Interspeech 2022
18-22 September 2022, Incheon, Korea

ema2wav: doing articulation by Praat

Philipp Buech!, Simon Roessig?, Lena Pagel?, Doris Miicke®, Anne Hermes"

!Laboratoire de Phonétique et Phonologie, UMR 7018, CNRS/Sorbonne Nouvelle, France
2IfL. Phonetics, University of Cologne, Germany

philipp.buech@sorbonne-nouvelle.fr, {simon.roessig, lena.pagel,
doris.muecke}@uni-koeln.de, anne.hermes@sorbonne-nouvelle.fr

Abstract

In this paper, we present emaZwav, a software conversion
tool for electromagnetic articulographic data, producing multi-
channel WAVE files. The data can be converted either by ex-
ecuting a stand-alone Python script or by using a user-friendly
GUI ema2wav allows the display and extraction of EMA trajec-
tories as well as data smoothing and the computation of deriva-
tives and Euclidean distances between sensors. A great asset of
this converter is that it allows the research community to pro-
cess EMA data in widespread and easy-to-use open-source pro-
grams like Praat. It is completely platform-independent and is
thus a very promising alternative for e.g., students, teachers and
researchers in experimental linguistics who have either limited
access to software licenses and/or seek for an easy way to main-
tain open solutions for their research.

Index Terms: articulation, conversion articulatory data, Praat

1. Introduction

The investigation of the many-to-one relations between articu-
latory movements and acoustic speech patterns are relevant for
various fields in the context of speech communication. Articu-
lation is the source of acoustics [1] and movement patterns of
the underlying articulatory dimension can be related to spectro-
temporal properties of phonetic entities such as consonants and
vowels and as well as prosodic modulations and intonation.
Therefore, both articulation and acoustics belong to the measur-
able physical correlates of speech production encoding complex
linguistic structure on different dimensions.

There are several invasive and non-invasive techniques to
capture vocal tract movements of the speakers’ different subsys-
tems namely the phonatory, respiratory and supraglottal mod-
ulations. For oral speech organs, Electromagnetic Articulogra-
phy (EMA) is widely applied in various kinds of speech produc-
tion tasks. EMA is a minimally invasive technique [2] allowing
the analysis of positions and movements of sensor coils placed
on articulators, e.g., the jaw, tongue tip and body as well as the
upper and lower lips. There is a variety of different powerful
software packages for the display and annotation of EMA data,
in particular, MView [3], VisArtico [4] and the speech database
system emuR [5].

This paper presents the ema2wav converter, that allows
converting EMA trajectories into multi-channel files. With
ema2wav we provide the option to process kinematic signals
in programs such as Praat [6]. At present, Praat is the quasi-
standard for the annotation of acoustic speech signals and an
integral part of the phonetician’s toolkit, as it is freely available,
well-maintained, available on different operating systems and
can be interfaced with other environments as R [7] and Python
[8]. However, so far Praat is restricted to acoustic data without
having an option to process kinematic data.

Copyright (C) 2022 ISCA

The ema2wav converter aims to create an easy workflow
for all Praat users in experimental linguistics to analyze EMA
kinematics and acoustics in one place. It is easy to handle for
students, teachers and researchers. Furthermore, it is designed
to work platform-independent as it is written in Python (works
on Linux, Windows and Mac), and it is open-source. Currently,
it is under active development and works for data collected with
the Carstens’ AG500/501 models.

2. Main features

In the current version, ema2wayv has the following capabilities:

* Supporting the models AG500/501 (will be soon ex-
tended to AG 100, 200).

3

Extracting positional data for the vertical and horizontal
dimension of each sensor.

Calculating profiles for the first (velocity) and second
derivative (acceleration) of each dimension, tangential
velocity, its derivative, and the Euclidean distance be-
tween two sensors.

e Applying filtering to the data with a moving aver-
age/floating mean filter or a Butterworth lowpass filter
to smooth the selected contours.

» Exporting the data along with or without the audio signal
as WAVE and/or as a CSV file.

open EVA directory

CONFIG pat:

oad COMFIG

Figure 1: GUI of ema2wav filled with user input.

10.21437/Interspeech.2022-10813

3. Presentation

ema2way is a lightweight and easy-to-use conversion software
that allows users to convert EMA data into WAVE files. It ex-
tracts not only the position data but also allows calculations,
e.g., derivations (e.g., 1st derivative as velocity, 2nd derivative
as acceleration, as well as tangential velocities). ema2wav is
written entirely in Python and is thus platform-independent.

The conversion software ema2way is designed to satisfy the
needs of users, both technical and non-technical ones, and thus
consists of two modules. The first module is a core script con-
taining all routines and functions of the conversion process. It
can be imported as a Python module in their own script so that
users can access the functions for extracting and/or converting
EMA data by themselves. The second module is a fully func-
tional graphical user interface (GUI), as shown in Figure 1, that
allows users to easily enter all necessary parameters and exe-
cute the conversion process without coding by themselves. The
resulting WAVE files can then be opened and annotated in Praat
(Figure 2).

To ensure openness, accessibility and maintainability of the
code, only open-source packages are used. These packages in-
clude Librosa [9], SciPy [10], Mutagen [11] and PyQt [12] for
the GUI development and functionality. Although still work-in-
progress, a fully functional version of ema2wayv can already be
downloaded from “ https://github.com/phbuech/ema2wav .

1.498240)

0.491760 (2.034 /5)

01573
Ch2d

0.0121
1.314]

o /\cnsa
-1.285|
E . Jword
w1 nimami passt /6
. . lsegment
s P[] @ [o]o] > [«][
T T T
oo
3| onset pvel target @)
1 1 1
.080364] 0.491760 [0.341818

1417876 [1.417876 Visible part 0.913942 seconds 2.331818| 1.252307

Total duration 3.584125 seconds

Figure 2: Screenshot of the Praat editor window showing audio
and EMA data (Ch 2 = vertical tongue body position, Ch 3 =
tongue body velocity) along with annotations in a TextGrid.

4. Conversion process

The conversion of EMA data into WAVE files in ema2wav con-
sists of two parts, i.e., the user input and the main functionality
of the core script. Figure 4 shows the general scheme of the
conversion process.

A configuration file in the JSON format is required as the
input for the core script. It can be created either directly or in-
directly via the GUI The configuration file serves not only as a
device for providing the necessary information for the conver-
sion process, but can also be used for its replication and docu-
mentation. It consists of the following information:

1353

.

Paths of the POS files from the AG500/501 data (con-
taining all spatial data registered by the articulograph)
and the corresponding WAVE files for the input as well
as the output directory.

 Specification of the channel names (can be chosen by the
user) and their respective channel numbers.

Parameters that shall be extracted (e.g., x- (horizontal) or
y-position (vertical), velocity, acceleration).

Filters to apply (e.g., moving average filter).

Export options (WAVE including/excluding the acoustic
signal, CSV).

An example of this configuration file is shown in Figure 3.

{

”ema_device_info”: "AG50x”,
“include_audio”: true,
"export_to_csv”: false,
“export_raw_ema”: false ,
“ema_input_directory”: ”/ema/input/path/”,
”audio_input_directory”: ”/wav/input/path”,
“output_directory”: ”/path/to/output/”,
“channel_allocation™: {

Tttip”: 4,

“1lip”: 7,

“ulip”: 6
"parameters_of_interest”: {

70_ttip”: "x”,

71_ttip”: Ty”,

72 _1lip”: ”x”,

73 _1lip”: 7y”
.
filter”: {

”moving_average” : 10
}

}

Figure 3: Example of a configuration file.

Users have two options to start the conversion process: ei-
ther by executing the conversion from a Python script or by ex-
ecuting the software from a console, where the latter does not
require programming skills in Python. The first option is to
write the configuration file manually. Users can write a custom
Python script and execute the conversion function with the path
to this configuration file as input. The second option is utiliz-
ing the GUI where all necessary information must be entered.
By starting the conversion via the GUI, the configuration file is
saved on the hard drive at the location of the output directory
and the conversion function of the core script is called automat-
ically.

After calling the conversion function manually or via the
GUI, the EMA data in the POS files are extracted. The values
of a sample in the AG500/501 models are stored in sequences
of 56, 112 or 168 values, depending on the number of channels
supported by the respective AG device [13]. Seven values are
recorded for each sample and channel, including x (horizontal),
y (lateral) and z (vertical) dimensions, phi and theta as azimuth
and polar angles of the sensors, a root mean square value and an
empty extra value. The values per sample are thus seven times
the number of channels.

The data array in the POS files is split into samples, which
are then reshaped into two-dimensional matrices with the rows
representing the channels and the columns representing the
recorded values. The EMA trajectories of all channels entered

in the channel allocation field of the configuration file are ex-
tracted by retrieving the x- and z-values of each sample accord-
ing to their positions in the matrices defined by the correspond-
ing channel row and value column (Figure 5). It should be noted
that it is common practice to label the height dimension as a ver-
tical dimension, which corresponds to the z-dimension in the
POS files.

Option 1 Option 2
5T T
& write use I
5 config file GUI |
=N |

N |
config file
creation
loading
config file
EMA data
extraction
£
=
?
] filter application
8 (if needed)

|

extraction of parameters
- position data

- derivations
output
generation
/AR R N
‘WAVE ‘WAVE
with [\ without

audio signal audio signal

Figure 4: Scheme of the conversion process in ema2wav.

After the retrieval of the EMA trajectories, the data may be
smoothed/filtered by a moving average or a Butterworth low-
pass filter. Based on these extracted (and filtered) trajectories,
the parameters that have to be saved into the output are retrieved
or processed further for the calculations in the case of deriva-
tions, tangential velocity and Euclidean distance.

This data can then be exported as multi-channel WAVE files
with or without the corresponding audio signal, and additionally
as a CSV file. In the former case, the EMA data is up-sampled
to fit the sample rate of the WAVE file as the sample rates for
EMA data are significantly lower (usually 250 Hz) than the
sample rate of the audio signal (e.g., 48 kHz). This is done by a
cubic spline interpolation as implemented in SciPy [10]. Figure
6 shows an example of an /as®a/ sequence with the tongue tip
trajectory in the vertical dimension with values for each sample
and the interpolated trajectory.

If the EMA data is exported without the corresponding au-
dio or as a CSV file, the data is not up-sampled to the audio sam-
ple rate. The WAVE file output includes metadata consisting of
the channel and parameter description as ID3 tags (generated
by mutagen [11]).

1354

sample 1 sample 2 sample n
channel 1 [channel 2 [channeln | channel 1 [channeln | ---
sy ey el e e[y lele e
sample n
X y ‘ z phi | theta | rms | empty
channel 1
channel2 [- []
channel n
sample 2
X y ‘ z phi theta | rms empty

value
value

value
value

value
value

value
value

value value
value | value

value
value

channel 1
channel 2
channel n

sample 1

theta
value
value

X y [z
value | value value
value | value [value

phi
value
value

rms
value
value

empty
value
value

channel 1
channel 2
channel n

Figure 5: Scheme of the reshaping of the data array into two-
dimensional matrices per sample. Colored cells represent posi-
tions in the horizontal dimension (blue) and the vertical dimen-
sion (red) for each sample.

5. Conclusion, limitations and future
directions

In this paper, we presented ema2wav, a lightweight software
package for the conversion of EMA data to multi-channel
WAVE files. This converter allows the research community
to process EMA data in widespread and easy-to-use and open-
source programs, namely Praat.

EMA data can be converted either by executing a stand-
alone Python script or by using a user-friendly GUIL. ema2wav
not only allows the extraction of EMA trajectories but also data
smoothing. In addition, it includes options for calculations such
as derivations and Euclidean distances between sensors.

The envisioned workflow using ema2wav for conversion
and Praat as an annotation tool is certainly not able to pro-
vide as many elaborate features for articulatory analysis as al-
ternative programs like Mview or emuR. Nevertheless, the solu-
tion we presented here comes with a lot of advantages. First,
most researchers in phonetics and speech science have a good
knowledge of Praat, including keyboard shortcuts and Praat
scripts. Using Praat for EMA data eliminates the need to learn
anew program. Since Praat is so widespread, annotations of the
acoustic signals often already exist in the form of TextGrids, ei-
ther manual annotations or as an output of a forced aligner such
as the Montreal Forced Aligner [14]. Our solution makes it pos-
sible to combine these acoustics annotations with annotations of
the EMA signals. Hence, acoustic and articulatory labels are in
one place and users do not need to learn new workflows and
shortcuts.

Second, ema2way is built entirely with open-source tools
and Praat itself is an open-source software package. Therefore,
this solution requires no expensive software licenses. Praat
elegantly interfaces with other open-source tools, e.g., Parsel-
mouth [15] and rPraat [16]. Third, the converter features a user-
friendly GUI that makes it accessible to users without deep tech-
nical knowledge. At the same time, the software is built with
the concept of modularity in mind: The GUI and the core con-
verter are fully separate. In consequence, the converter can be
executed as a stand-alone program by users with deeper knowl-

edge on the configuration in JSON, and even be integrated into
a larger workflow coded in Python. Fourth, with only roughly
300 lines of code, the converter script is compact. In conjunc-
tion with the fact that Python is a widespread programming lan-
guage that many developers use, this supports maintainability
and hence the longevity of the software. Finally, ema2wav and
Praat are fully platform independent and work on Linux, Win-
dows and Mac computers.

waveform

10000

5000

°

-5000

-10000

TTIP,

% EMA data
—— EMA (interpolated)

displacement (mm)

Time (s)

Figure 6: Waveform (top) and vertical tongue tip trajectory
(bottom) for /as’ a/ spoken by a Tashlhiyt speaker. Crosses show
the EMA trajectory as recorded with an AG501, the red line
shows the interpolated curve.

All this makes the presented solution a promising alterna-
tive for many different groups, including students or researchers
with limited access to software licenses, and also many other
groups of users that seek easy-to-maintain open solutions for
their research.

Current limitations relate to the possible input sources and
the WAVE files that include both EMA data and audio. Re-
garding the former, only data collected from the AG500/AG501
models are supported, but an extension for the models AG100
and AG200 is already planned. The latter limitation concerns
the possible file size and restrictions in the analysis. WAVE
files including both audio signal and EMA data may be large
depending on the duration of the recordings, the sample rate of
the audio and the number of parameters that have to be extracted
and/or derived. For example, a recording of approx. 36 seconds
with an audio sample rate of 48 kHz and an EMA sample rate of
1250 Hz consists of a 3.4 MB WAVE file and a corresponding
POS file of 19.1 MB file size. If 8 parameters shall be extracted
(both position tracks and velocity), a combined WAVE file of 59
MB will be created. If one of the parameters is the derivative of
the tangential velocity, the combined WAVE file will have a file
size of 118 MB. This is due to the up-sampling of the EMA data
to store them along with the audio. In order to reduce the file
size and to simplify data sharing, these files are downsampled
to 16 kHz by default.

Regarding the analysis, WAVE files that include audio can
be used for the display, annotation and measurements in pro-
grams like Praat. However, the display of the data may not
be suitable when using Praat’s default settings for waveform
plotting. This is due to the different scales of the audio sig-
nal (usually normalized between -1 and 1) and the EMA data

1355

(higher scales, e.g., between -60 mm to 60 mm). This can be
solved by changing the sound scaling strategy to “by window
and channel” in the sound scaling option of the editor window.
Furthermore, it is not recommended to play these files as they
are, because the different scales of the EMA tracks lead to un-
definable loud noise, when the audio signal and the EMA tracks
are played simultaneously. This can be solved by muting the
channels associated with the EMA tracks. We are also working
on solutions to improve a smooth EMA annotation workflow in
Praat. The forthcoming solutions will address these issues.

As ema2way is an early-stage project that is for the commu-
nity, we aim to receive feedback and comments from the com-
munity for further development and for fitting the community’s
needs.

6. Acknowledgements

This work has benefited/partially benefited from a government
grant managed by the Agence Nationale de la Recherche under
the “Investissements d’Avenir” programme with the reference
ANR-10-LABX-0083 (contributing to the IdEx University of
Paris - ANR-18-IDEX-0001, LABEX-EFL) and by the German
Research Foundation (DFG) as part of the SFB1252 “Promi-
nence in Language” (Project-ID 281511265), project A04 “Dy-
namic modelling of prosodic prominence” at the University of
Cologne.

7. References
[1]

P. Perrier, “Control and representations in speech production,”
in ZAS Papers in Linguistics, 2005, vol. 40, pp. 109-132, hal-

00430387.

T. Rebernik, J. Jacobi, R. Jonkers, A. Noiray, and M. Wieling, “A
review of data collection practices using electromagnetic articu-
lography,” Laboratory Phonology: Journal of the Association for
Laboratory Phonology, vol. 12, no. 1, pp. 1-42, 2021.

M. Tiede, MVIEW: Software for visualization and analysis of cur-
rently recorded movement Data. Haskins Laboratories, 2005.

S. Ouni, L. Mangeonjean, and I. Steiner, “Visartico: a visualiza-
tion tool for articulatory data,” in Proc. Interspeech 2012, 2012,
pp. 1878-1881.

R. Winkelmann, K. Jaensch, S. Cassidy, and J. Harrington, emuR:
Main Package of the EMU Speech Database Management System,
2021, R package version 2.3.0.

P. Boersma and D. Weenink, “Praat: doing Phonetics by Com-
puter,” v. 6.2.09, 2022, https://www.fon.hum.uva.nl/praat/.

[2]

[3]

[4]

[5]

[6]

[7] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,

Austria, 2022. [Online]. Available: https://www.R-project.org/

G. Van Rossum and F. L. Drake, Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009.

B. McFee, A. Metsai, M. McVicar, S. Balke, C. Thomé, C. Raf-
fel, F. Zalkow, A. Malek, Dana, K. Lee, O. Nieto, D. Ellis,
J. Mason, E. Battenberg, S. Seyfarth, R. Yamamoto, viktorandree-
vichmorozov, K. Choi, J. Moore, R. Bittner, S. Hidaka, Z. Wei,
nullmightybofo, A. Weiss, D. Herefid, F.-R. Stoter, P. Friesch,
M. Vollrath, T. Kim, and Thassilo, “librosa/librosa: 0.9.1 (0.9.1),”
https://doi.org/10.5281/zenodo.6097378.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S.J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R.J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

for Scientific Computing in Python,” Nature Methods, vol. 17, pp.
261-272, 2020.

Quodlibet, “mutagen,”’ 2022. [Online]. Available:
https://github.com/quodlibet/mutagen

Riverbank Computing, “Pyqt,”
https://www.riverbankcomputing.com/software/pyqt/.

Carstens Medizinelektronik GmbH, AG501 Manual, 2014.

M. McAuliffe, M. Socolof, S. Mihuc, and M. Wagner, “Mon-
treal Forced Aligner: Trainable Text-Speech Alignment Using
Kaldi,” in Proceedings of INTERSPEECH, 20-24 August, Stock-
holm, Sweden, 2017, pp. 498-502.

Y. Jadoul, B. Thompson, and B. de Boer, “Introducing Parsel-
mouth: A Python interface to Praat,” Journal of Phonetics,
vol. 71, pp. 1-15, Nov. 2018.

T. Bofil and R. Skarnitzl, “Tools rPraat and mPraat,” in Text,
Speech, and Dialogue, ser. Lecture Notes in Computer Science,
P. Sojka, A. Horak, I. Kopecek, and K. Pala, Eds. Cham:
Springer International Publishing, 2016, pp. 367-374.

1356

