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Despite having conceptual and practical advantages, Complex-Valued Neural Networkss (CVNNs) have been much less explored for audio signal processing tasks than their real-valued counterparts. We investigate the use of a complex-valued Convolutional Recurrent Neural Network (CRNN) for Direction-of-Arrival (DOA) estimation of a single sound source on an enclosed room. By training and testing our model with recordings from the DCASE 2019 dataset, we show our architecture compares favourably to a real-valued CRNN counterpart both in terms of estimation error as well as speed of convergence. We also show visualizations of the complex-valued feature representations learned by our method and provide interpretations for them.

INTRODUCTION

In recent years, deep learning techniques have been extensively explored for the task of Sound Source Localization (SSL) using microphone arrays. Out of the multiple proposed neural network architectures, the Convolutional Recurrent Neural Network (CRNN), which combines advantages of Convolutional Neural Networks (CNNs) and Recurrent Neural Nets (RNNs), has achieved state of the art results on many scenarios. Multiple input features have been explored for this network, many of them based on the Short Time Fourier Transform (STFT). Although the STFT is a complex-valued feature, most approaches represent it as a real quantity either by discarding its magnitude [START_REF] Chakrabarty | Broadband doa estimation using convolutional neural networks trained with noise signals[END_REF], phase [START_REF] Pertilä | Robust direction estimation with convolutional neural networks based steered response power[END_REF], or by treating the magnitude and phase independently [START_REF] Krause | Comparison of Convolution Types in CNN-based Feature Extraction for Sound Source Localization[END_REF]. Few approaches have explored the usage of the STFT in its original complex-valued form. An explanation to why using the complex-valued STFT has been historically avoided is that it requires CVNNs to be used, which have been less explored than real-valued networks. However, this combination of input features and network presents multiple advantages. Firstly, unlike the aforementioned features, the complex-valued STFT does not lead to loss of information. Secondly, since the network operates directly on the STFT, we are able to obtain intuitive visualizations on the intermediate representations learned of the network. This allows our model to be more easily explainable and debuggable. Finally, CVNNs have been shown to be more stable than real-valued networks, being less prone to overfitting and to train faster [START_REF] Hirose | Complex-Valued Neural Networks[END_REF].

In this paper, we propose using the complex-valued STFT alongside a complex-valued CRNN for estimating the azimuthal DOA of a single source. We show our method compares favourably to a real-valued network with a similar number of parameters. For our experiments, we train and evaluate the networks using data from the DCASE 2019 dataset [START_REF] Adavanne | A Multiroom Reverberant Dataset for Sound Event Localization and Detection[END_REF], which is composed of signals generated using real-life impulse responses on five different rooms.

This paper continues as follows. Firstly, a literature review is presented in Sec. 2. Our proposed neural network model is described in Sec. 3. Sec. 4 describes our experimentation procedure. Sec. 5 presents the results, and the last section concludes this work.

LITERATURE REVIEW

This literature review will focus on three topics. Firstly, we will present relevant input features and architectures used for neural SSL methods. Then, we will present relevant work on CVNNs.

Many types of input features have been tested for neural SSL methods, which can be classified as interor intra-channel features. Inter-channel features provide the neural network relative information between microphone channels, such as their Relative Transfer Functions (RTFs) [START_REF] Bianco | Semi-Supervised Source Localization in Reverberant Environments With Deep Generative Modeling[END_REF], their cross-spectra [START_REF] Xue | Sound Event Localization and Detection Based on Multiple DOA Beamforming and Multi-Task Learning[END_REF] or cross-correlation [START_REF] He | Deep Neural Networks for Multiple Speaker Detection and Localization[END_REF]. Conversely, intra-channel features allow and require the neural network to learn its own inter-channel representations. Examples of such features are the spectrogram's magnitude [START_REF] Pertilä | Robust direction estimation with convolutional neural networks based steered response power[END_REF], phase [START_REF] Chakrabarty | Broadband doa estimation using convolutional neural networks trained with noise signals[END_REF], as well as providing magnitude and phase as separate channels [START_REF] Krause | Comparison of Convolution Types in CNN-based Feature Extraction for Sound Source Localization[END_REF].

Besides choosing suitable input features, practitioners have also experimented with a wide range of neural network architectures, such as CNNs [START_REF] Chakrabarty | Broadband doa estimation using convolutional neural networks trained with noise signals[END_REF], Multi-layer Perceptrons (MLPs) [START_REF] He | Deep Neural Networks for Multiple Speaker Detection and Localization[END_REF] and residual networks [START_REF] Yalta | Sound Source Localization Using Deep Learning Models[END_REF]. In this work, we focus on the CRNN architecture, which has been widely adopted for source localization in recent years [START_REF] Perotin | CRNN-Based Multiple DoA Estimation Using Acoustic Intensity Features for Ambisonics Recordings[END_REF] [11] [START_REF] Krause | Comparison of Convolution Types in CNN-based Feature Extraction for Sound Source Localization[END_REF]. A final aspect to consider when developing neural SSL models is in the output strategy of the network. In [START_REF] Perotin | Regression Versus Classification for Neural Network Based Audio Source Localization[END_REF], the two strategies, regression and classification, are compared and found to yield similar localization performance.

We refer the reader to [START_REF] Grumiaux | A Survey of Sound Source Localization with Deep Learning Methods[END_REF] for an extensive literature review of neural network-based SSL which presents over 120 papers on the topic.

All approaches mentioned above use real-valued neural networks. To our knowledge, the only dedicated study of CVNNs for SSL was conducted in [START_REF] Tsuzuki | An Approach for Sound Source Localization by Complex-Valued Neural Network[END_REF], where a complex-valued MLP was employed for SSL using two directive microphones. In [START_REF] Krause | Comparison of Convolution Types in CNN-based Feature Extraction for Sound Source Localization[END_REF], many neural architectures for SSL are compared, including a CVNN. Outside the SSL domain, CVNNs have recently attained state of the art performance on the task of speech enhancement [START_REF] Hu | DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement[END_REF], as well as music transcription and speech spectrum prediction [START_REF] Trabelsi | Deep Complex Networks[END_REF]. The work of [START_REF] Trabelsi | Deep Complex Networks[END_REF] also introduced complex-valued adaptations for important deep learning training techniques such as batch normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF]. We refer the reader to [START_REF] Mandic | Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models[END_REF] and [START_REF] Hirose | Complex-Valued Neural Networks[END_REF] for dedicated books on CVNNs.

COMPLEX-VALUED CRNN

This section describes our adopted architecture, as well as motivating the complex-valued operations performed by the network. A CRNN is divided into three sequential sub-networks: a CNN block, responsible for extracting local patterns from the input data, a RNN, responsible for combining these pattens into global, time-independent features, and a fully connected layer, which maps the global features into a single complex number representing the estimated source direction. A diagram representing the components of the network can be viewed in Fig. 2. The functioning of each block is further detailed below.

The convolutional block receives a tensor of shape (C in , T stf t , F ) representing a multi-channel complex STFT. The first dimension C in represents the number of audio channels, T stf t represents the number of time frames generated by the STFT, and F represents the number of frequency bins used. The role of this block is two-fold: firstly, to combine local information across all microphone channels, and secondly to reduce the dimensionality of the data to make it more tractable for the RNN layer.

The convolutional block consists of four sequential layers, where each performs three sequential operations. The output channel k at layer l is described as:

output(k, l) = P(σ( C l in c=1 f(k, c) ⋆ input(c, l))) (1) 
where f(k, c) ⋆ input(c, l) represents the layer l operation of cross-correlation between kernel f and the input input. This operation is carried out independently across each input channel c, after which the results are summed. This operation may be viewed as a sliding dot product across the time-frequency dimensions of the input with a kernel with the same number of channels. We show different kernel shapes in Fig. 3. After this operation, an activation function σ is applied, followed by a pooling function P.

As in [START_REF] Hu | DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement[END_REF], we use the Parametric Rectified Linear Unit (PReLU) activation for all of our network's layers. An advantage of the PReLU over the more common ReLU is that it allows phase information to propagate across all complex quadrants instead of only the positive one.

Depending on the kernel shape used, the crosscorrelation operation defined in (1) may have different meanings. Specifically, the operation performed by the kernel with shape (1, 1, C), represented by the yellow block in Fig. 3 is a linear combination of the input channels. This operation may be interpreted as a narrowband weighted delay-and-sum beamformer [START_REF] Brandstein | Microphone Arrays: Signal Processing Techniques and Applications[END_REF], as each channel is scaled by its corresponding weight's magnitude and delayed by their phase. This is interpretation of complex-convolutional layers is relevant for the task of SSL, as classical approaches such as the Steered Response Power (SRP) method [START_REF] Dmochowski | Direction of Arrival Estimation Using the Parameterized Spatial Correlation Matrix[END_REF] also perform beamforming as part of their location estimation procedure. However, for our experiments, we use (2, 2, C) kernels, which are able to combine information from neighbouring frequencies and time frames.

After passing the input through the four convolutional layers, we perform a global average pooling operation across all frequencies, generating a two-dimensional output matrix.

After the convolutional block, the resulting matrix is fed to a bidirectional, gated recurrent unit neural network (GRU-RNN) [START_REF] Chung | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[END_REF]. As sound may not be present thoughout the whole duration of the audio signal, the RNN is important for propagating location information to silent time-steps. After this network, we reduce the rank of the features once again by performing average pooling on the time dimension, resulting in a vector of time-independent features.

The last block of the network is a fully connected layer which maps the global features to a single complex number, which is interpreted as a vector in the twodimensional plane. The direction of this vector repre-sents the azimuthal direction of the active source. Such representation is preferred to representing the azimuth as a scalar within the [0, 2π] interval, as the circular nature of problem is lost and an ambiguity is created since the limits of the interval are the same [START_REF] Perotin | Regression Versus Classification for Neural Network Based Audio Source Localization[END_REF].

Our loss function is defined as the error between the network output v v v and the target v v v a function of the cosine similarity as

L(v v v, v v v) = 1 - v v v • v v v |v v v||v v v| . ( 2 
)
L ranges over [0, 2], where 2 represents the maximum angular distance between the prediction and target of π radians.

Similarly to the case of real-valued networks, CVNNs require the computation of derivatives for their learning procedure. In this work, we compute these derivatives with respect to their conjugate values, according to the theory of CR calculus [START_REF] Kreutz-Delgado | The Complex Gradient Operator and the CR-Calculus[END_REF]. CR calculus provides advantages over classic complex calculus by allowing non-holomorphic functions to be differentiable. This is important as the function defined by ( 2) is real, and therefore non-holomorphic. Our weight update equation using gradient descent is:

W W W l n+1 = W W W l n -λ ∂L ∂W W W l * n , (3) 
where W W W l n corresponds to layer l's weight matrix at timestep n, λ is the learning rate used and * is the complex conjugate operator.

EXPERIMENTATION

Dataset

To evaluate our proposed network, we use samples from the DCASE 2019 dataset [START_REF] Adavanne | A Multiroom Reverberant Dataset for Sound Event Localization and Detection[END_REF]. The dataset was originally developed for the development of Sound Event Localization and Detection (SELD) algorithms using a tetrahedral microphone. In this work, we restrict ourselves to sound localization without classifying the sound type, and to perform single source DOA estimation. The i-th element of the dataset s[i] is generated by randomly selecting a room impulse response rir(k), convolving it with a randomly selected event signal event(l) and adding randomly selected ambient noise ϵ(j) afterwards. This procedure is summarized as where

s(i) = rir(k) * event(l) + ϵ(j). (4) 
There are 324 recorded angles beteween the source and microphone array for each of the five rooms available, as well as 11 event classes such as coughing, keyboard tapping and phone ringing, each of which contain 20 examples. We note that some of the beginning and end samples of each event signal may be silent, which makes the localization task more realistic. The ambient noise is scaled to produce a signal-to-noise ratio of 30 dB. Our resulting dataset samples have each a duration of one second at a sampling rate of 24 kHz. Our dataset consists of 31924 samples, out of which 50% are used for training, 25% for validation and 25% for testing.

Neural network training and evaluation

In this section, we compare the neural network architecture described in the previous section with an equivalent real-valued CRNN. To produce a fair comparison in terms of trainable parameters, the output size of all convolutional, recurrent and fully connected layers of the real-valued network is set to twice the size of the complex one.

For the STFT, we use Discrete Fourier Transform (DFT) of 1024 samples and hop length of 512 samples. During training, the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] was used with a fixed learning rate of 10 -4 , along with a batch size of 32 signals for a duration of 20 epochs. We evaluate the network against the validation set at the end of each epoch. The final model used for testing is the one which obtains the lowest validation error.

The code was developed under the Pytorch [24] ecosystem, using Pytorch Lightning [START_REF] Falcon | The PyTorch Lightning team[END_REF] for training. The code is made available on GitHub 1 , and experiments may be reproduced on a provided Kaggle notebook 2 

RESULTS AND DISCUSSION

Fig. 4 shows a comparison between the training errors for the real and complex-valued networks during training and validation, as well as an error histogram for the test dataset. We can see that during training, the complexvalued network is able to converge more quickly than its real counterpart. The difference is particularly pronounced by the end of the first epoch, where the error of the real network considerably higher than the complex one. Turning to the validation dataset, we see that while the real network is overfitting the data during the first epochs, the complex network is able to generalize from the first epochs. Finally, the error histograms for the test set show that the end result for both networks is very similar. While the real network produced an average test error and standard deviation of respectively 9.3 • and 18.1 • , the complex version had a slightly better performance of 9.0 • and 17.5 To further analyze the behaviour of our proposed network, we visualize the outputs of its convolutional layers. Fig. 1 shows the output layers for an example audio in the test set. (a) shows the magnitude and phase plots of the STFT for the first microphone channel. (b-e) show the first output channel of the convolutional layers of the network. On these columns, the horizontal axis represents time while the vertical axis represents frequency. Finally, (f) shows the output feature generated after averaging the frequency channels on the last convolutional layer. In this plot, the horizontal axis represents time while the vertical bins represent the channel number. We see that the original magnitude structural information is preserved across all layers. In the last layer, the magnitude is considerably stronger at the time frames which seem to be of most interest within the signal. It is therefore reasonable to consider that the network is able to focus on regions of interest within the signal to perform localization.

CONCLUSION

This paper presented an experiment of using complexvalued neural networks for estimating the DOA of a single source on a plane. Our results indicate that complexvalued CRNNs are able to converge to lower errors faster than their real counterparts, as well as being less prone to overfitting. This latter characteristic indicates they could be particularly useful when little training data is available. A second advantage of these networks is being able to visualize their learned features, which provides intuitive explanations to their functioning. A future research direction is to extend this work for localization and detection of multiple sources.
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 1 Fig. 1. Example of features generated at the output of the neural network's convolutional layers.
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 2 Fig. 2. Architecture of the proposed CRNN.
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 3 Fig. 3. Representation of different types of convolutional kernels used on a multichannel spectrogram containing T time frames, F frequency bins and C channels.
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 4 Fig. 4. Top and middle: training and validation errors at the end of every epoch for the proposed complex architecture as well as for the real baseline. Bottom: error histogram for the test set.
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