖2

2 ,

that is, ‖∇u‖2 =
√

1− ρ2 ‖∇f‖2. As a consequence,

σ = ‖f − u‖q/‖u‖q ≤ ‖∇f −∇u‖2/‖∇u‖2

= (1− ρ2)−1/2 ‖∇f −∇u‖2/‖∇f‖2 = (1− ρ2)−1/2 ρ = τ .

Thus we can replace σ by τ in the above bounds and obtain the assertion of the corollary. �

Recall that, according to (16),

µ(δ) = inf

{‖∇f‖2
2 − Sd ‖f‖2

q

D(f)2
: 0 ≤ f ∈ Ḣ1(Rd) \M , D(f)2 ≤ δ ‖∇f‖2

2

}
.

With the notation ν(δ) and m(ν) introduced in (3) and (4) we reformulate Corollary 17 as
follows.

Corollary 18. With the above notations, we have µ(δ) ≥ m
(
ν(δ)

)
.

Proof. The result follows from Corollary 17 if we note that

τ =
D(f)/‖∇f‖√

1−D(f)2/‖∇f‖2
2

≤ ν(δ) .

�

Since limν→0+ m(ν) = 4/(d + 4) > 0 for any d ≥ 3, it is clear that κd defined by (5) is a
finite, positive real number that depends only on d.



STABILITY FOR THE SOBOLEV INEQUALITY WITH EXPLICIT CONSTANTS 17

4. Proof of the main result

We recall that cBE denotes the optimal constant in (2). Similarly, we denote by cpos
BE the

optimal constant in (2) when restricted to non-negative functions f . Thus, cpos
BE ≥ cBE. We do

not know whether these two constants coincide or not. The main result in this section will be
to prove a lower bound on cBE in terms of cpos

BE .
Before doing this, however, we collect the results of Sections 2 and 3 in an explicit stability

result for non-negative functions that goes as follows.

Proposition 19. Let d ≥ 3. Then
cpos

BE ≥ κd ,

where κd is given by (5) with m(ν) defined in (4) and ν(δ) defined in (3). Explicitly, if
f ∈ Ḣ1(Rd) \M is a non-negative function, then E(f) in (2) is bounded below by κd.

Proof. The proof of Proposition 19 is a consequence of Corollaries 10 and 18. �

A standard consequence of the spectral analysis of Lemma 15 is an upper estimate.

Proposition 20. For any d ≥ 3, we have the upper bound

cBE ≤ cpos
BE ≤

4

d+ 4
.

Proof. This bound is derived using the fact that the constant 4/(d + 4) in inequality (29) is
optimal and attained if and only if R is a spherical harmonic of degree two. �

Now we turn our attention to the proof of Theorem 1 and consider sign-changing functions.

Proposition 21. For any d ≥ 3,

cBE ≥ min
{

1
2
cpos

BE , 1− 2−
2
d

}
.

Proof of Proposition 21. To simplify the notation, given a function v ∈ Ḣ1(Rd), we define the
deficit

d(v) := ‖∇v‖2
L2(Rd) − Sd ‖v‖

2
L2∗ (Rd) .

Also, we set αd := 2
2∗

= 1− 2
d
< 1,

h(m) := mαd + (1−m)αd − 1 , and hd := h(1
2
) = 21−αd − 1 = 2

2
d − 1 .

Let us consider a function u ∈ Ḣ1(Rd). With no loss of generality we can assume that
‖u‖L2∗ (Rd) = 1. Let u± denote the positive and negative parts, set

m := ‖u−‖2∗

L2∗ (Rd) ,

and assume (without loss of generality) that

m ∈ [0, 1/2] . (30)

Note that ‖u+‖2∗

L2∗ (Rd) = 1−m and ‖∇u‖2
L2(Rd) = ‖∇u−‖2

L2(Rd) + ‖∇u+‖2
L2(Rd). Hence, we have

d(u) = ‖∇u‖2
L2(Rd) − Sd = d(u+) + d(u−) + Sd h(m). (31)

Since the function m 7→ h(m) is monotone increasing and concave on [0, 1/2], it holds

2hdm ≤ h(m) . (32)
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Also, if we set ξd := 2 (1 − 2−αd), the function f(m) := (1 − m)αd − 1 + ξdm is such that
f(0) = f(1/2) = 0 and f ′′(m) ≤ 0, so that f(m) ≥ 0 for all m ∈ [0, 1/2]. Hence, by (30), we
have

(1−m)αd ≥ 1− ξdm,

which, by the definition of h(m), yields

h(m) ≥ mαd − ξdm.

Combining this bound with (32), this gives(
1 +

ξd
2hd

)
h(m) ≥ mαd .

Therefore, recalling (31) and noticing that d(u−) + Sdm
αd = ‖∇u−‖2

L2(Rd), we get

d(u) ≥ d(u+) + d(u−) + Sd
2hd

2hd + ξd
mαd ≥ d(u+) +

2hd
2hd + ξd

‖∇u−‖2
L2(Rd) .

By definition, we have

d(u+) ≥ cpos
BE inf

g∈M
‖∇u+ −∇g‖2

L2(Rd) .

As a consequence, if g+ ∈M is optimal for u+, we obtain

d(u) ≥ cpos
BE ‖∇u+ −∇g+‖2

L2(Rd) +
2hd

2hd + ξd
‖∇u−‖2

L2(Rd)

≥ min
{
cpos

BE ,
2hd

2hd + ξd

}(
‖∇u+ −∇g+‖2

L2(Rd) + ‖∇u−‖2
L2(Rd)

)
≥ 1

2
min

{
cpos

BE ,
2hd

2hd + ξd

}
‖∇u−∇g+‖2

L2(Rd) .

Noticing that 2hd + ξd = 2 · 2 2
d − 2 + 2− 21−αd = 2

2
d we get

hd
2hd + ξd

= 2−
2
d

(
2

2
d − 1

)
= 1− 2−

2
d ,

which concludes the proof. �

Corollary 22. For any d ≥ 3 we have

cBE ≥ 1
2
κd

with κd given by (5).

Theorem 1 is now a straightforward consequence of Proposition 19 and Corollary 22.

Proof. In dimensions d ≤ 6 one can verify that 2
d+4
≤ 1 − 2−2/d. By Proposition 20, this

implies 1
2
cpos

BE ≤ 1− 2−2/d, so Proposition 21 gives cBE ≥ 1
2
cpos

BE .

In general dimension d ≥ 3, we use ν(δ) >
√
δ and m(ν) ≤ 4

d+4
− 2

q
νq−2 to get

δm
(
ν(δ)

)
≤ 4

d+4
δ − 2

q
δ
q
2 =: fd(δ) . (33)

Maximizing δ 7→ fd(δ) shows that

κd ≤ fd

((
4
d+4

) 1
q−2

)
=

2d+1

d (d+ 4)d/2
=: κ∞d .
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For any d ≥ 4, we have d + 4 ≥ 23 while for d = 3, we notice that
√

3087 = d (d + 4)d/2 ≥
23 d/2 =

√
512. Hence d (d+ 4)d/2 ≥ 23d/2 and

1
2
κd ≤ 1

2
κ∞d =

2d

d (d+ 4)d/2
≤ 2−

d
2 < 1− 2−

2
d (34)

for any d ≥ 3. The last (strict) inequality in (34) follows from the case x = 2/d in the
elementary inequality

h(x) := 2−x + 2−1/x < 1 ∀x ∈ (0, 1) .

To prove the latter, one can for instance notice that limx→0+ h(x) = h(1) = 1, limx→0+ h
′(x) =

− log 2 < 0 and that the equality h′(x) = 0 means that 2−1/x = x2 2−x, so that, for this value
of x, h(x) =

(
1 + x2

)
2−x ≤ 1 (to see that, note that the function x 7→

(
1 + x2

)
2−x has

value 1 at x ∈ {0, 1} and its second derivative is nonnegative is positive in [0, 1]). If for some
x ∈ (0, 1), h would take values larger or equal than 1, then we would achieve a contradiction
at the maximum point. This proves the last inequality in (34).

By combining (34) with Propositions 19 and 21 we obtain the claimed lower bound in the
corollary. �

Let us investigate the limit as d → +∞. From inequality (33) it follows that the value
of δ > 0 that realizes the maximum of δ 7→ δm

(
ν(δ)

)
is less than the first positive root of

δ 7→ fd(δ) as defined in (33), i.e.,

δ ≤
(

4 d
(d−2) (d+4)

) d
2
−1 ∼ 2d−2 d−

d
2 e−1 as d→ +∞ ,

and therefore becomes small as d → +∞. As a consequence, ν(δ) ∼
√
δ, and asymptoti-

cally (33) is saturated to leading order. By the maximization of fd as in the proof of Corol-
lary 22 we infer that

κd ∼ κ∞d ∼
2d+1

e2 d1+ d
2

as d→ +∞ . (35)

Inequality (6) now follows from Corollary 22. �

Appendix A. Some remarks about continuous rearrangement

In this appendix we review the continuous rearrangement of Brock and of Bucur–Henrot
and prove some of its properties.

Brock’s continuous rearrangement is based on the following operation for functions of one
real variable that are finite union of disjoint characteristic functions

∑N
k=1 χ(−ak,ak)(x − bk).

Replace this function by
∑N

k=1 χ(−ak,ak)

(
x−e−t bk

)
where t varies from 0 to∞. As t increases,

the intervals start moving closer and as soon as any two intervals touch one stops the process
and redefines the set of intervals by joining the two that touched. Then one restarts the
process and keeps repeating it until all of them are joined into one. The movement stops once
this interval is centered at the origin. By the outer regularity of Lebesgue measure the level
sets of a measurable function can be approximated by open sets and, since in one dimension
this is a countable union of open intervals, one can further approximate the level set by a finite
number of open disjoint intervals for which one uses the sliding argument explained above.

As mentioned before, this procedure can be generalized to higher dimensions by consider-
ing Steiner symmetrization with respect to a hyperplane. One considers any hyperplane H
through the origin and then rearranges the function symmetrically about the hyperplane along
each line perpendicular to H, resulting in a function denoted by f ∗H . For more information
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see [36]. In this fashion one obtains a continuous rearrangement f → fHτ , τ ∈ [0,∞], which
was studied in detail by Brock [10, 11]. We shall refer to the statements in those papers.

To pass from Steiner symmetrization to the symmetric decreasing rearrangement we con-
sider a sequence of continuous Steiner symmetrizations and chain them with a new continous
parameter à la Bucur–Henrot. Inspired by [12, 20], we proceed as follows. Given a function
f ∈ Lp(Rd) for some 1 ≤ p <∞ there is a sequence (Hn)n∈N of hyperplanes such that, defining
recursively with f0 = f ,

fn := f ∗Hnn−1 , n = 1, 2, . . . ,

we have
fn → f ∗ in Lp(Rd) as n→∞ .

In fact, it is shown in [45, Theorem 4.3] that this holds for ‘almost every’ (in an appropriate
sense) choice of hyperplanes. It is also of interest that this sequence can actually be chosen
in a universal fashion (that is, independent of f and p); see [44, Theorem 5.2].

Given f and the sequence (fn)n∈N as above, we set for any n = 0, 1, 2, . . .

φn(τ) := e
τ−n
n+1−τ − 1 , τ ∈ [n, n+ 1] ,

and define
fτ := fn,φn(τ) , (36)

where the right side denotes Brock’s continuous Steiner symmetrization with respect to the
hyperplane Hn with parameter φn(τ) applied to fn. As τ runs from n to n + 1, φn(τ) runs
from 0 to ∞, so fτ is well defined even for τ ∈ N0.

From the properties of Brock’s flow, see, in particular, [11, Lemma 4.1], we obtain the
following properties for our flow.

Proposition 23. Let d ≥ 1, 1 ≤ p < ∞ and let 0 ≤ f ∈ Lp(Rd). Then, for any τ ∈ [0,∞],
the function fτ defined by (36) is in Lp(Rd) and ‖fτ‖p = ‖f‖p. Moreover, for any τ ∈ [0,∞]
and any sequence (τn)n∈N with limn→∞ τn = τ ,

lim
n→∞

‖fτn − fτ‖p = 0 .

The following fact is important for us.

Lemma 24. Let d ≥ 3 and 0 ≤ f ∈ L2∗(Rd). The function

τ 7→ sup
u∈M1

(
fτ , u

2∗−1
)2

with fτ defined by (36) is continuous.

Proof. We use the fact, shown in Proposition 23, that

lim
τ1→τ2

‖fτ1 − fτ2‖2∗ = 0 .

Fix ε > 0. There exists u1 ∈ M1 such that supu∈M1

∣∣(fτ1 , u2∗−1
)∣∣ ≤ ∣∣(fτ1 , u2∗−1

1

)∣∣ + ε and
hence

sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≤ ∣∣(fτ1 , u2∗−1

1

)∣∣+ ε−
∣∣(fτ2 , u2∗−1

1

)∣∣
≤
∣∣(fτ1 , u2∗−1

1

)
−
(
fτ2 , u

2∗−1
1

)∣∣+ ε ,

which by Hölder’s inequality is bounded above by

‖fτ1 − fτ2‖2∗ ‖u2∗−1
1 ‖q + ε = ‖fτ1 − fτ2‖2∗ + ε
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with q = 2∗

2∗−1
. Hence

lim sup
τ2→τ1

(
sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣) ≤ ε .

There exists u2 ∈M1 such that supu∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≤ ∣∣(fτ2 , u2∗−1

2

)∣∣+ ε and hence

sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≥ ∣∣(fτ1 , u2∗−1

2

)∣∣− ∣∣(fτ2 , u2∗−1
2

)∣∣− ε ,
which is greater or equal to

−
∣∣(fτ1 , u2∗−1

2

)
−
(
fτ2 , u

2∗−1
2

)∣∣− ε ≥ −‖fτ1 − fτ2‖2∗ − ε .
Hence

lim inf
τ2→τ1

(
sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣) ≥ − ε .

This proves the claimed continuity. �

We now consider the behavior of the gradient under the rearrangement flow. The following
proposition is closely related to [11, Theorems 3.2 and 4.1], but there inhomogeneous Sobolev
spaces are considered, which leads to some minor changes. For the sake of simplicity we
provide the details.

Proposition 25. Let 0 ≤ f ∈ Ḣ1(Rd). Then fτ defined by (36) is in Ḣ1(Rd) and τ 7→ ‖∇fτ‖2

is a non-increasing, right-continuous function.

Proof. By construction, it suffices to prove these properties for Brock’s flow. Since the latter
has the semigroup property (fσ)τ = fσ+τ for all σ, τ ≥ 0, it suffices to prove monotonicity and
right-continuity at τ = 0.

We begin with the proof of monotonicity, which we first prove under the additional assump-
tion that f ∈ L2(Rd). This is shown in [11, Theorem 3.2], but we give an alternative proof.
We proceed as in the proof of [36, Lemma 1.17]. Extending [10, Corollary 2] to the sequence
of Steiner symmetrizations we find for three non-negative functions f , g, h that∫∫

Rd×Rd
fτ (x) gτ (x− y)hτ (y) dx dy ≥

∫∫
Rd×Rd

f(x) g(x− y)h(y) dx dy .

If we choose g(x − y) to be the standard heat kernel, i.e., g(x − y) = e∆t(x − y), then
gτ (x− y) = g(x− y) and hence∫∫

Rd×Rd
fτ (x) e∆t(x− y) fτ (y) dx dy ≥

∫∫
Rd×Rd

f(x) e∆t(x− y) f(y) dx dy .

Since ‖fτ‖2 = ‖f‖2 by the equimeasurability of rearrangement,

1

t

(
‖fτ‖2

2 −
(
fτ , e

∆t fτ
))
≤ 1

t

(
‖f‖2

2 −
(
f, e∆tf

))
and letting t→ 0 yields the first claim under the additional assumption f ∈ L2(Rd).

For general 0 ≤ f ∈ Ḣ1(Rd) we apply the above argument to the functions (f − ε)+, ε > 0.
They belong to L2(Rd) since f vanishes at infinity and belongs to L2∗(Rd). We obtain∥∥∇((f − ε)+

)
τ

∥∥
2
≤ ‖∇(f − ε)+‖2 ≤ ‖∇f‖2 . (37)

We claim that fτ ∈ Ḣ1(Rd) and ∇
(
(f − ε)+

)
τ
⇀ ∇fτ in L2(Rd) as ε→ 0+. Once this is shown,

the claimed inequality follows from (37) by the weak lower semicontinuity of the L2 norm.
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To prove the claimed weak convergence, note that by (37), ∇
(
(f − ε)+

)
τ

is bounded in

L2(Rd) as ε → 0+ and therefore has a weak limit point. Let F ∈ L2(Rd) be any such limit
point. Since (f − ε)+ → f in L2∗(Rd), the nonexpansivity of the rearrangement [10, Lemma 3]
implies that

(
(f − ε)+

)
τ
→ fτ in L2∗(Rd). Thus, for any Φ ∈ C1

c (Rd),∫
Rd

(∇ · Φ) fτ dx←
∫
Rd

(∇ · Φ)
(
(f − ε)+

)
τ
dx = −

∫
Rd

Φ · ∇
(
(f − ε)+

)
τ
dx→ −

∫
Rd

Φ · F dx

as ε → 0+. This proves that fτ is weakly differentiable with ∇fτ = F . In particular,
fτ ∈ Ḣ1(Rd) (note that fτ vanishes at infinity since f does and since these functions are
equimeasurable) and the limit point F is unique. This concludes the proof of the first part of
the proposition.

Let us now show the right-continuity at τ = 0. It follows from Proposition 23 that fτ → f in
L2∗(Rd) as τ → 0+. This implies that ∇fτ ⇀ ∇f in L2(Rd) as τ → 0+. (Indeed, the argument
is similar to the one used in the first part of the proof. The family ∇fτ is bounded in L2(Rd)
as τ → 0+ and, if F denotes any weak limit point in L2(Rd), then the convergence in L2∗(Rd)
and the definition of weak derivatives implies that F = ∇f .) By weak lower semicontinuity,
we deduce that

‖∇f‖2 ≤ lim inf
τ→0+

‖∇fτ‖2 .

This, together with the reverse inequality, which was established in the first part of the proof,
proves the claimed right continuity. �

We note that the proposition remains valid for 0 ≤ f ∈ Ẇ 1,p(Rd) with 1 ≤ p < d. If
p 6= 2, the monotonicity for the gradient for f ∈ W 1,p(Rd) is proved in [11, Theorem 3.2]. The
remaining arguments above carry over to p 6= 2.

Appendix B. Numerical values

Although rather small and not algebraically computable, the estimate κd in Proposition 19
and Corollary 22 has a finite value for any d ≥ 3. Numerically, the value is found by invert-
ing (3) and optimizing ν 7→ ν2

(
1 + ν2)−1 m(ν) on (0,+∞). This function takes the value 0

at ν = 0, is increasing on a neighbourhood of ν = 0+, and has a unique positive maximum
point. For our values, see Figure 1 and Table 1.

4 6 8 10 12 14

0.005

0.010

0.015

0.020

Figure 1. Plot of d 7→ κd(d) for d = 3, 4, . . . , 15.
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d 3 4 5 6 7 8 15

κd 5.7142× 10−4 4.1779× 10−3 6.4259× 10−3 1.8507× 10−2 7.6876× 10−3 2.9776× 10−3 1.1213× 10−6

κ∞d 0.28797 0.125 0.052675 2.1333× 10−2 8.2845× 10−3 3.0864× 10−3 1.1213× 10−6

Table 1. Numerical values of the constant κd in Proposition 19 and Corol-
lary 22 and of its upper bound κ∞d , for some values of d. See (5) and (4) for the
definitions of κd and κ∞d .
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