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Abstract

In this paper, we provide an answer to the following question: in the particular case of a non-

differentiable likelihood, is the formula for the BIC model selection criterion the same? More

precisely, we obtain the Laplace method for a sum-of-absolute-values function and we deduce

that the usual BIC formula with penalty in log(n) remains the same in the context of a selection

of explanatory variables by least absolute value regression.
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1 Introduction

Let us consider here the classical framework of the observation of a sample Y := (Y1, . . . , Yn),

a family of random variables, and a finite family M of possible models m for Y . The approach

proposed by Schwarz in [19] leading to the BIC model selection procedure is one of the most fruitful

answer to this problem. It is a criterion of model selection used in many fields of statistics, see for

example a general presentation in the book [14]. Moreover, it has the particularity compared to the

AIC or Cp criteria to be asymptotically consistent under certain conditions. A first proof in linear

least squares regression can be found in [15], recent results on general time series were obtained in

[3].

The BIC criterion consists on choosing the most probable model after observing Y , i.e.

m̂B = argmax
m∈M

{
P
(
m |Y

)}
. (1.1)

In the sequel we will assume that all models have the same probability of occurring, which implies

that we can write P
(
m |Y

)
=
∣∣M∣∣−1 P

(
Y |m

)
P(Y ) , with Bayes formula and using the notation |A| =

Card(A) when Card(A) <∞.

In a parametric framework where for any models m there exists a parameter θm ∈ Θm ⊂ R|m|

identifying m, this induces (see more details in [18])

P
(
Y |m

)
=

∫
Θm

Ln(Y, θm) dλ|m|(θm) for any m ∈M,

1
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where Ln(Y, θm) is the likelihood of Y given θ ∈ Θmand λ|m| is the Lebesgue measure on R|m|. As

a consequence maximizing P
(
m |Y

)
is equivalent to minimize

Ŝn(m,Y ) = −2 log
(∫

Θm

exp
(

log
(
Ln(Y, θm)

))
dλ|m|(θm)

)
. (1.2)

Assume now that the log-likelihood `m(θ) of (Y1, . . . , Yn) defined from the model m can be ex-

pressed. Since exp
(

log
(
Ln(Y, θm)

))
= exp

(
− n

(
− 1

n `n(θm)
))

and − 1
n `n(θm) is almost surely a

converging function of θ under classical assumptions, a Laplace’s method can be used for obtaining

the asymptotic behavior of
∫

Θm
exp

(
−n

(
− 1
n `n(θm)

))
dθm when θm ∈ Θm 7→ `n(θm) is sufficiently

often differentiable.

More precisely, in [10], p.480, under assumptions such as θm ∈ Θm 7→ `n(θm) is six times continu-

ously differentiable, the following expansion obtain from Laplace’s method has been established:∫
Θm

exp
(
`n(θm)

))
dλ|m|(θm)

=
(2π

n

)|m|/2
exp

(
`n(θ̂m)

)) (
det
(
− 1

n

∂2

∂θ2
m

`n(θ̂m)
))−1/2(

1 +O
(
1/n

))
a.s. (1.3)

where θ̂m = argmax
θm∈Θm

{
`n(θm)

}
, the usual maximum likelihood estimator, is supposed to be unique.

Using the consistency of θ̂m this induces:

Ŝn(m,Y ) = −2 `n(θ̂m) + |m| log(n)− 2π |m|+ log
(

det(I(θ̂m))
)

+OP

(
n−1/2

)
, (1.4)

where I(θ̂m) = − limn→∞
1
n

∂2

∂θ2m
`n(θ̂m), which is typically the Fisher information matrix in case of

independent identically distributed random variables (see also [13] for more details).

Considering the first two terms of this development with respect to which the others are negligible,

Schwarz obtained the BIC criterion for the m model which is defined by:

BIC(m) = −2 `n(θ̂m) + |m| log(n). (1.5)

This expression of the BIC criterion is now mostly used as is, using a log-likelihood, typically Gaus-

sian, which is not necessarily that of the sample considered. But even in this case, the asymptotic

consistency property of the criterion can be established (see for example [15] in least squares re-

gression, or [3] for affine causal time series).

The purpose of this paper is to provide the same kind of results, i.e. Laplace’s method and BIC

expansion, but in a particular case of non differentiable likelihood: the case of independent random

variables distributed following a Laplace distribution. This case is very interesting in practice, be-

cause it is well known that just as the Gaussian case leads to least squares estimators, the Laplacian

case leads to least absolute values estimators. Indeed, if Yi follows a Laplace’s distribution with

E[Yi] = mi(αm) ∈ R and E[Yi] = λm ∈ (0,∞) for any i ∈ Z, then:

Ln(Y, θm) =
(λm

2

)n
exp

(
− λm

n∑
i=1

∣∣Yi −mi(αm)
∣∣),

with θm = (αm, λm) ∈ R|m|−1 × (0,∞). A particular and well known case, is the least absolute

deviation regression where mi(αm) = α0 + α1X
(1)
i + · · ·+ αpX

(p)
i for exogenous variables X(j).
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The least absolute value estimation offers a very relevant alternative to the usual least squares

estimation. Its two main advantages are, first, that it does not require strong moment conditions

to converge or to be asymptotically Gaussian, and second, that it is significantly more robust (see

for instance [9]), especially to the presence of possible outliers. It has for example been studied

in the context of the detection of breaks in [4] and [2] (for shifts) and [5] (for linear models), for

the estimation of parameters of time series, as in [7] (for ARMA processes) or in [1] (for affine

causal processes). It also opens the way to more complex procedures, such as robust regression

with Huber function (see [8]) or quantile regression (see [11]).

Thus we will start in the following section 2 by proving Laplace’s formula in the case of a least abso-

lute values likelihood. The main terms of the (1.3) expansion obtained for differentiable likelihood

will also be present, except for one multiplicative term, a random variable bounded in probability.

This will allow us to recover in section 3 the classical BIC formula (1.5) with penalty term in

log(n) also for a likelihood of independent Laplace variables: in this case, the fact of considering a

non-differentiable likelihood at any point does not affect the asymptotic behavior of this criterion.

The proofs of the different results are established in section 4.

2 A Laplace formula for least absolute deviation estimators

2.1 Notation and assumptions

Consider the following notations: for (Un)n∈N and (Vn)n∈N two sequences of r.v., denote:

• (Un) = OP(1) when for any ε > 0, there exists M > 0 such as sup
n∈N

P
(
|Un| > M

)
≤ ε;

• Un
a.s.∼
n→∞

Vn when
Un
Vn

a.s.−→
n→∞

1;

• Un
P∼

n→∞
Vn when P

(∣∣∣Un
Vn
− 1
∣∣∣ ≥ ε) −→

n→∞
0 for any ε > 0.

We begin with the definition of a class of Laplace white noises:

Class LWN: The sequence (εi)i∈Z of i.i.d.r.v. is said to belong to Class LWN if there exists

λ > 0 such as the density fε of ε0 satisfies fε(x) = 1
2 λ e

−λ |x| for any x ∈ R.

We extend this class to a much more general class of symmetric stationary processes:

Class SEN: The stationary sequence (εi)i∈N is said to belong to Class SEN (Symmetric Ergoic

Noise) if:

1. For any x ∈ R, Fε(−x) = 1 − Fε(x) where Fε is the probability cumulative function of ε0

(symmetric distribution);

2. There exists ρ > 0 such as Fε is a C2([−r, r]) function and F ′ε(0) = fε(0);
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3. We have E
[
|ε0|
]
<∞, E

[
ε0

]
= 0 and

1

n

n∑
i=1

εi
a.s.−→
n→∞

0.

Many examples of such symmetric noises are well known: symmetric white noise, i.e. (εi) is

a sequence of independent identically distributed symmetric random variables, α-mixing or τ -

weak dependent stationary sequence of centered symmetric random variables, stationary symmetric

martingale differences,... Note that it is not assumed here that the sequence admits a moment of

order 2: this is one of the well-known advantages of least absolute values estimation over least

squares estimation.

2.2 Laplace’s method for a median

We prove a fist lemma which will be a key result for obtaining a Laplace’s method for least absolute

values:

Lemma 1. Let (εi)i∈N belong to the class SEN. Then we have:∫ +∞

−∞
exp

(
− λ

n∑
i=1

(
|εi + c| − |εi|

))
dc

a.s.∼
n→∞

√
π

fε(0)

1√
n
. (2.1)

The proof of this lemma, as well as all the other proofs, is available in section 4.

Before establishing a new Laplace’s method for least absolute values contrasts from Lemma 1,

we have to restrict a little the assumptions on the noise (εi)i∈N by considering a subclass of Class

SEN:

Class WDSN: The stationary sequence (εi)i∈N is said to belong to Class WDSN (Weak Dependent

Symmetric Noise) if:

1. (εi)i∈N belongs to the Class SEN;

2. (εi)i∈N is strong mixing with mixing coefficients (αk)k that satisfy
∑

k αk <∞.

OR

(εi)i∈N is a linear process such as there exists a white noise (ξt)t∈Z satisfying εt =
∑∞

i=0 ai ξt−i

with
∑∞

i=0 |ai|1/2 <∞ and (ai)i∈N ∈ RN.

Other weak or short dependent processes could also be considered but those both examples are

representative and easy to be presented. The case of strong mixing processes is based on results

obtained in [16], while the case of linear processes is induced by the important paper of Wu, [20].

Note that the case of long-range dependent processes could also be studied following the paper [12].

Now we consider m̂n as a median of the sample (Y1, . . . , Yn). Using Lemma 1, we establish an

univariate Laplace’s method for least absolute values estimation, i.e. for m̂n:
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Lemma 2. Consider m∗ ∈ R and Yi = m∗ + εi for i ∈ N∗ with (εi) belonging to the class WDSN.

Define also:

m̂n ∈ argmin
m∈R

n∑
i=1

∣∣Yi −m∣∣. (2.2)

Then, there exists a sequence of random variables (An)n∈N∗ satisfying (An) = OP(1) such as:∫ ∞
−∞

exp
(
−

n∑
i=1

∣∣Yi −m∣∣) dm P∼
n→∞

exp
(
−

n∑
i=1

∣∣Yi − m̂n

∣∣)√ π

fε(0)

1√
n
e−An . (2.3)

A straightforward application of this result can be obtain in the particular case where Yi = m∗+ εi

where (εi) belongs to the class LWN with a known parameter λ∗ > 0. Then after a change of

variable, (2.3) induces that:∫ ∞
−∞

exp
(
− λ∗

n∑
i=1

∣∣Yi −m∣∣) dm P∼
n→∞

exp
(
− λ∗

n∑
i=1

∣∣Yi − m̂n

∣∣)√2π

n
λ∗ e−λ

∗ An .

Therefore, if we denote `n(m) the log-likelihood of (Y1, . . . , Yn), we obtain:∫ ∞
−∞

exp
(
`n(m)

)
dm

P∼
n→∞

exp
(
`n(m̂n)

)√2π

n
×
(
λ∗ e−λ

∗ An
)
. (2.4)

This asymptotic development is thus quite close to the general one obtained in the case of a

sufficiently differentiable log-likelihood (1.3), except for the additional multiplicative random term.

2.3 Laplace’s method for least absolute value regression

Now we consider a classical linear model with a random design:

1. Assume that (Xi)i∈N is a sequence of i.i.d. Rp+1-valued where X0 =
(
1, X

(1)
0 , . . . , X

(p)
0

)′
and

E(X0X
′
0) = Γ a definite positive matrix. Moreover (Xi)i∈N is independent to (εi)i∈N.

2. Let θ∗ = (θ∗0, θ
∗
1, . . . , θ

∗
p) ∈ Rp+1 be unknown parameters such as

Yi = θ∗0 +

p∑
j=1

θ∗jX
(j)
i + εi for any i ∈ Z. (2.5)

Now, from an observed sample (Y1, . . . , Yn), define the least absolute value regression estimation of

θ∗ by:

θ̂ = t
(
θ̂0, . . . , θ̂p

)
∈ argmin

θ∈Rp+1

{ n∑
i=1

∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣}. (2.6)

Then, we can prove the following proposition:

Proposition 1. If (Yi)i∈N satisfies (2.5) and (εi) belongs to the class WDSN, then, with θ̂ defined

in (2.6):∫
Rp+1

exp
(
−

n∑
i=1

∣∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣∣) dθ0 . . . dθp

P∼
n→∞

exp
(
−

n∑
i=1

∣∣∣Yi − θ̂0 −
p∑
j=1

θ̂jX
(j)
i

∣∣∣)(( π

fε(0)

) p+1
2

det
(
Γ
)−1/2

) e−Bn

n
p+1
2

, (2.7)

where (Bn)n∈N∗ is a sequence of random variables defined in (4.16) and such as (Bn) = OP(1).
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Hence the Laplace’s method for a non differentiable contrast such as least absolute deviation pro-

vides almost same type of asymptotic development as in the differentiable case (see 1.3) except for

an additional random multiplicative term exp(Bn).

3 BIC for least absolute deviation regression

In this section, we return to the framework of model selection using the BIC criterion. To do so,

we consider the case of the linear model (2.5) in the parametric framework where (εi) belongs to

the Class LWN, i.e. (εi) is a sequence of centered Laplace i.i.d.r.v. Then the log-likelihood of

(Y1, . . . , Yn) is a function `n(θ) of θ ∈ Rp+1 and is written:

`n(θ) = n log(λ∗/2)− λ∗
n∑
i=1

∣∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣∣ for any θ ∈ Rp+1.

Following its definition given in [19] and recalled in the introduction, the BIC of such a model is

written:

B̂IC = −2 log
(∫

Rp+1

exp
(
`n(θ)

)
dθ
)

= −2 log
(∫

Rp+1

(λ∗
2

)n
exp

(
− λ∗

n∑
i=1

∣∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣∣) dθ0 . . . dθp

)
.

Therefore using Proposition 2.7, we obtain:

B̂IC
P∼

n→∞
−2 `n(θ̂) + (p+ 1) log(n) + 2λ∗Bn + log

(
det(Γ)

)
+ (p+ 1) log

(
fε(0)/π

)
P∼

n→∞
−2 `n(θ̂) + (p+ 1) log(n),

which is the usual BIC formula.

This result, the fact that we find the usual BIC formula, is also true when we consider the more

realistic case where the parameter λ∗ is unknown:

Proposition 2. If (Yi)i∈N satisfies (2.5) and (εi) belongs to the class WDSN with an unknown

parameter λ∗ > 0, the log-likelihood `n(θ, λ) of (Y1, . . . , Yn) is defined by

`n(θ, λ) = n log(λ/2)− λ
n∑
i=1

∣∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣∣ for any θ ∈ Rp+1, λ > 0. (3.1)

With B̂IC = −2 log
(∫ ∞

0

∫
Rp+1

exp
(
`n(θ, λ)

)
dθ dλ

)
and (θ̂, λ̂) ∈ argmax

θ∈Rp+1,λ>0

{
`n(θ, λ)

}
, then

B̂IC
P∼

n→∞
−2 `n(θ̂, λ̂) + (p+ 1) log(n) + 2λ∗Bn + log

(
det(Γ)

)
+ (p+ 1) log

(
fε(0)/π

)
P∼

n→∞
−2 `n(θ̂, λ̂) + (p+ 1) log(n),

where (Bn)n∈N∗ is a sequence of random variables defined in (4.16) and such as (Bn) = OP(1).
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Thus the classical formula of the BIC criterion is recovered at first order in this framework of

Laplace variables, i.e. for a contrast by least absolute deviations: its non-differentiability does not

change anything.

Remark 1. The asymptotic expansion of Proposition 2 is also valid if the noise (ε)i belongs to

the WDSN class. However, we note that in this case the statistical model is no longer parametric

but semi-parametric and the likelihood `n(θ, λ) defined in (3.1) is not strictly speaking that of the

model.

4 Proofs

4.1 Proof of Lemma 1

Proof. Let δ > 0. Using the usual Law of Large Numbers, there exists N0 ∈ N such as for any

n ≥ N0,

(1− δ)nE
(
|ε0 + c| − |ε0|

)
≤

n∑
i=1

(
|εi + c| − |εi|

)
≤ (1 + δ)nE

(
|ε0 + c| − |ε0|

)
a.s.

As a consequence, for n ≥ N0,

exp
(
−(1+δ)nE

(
|ε0 +c|−|ε0|

))
≤ exp

(
−

n∑
i=1

(
|εi+c|−|εi|

))
≤ exp

(
−(1−δ)nE

(
|ε0 +c|−|ε0|

))
.

(4.1)

Moreover, we obtain for c > 0:

E
(
|ε0 + c| − |ε0|

)
= E

(
c1ε0≥0 − c1ε0<−c − (c+ 2ε0)1−c≤ε0<0

)
= c− 2

∫ 0

−c
Fε(t) dt.

Therefore, from classical Taylor expansions, we deduce:

E
(
|ε0 + c| − |ε0|

)
∼ fε(0)c2 when c→ 0 (4.2)

≥ 1

2
fε(0) c min(c , c0) for all c ≥ 0, (4.3)

with c0 depending only on Fε. For the first expansion, we use an asymptotic expansion of Fε around

0, and then
∫ 0
−c Fε(t) dt ∼

∫ 0
−c
(

1
2 + tfε(0)

)
dt ∼ c− fε(0)c2. For the second inequality it is sufficient

to study the function h(c) = c−2
∫ 0
−c Fε(t) dt−

1
2 fε(0) c min(c , c0). For (un) a sequence of positive

real numbers such as un −→
n→∞

0, this inequality also implies that for n large enough,

E
(
|ε0 + c| − |ε0|

)
≥ 1

2
fε(0) c un for c ≥ un. (4.4)

Now assume that (un)n∈N is a sequence such that un
√
n −→

n→∞
∞ (for instance un = n1/4), then:

∫ ∞
−∞

exp
(
− nE

(
|ε0 + c| − |ε0|

))
dc =

∫ un

−un
exp

(
− nE

(
|ε0 + c| − |ε0|

))
dc

+2

∫ ∞
un

exp
(
− nE

(
|ε0 + c| − |ε0|

))
dc

= I1 + I2.
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On the one hand, using (4.2) and with x =
√
n c, and from Lebesgue Theorem,

I1 ∼
n→∞

1√
n

∫ un
√
n

−un
√
n

exp
(
− fε(0)x2

)
dx

∼
n→∞

1√
n

∫ ∞
−∞

exp
(
− fε(0)x2

)
dx

∼
n→∞

√
π

fε(0)

1√
n
.

On the other hand, using (4.4),∣∣I2

∣∣ ≤ 2

∫ ∞
un

exp
(
− n

2
fε(0) c un

)
dc

≤ 2

fε(0)nun
exp

(
− 1

2
nu2

n

)
= o
(
I1

)
,

since nu2
n −→
n→∞

∞. As a consequence,

∫ ∞
−∞

exp
(
− nE

(
|ε0 + c| − |ε0|

))
dc ∼

n→∞

√
π

fε(0)

1√
n
.

Finally since this property can be also obtain when we replace n by (1 + δ)n or (1− δ)n, we deduce

(2.1) from (4.1)

4.2 Proof of Lemma 2

Proof. We have:∫ ∞
−∞

exp
(
−

n∑
i=1

∣∣Yi −m∣∣) dm
=

∫ ∞
−∞

exp
(
−

n∑
i=1

(∣∣Yi −m∣∣+
∣∣εi∣∣− ∣∣εi∣∣+

∣∣Yi − m̂n

∣∣− ∣∣Yi − m̂n

∣∣)) dm
= exp

(
−

n∑
i=1

∣∣Yi − m̂n

∣∣)× exp
(
−

n∑
i=1

(∣∣εi∣∣− ∣∣εi − (m̂n −m∗)
∣∣))

×
∫ ∞
−∞

exp
(
−

n∑
i=1

(∣∣εi − (m−m∗)
∣∣− ∣∣εi∣∣)) dm

= exp
(
−

n∑
i=1

∣∣Yi − m̂n

∣∣)× I × II (4.5)

On the one hand, using Lemma 1 and a change of variable, we have:

II =

∫ ∞
−∞

exp
(
−

n∑
i=1

(∣∣εi − (m−m∗)
∣∣− ∣∣εi∣∣)) dm a.s.∼

n→∞

√
π

fε(0)

1√
n
. (4.6)

On the other hand, denote Zn =
√
n
(
m̂n −m∗

)
. Since (εi) belongs to Class WDSN, we know (see

for instance [16] in case of strong mixing processes and [20] in case of linear processes) that

Zn
D−→

n→∞
N
(

0 ,
V

4 f2
ε (0)

)
. (4.7)
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with fX(m∗) = fε(0) and V = 1 + 2
∑∞

k=1 E
[
sign(ε0) sign(εk)

]
. Then we have I = exp(−An) with

An :=
n∑
i=1

(∣∣εi∣∣− ∣∣εi − (m̂n −m∗)
∣∣) =

n∑
i=1

(∣∣εi∣∣− ∣∣εi − n−1/2Zn
∣∣). (4.8)

Using the relation: |x− y| − |x| = −y sign(x) + 2(y − x)(10<x<y − 1y<x<0) for any (x, y) ∈ R2, we

obtain:

An =
n∑
i=1

(∣∣εi∣∣− ∣∣εi − n−1/2Zn
∣∣) =

Zn√
n

n∑
i=1

sign
(
εi
)

+ 2
n∑
i=1

(
εi −

Zn√
n

)(
10<εi<

Zn√
n
− 1Zn√

n
<εi<0

)
= I1 + I2. (4.9)

Let us control the first term I1 =
Zn√
n

n∑
i=1

sign
(
εi
)
. From a central limit theorem satisfied by a

processes belonging to Class WDSN (strong mixing or weak dependent linear process), we have
1√
n

∑n
i=1 sign

(
εi
) D−→
n→∞

N
(
0 , V

)
, with 0 < V = 1 + 2

∑∞
k=1 E

[
sign(ε0) sign(εk)

]
<∞ (see [16] and

[20]). Therefore
(

1√
n

∑n
i=1 sign

(
εi
))

= OP(1) and from (4.7), (Zn) = OP(1). This induces that

I1 =
( Zn√

n

n∑
i=1

sign
(
εi
))

= OP(1). (4.10)

Concerning the second right side term of (4.9), first denote for i ∈ N, the non negative random

variable Wi =
(
Zn√
n
− εi

)
10<εi<

Zn√
n

. Then, for n large enough,

E
[
Wi

∣∣ Zn] = 1Zn≥0

∫ Zn√
n

0

( Zn√
n
− x
)
dFε(x)

≤ 1Zn≥0
Z2
n

2n
sup
x∈R

∣∣fε(x)
∣∣.

Therefore, with Sn =
∑n

i=1

(
Zn√
n
− εi

)
10<εi<

Zn√
n

(implying Sn ≥ 0) and M ≥ 0, we have

E
[
Sn
∣∣ Zn] ≤ 1Zn≥0

Z2
n

2
sup
x∈R

∣∣fε(x)
∣∣

E
[
Sn
∣∣ |Zn| ≤M] ≤ M2

2
sup
x∈R

∣∣fε(x)
∣∣.

Then, for any M ′ > 0, using a conditional Markov inequality, for any n ∈ N∗,

P
[
Sn ≤M ′

]
≥ P

[
Sn ≤M ′ ∩ |Zn| ≤M

]
≥

(
1− P

[
Sn > M ′

∣∣ |Zn| ≤M])× P
[
|Zn| ≤M

]
≥

(
1− M2

2M ′
sup
x∈R

∣∣fε(x)
∣∣)× P

[
|Zn| ≤M

]
,

from (4.11). Now let ε > 0. Then, since (Zn) = OP(1), there existsM > 0 such that supn∈N∗ P
[
|Zn| ≤

M
]
≥ 1 − ε

2 . Now chose M ′ > 0 such as M2

2M ′ supx∈R
∣∣fε(x)

∣∣ ≤ ε
2 . We then deduce that for any

ε > 0 then there exists M ′ > 0 such that

sup
n∈N∗

P
[
Sn ≤M ′

]
≥
(
1− ε

2

)
≥ 1− ε =⇒ (Sn) = OP(1). (4.11)
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By symmetry, and this achieves the proof, we finally obtain that

I2 = OP(1) =⇒ (An) = OP(1),

from (4.9) and (4.10). As a consequence, using the decomposition (4.5) and (4.6), this achieves the

proof.

4.3 Proof of Proposition 1

Proof. Mutatis mutandis, We will establish a proof following the same procedure as the proofs of

Lemmas 1 and 2. Using the same decomposition than in Lemma 2, we have∫
Rp+1

exp
(
−

n∑
i=1

∣∣Yi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣) dθ
= exp

(
−

n∑
i=1

∣∣∣Yi − θ̂0 −
p∑
j=1

θ̂jX
(j)
i

∣∣∣) exp
(
−

n∑
i=1

(
|εi| −

∣∣εi − (θ̂0 − θ∗0)−
p∑
j=1

(θ̂j − θ∗j )X
(j)
i

∣∣))
×
∫
Rp+1

exp
(
−

n∑
i=1

(∣∣εi − (θ0 − θ∗0)−
p∑
j=1

(θj − θ∗j )X
(j)
i

∣∣− |εi|)) dθ. (4.12)

First, after denoting ‖·‖∞ the norm in Rp+1 such as ‖z‖∞ = max(z1, · · · , zp+1) for z = (z1, . . . , zp+1) ∈
Rp+1, we obtain a multivariate version of Lemma 1:

E
(∣∣ε0 − θ0 −

p∑
j=1

θjX
(j)
0

∣∣− |ε0|
)

∼
‖θ‖∞→0

fε(0) E
((
θ0 +

p∑
j=1

θjX
(j)
0

)2)
∼

‖θ‖∞→0
fε(0) θ′ Γ θ, (4.13)

where θ =
(
θ0, . . . , θp

)′
using the assumptions on sequences (Xi). As a consequence, using the

independence of the different random variable sequences and the almost same cutting of the integral

than in Lemma 1, we have:∫
Rp+1

exp
(
− nE

(∣∣ε0 − θ0 −
p∑
j=1

θjX
(j)
0

∣∣− |ε0|
))
dθ =

∫
‖θ‖∞≤un

· · · dθ +

∫
‖θ‖∞>un

· · · dθ

∼
n→∞

∫
‖θ‖∞≤un

exp
(
− n fε(0) θ′ Γ θ

)
dθ

∼
n→∞

∫
Rp+1

exp
(
− n fε(0) θ′ Γ θ

)
dθ

∼
n→∞

(( π

fε(0)

) p+1
2 1

det(Γ)1/2

)) 1

n
p+1
2

. (4.14)

Now, since (εi) belongs to Class WDSN, we know that (εi) satisfies a strong law of large numbers

and following Lemma 2, we deduce:∫
Rp+1

exp
(
−

n∑
i=1

∣∣εi − θ0 −
p∑
j=1

θjX
(j)
i

∣∣− |εi|) dθ a.s.∼
n→∞

(( π

fε(0)

) p+1
2 1

det(Γ)1/2

) 1

n
p+1
2

. (4.15)

Now consider the second right side term

J2 = exp
(
−Bn

)
with Bn :=

n∑
i=1

(
|εi| −

∣∣εi − (θ̂0 − θ∗0)−
p∑
j=1

(θ̂j − θ∗j )X
(j)
i

∣∣). (4.16)



11

Since (εi) belongs to Class WDSN, we know (see for instance [11] in case of white noise, [16] in

case of strong mixing processes and [20] in case of linear processes), and since the assumptions of

Proposition 1 imply 1
n XX ′

a.s.−→
n→∞

Γ with X = (Xi)1≤i≤n, we know that

Zn =
√
n (θ̂ − θ) D−→

n→∞
N
(

0 ,
1

4 f2
ε (0)

Γ−1W Γ−1
)
, (4.17)

with W = Γ + 2 E[X0]
(
E[X0]

)′ ∑∞
k=1 E

[
sign(ε0) sign(εk)

]
.

As in the proof of Lemma 2, we use the decomposition:

Bn =
n∑
i=1

(∣∣εi∣∣− ∣∣εi − n−1/2C ′i Zn
∣∣)

=
( 1√

n

n∑
i=1

sign
(
εi
)
C ′i

)
Zn + 2

n∑
i=1

(
εi −

C ′i Zn√
n

)(
1

0<εi<
C′
i
Zn√
n

− 1C′
i
Zn√
n
<εi<0

)
= I + II (4.18)

Moreover, as it has been established in [16] and [20], the sequence
(
sign

(
εi
)
Ci
)
n∈N satisfies a

multidimensional central limit theorem, and therefore:

1√
n

n∑
i=1

sign
(
εi
)
Ci

D−→
n→∞

Np+1

(
0 , W

)
=⇒ I =

(( 1√
n

n∑
i=1

sign
(
εi
)
C ′i

)
Zn

)
= OP(1). (4.19)

Now, using the same expansions than in Lemma 2, with Tn =
∑n

i=1

(C′i Zn√
n
− εi

)
1

0<εi<
C′
i
Zn√
n

we

have:

E
[
Tn
∣∣ Zn, (Ci)1≤i≤n

]
≤

supx∈R
∣∣fε(x)

∣∣
2n

n∑
i=1

1C′i Zn≥0 (C ′i Zn)2

≤
supx∈R

∣∣fε(x)
∣∣

2

( 1

n

n∑
i=1

∥∥Ci∥∥2
)∥∥Zn∥∥2

,

from Cauchy-Schwarz Inequality. Denote Wn :=
(

1
n

∑n
i=1

∥∥Ci∥∥2
)∥∥Zn∥∥2

. It is clear from the

usual strong law of large numbers that 1
n

∑n
i=1

∥∥Ci∥∥2 a.s.−→
n→∞

Trace(Γ) and therefore, with (4.17),

(Wn) = OP(1). Then, for any M ′ > 0, using a conditional Markov inequality, for any n ∈ N∗,

P
[
Tn ≤M ′

]
≥ P

[
Tn ≤M ′ ∩ Zn ≤M

]
≥

(
1− M

2M ′
sup
x∈R

∣∣fε(x)
∣∣)× P

[
Wn ≤M

]
,

and we conclude as in Lemma 2 that (Tn) = OP(1) and therefore (II) = OP(1) with II defined

in (4.16). Using also (4.19), we obtain (Bn) = OP(1) with Bn defined in (4.16). Therefore, the

Proposition 1 is proved from the decomposition (4.12) and (4.15).

4.4 Proof of Proposition 2

Proof. We consider

In =

∫ ∞
0

∫
Rp+1

exp
(
`n(θ, λ)

)
dθ dλ with `n(θ, λ) = n log(λ/2)−λ

n∑
i=1

∣∣∣Yi− θ0−
p∑
j=1

θjX
(j)
i

∣∣∣.
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Since λ→
∫
Rp+1 exp

(
Ln(θ, λ)

)
dθ is a measurable positive function, using the expansion of Propo-

sition 1, we can write:

In
P∼

n→∞

(2π

n

) p+1
2 2−n

det(Γ)1/2

∫ ∞
0

λn exp
(
− λ

n∑
i=1

∣∣∣Yi − θ̂0 −
p∑
j=1

θ̂jX
(j)
i

∣∣∣)e−λBndλ

Therefore, after a change of variable, we deduce that:

In
P∼

n→∞

(2π

n

) p+1
2 2−n

det(Γ)1/2

n!(
Bn +

∑n
i=1

∣∣∣Yi − θ̂0 −
∑p

j=1 θ̂jX
(j)
i

∣∣∣)n+1

Now using the usual maximum likelihood estimator λ̂ = n
(∑n

i=1

∣∣∣Yi − θ̂0 −
∑p

j=1 θ̂jX
(j)
i

∣∣∣)−1
, and

with the Stirling expansion n! ∼
n→∞

nn e−n
√

2π n, we obtain:

In
P∼

n→∞

(2π

n

) p+2
2 2−n

det(Γ)1/2

e−n(
Bn
n + 1

λ̂

)n+1

P∼
n→∞

(2π

n

) p+2
2 1

det(Γ)1/2
λ̂ e−λ̂ Bn

( λ̂
2

)n
e−n

and therefore − 2 log
(
In
) P∼

n→∞
−2 `n(θ̂, λ̂

)
+ (p+ 2) log(n)

−(p+ 2) log(2π)− 2 log
(
λ̂ e−λ̂ Bn

)
+ log

(
det(Γ)

)
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théoriques et interprétation. Journal de la Société française de statistique, 147, 39–57.
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