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This paper proposes an approach that combines reduced-order models with machine learning in order to create an digital twin to predict the power distribution over the core during the operation stage. The operational digital twin is designed to solve forward problems given input operation parameters, as well as to solve inverse problems given some observations of the power field. The forward model is non-intrusive and realised using SVD autoencoder reduced order model with the combination of machine learning methods, namely, k-nearest-neighbors and decision trees to build the input-output map. For model parameter estimation, the inverse model is based on a generalised latent assimilation method. The proposed approach is able to make use of the non intrusive reduced order model and the online measurements of the power field. The effectiveness in the sense of accuracy and real-time solver of the digital twin is illustrated through a real engineering problem in nuclear reactor physics -reactor core simulation in the life cycle of HPR1000 affected by input parameters, i.e., control rod inserting step, burnup, power level and inlet temperature of the coolant, which shows potential applications for on-line monitoring purpose.

Introduction

The concept and model of digital twins was introduced by Grieves [START_REF] Grieves | Virtually Intelligent Product Systems: Digital and Physical Twins[END_REF]. Since then, digital twins are permeating across nearly all academic, engineering or industrial disciplines, interested readers are referred to the reviews work of [START_REF] Grieves | Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[END_REF][START_REF] Jones | Characterising the digital twin: A systematic literature review[END_REF]. Since the application is quite broad and varied, the definitions, enabling technologies, challenges and opportunities of digital twins are quite different, see [START_REF] Chen | Integrated and intelligent manufacturing: Perspectives and enablers[END_REF][START_REF] Schluse | Experimentable digital twins-streamlining simulation-based systems engineering for industry 4.0[END_REF][START_REF] Tao | Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: Correlation and comparison[END_REF] for a comprehensive review.

Related works on digital twins in nuclear engineering are recent, for instance, [START_REF] Lin | Uncertainty quantification and software risk analysis for digital twins in the nearly autonomous management and control systems: A review[END_REF][START_REF] Garcia | Secure embedded intelligence in nuclear systems: Framework and methods[END_REF][START_REF] Ritter | Digital twin to detect nuclear proliferation: A case study[END_REF]. For example. The work in [START_REF] Garcia | Secure embedded intelligence in nuclear systems: Framework and methods[END_REF][START_REF] Garcia | Integrated state awareness through secure embedded intelligence in nuclear systems: Opportunities and implications[END_REF] entrusts digital twins a specific role when dealing with the broader concepts of secure embedded intelligence and integrated state awareness. In [START_REF] Lu | Nuclear power plants with artificial intelligence in industry 4.0 era: Top-level design and current applications-a systemic review[END_REF], the authors mention digital twins focusing on advancing the concept of a nuclear power plant as a Human-Cyber-Physical System. The review article [START_REF] Lin | Uncertainty quantification and software risk analysis for digital twins in the nearly autonomous management and control systems: A review[END_REF] focuses on uncertainty quantification (UQ) and software risk analysis of machine learning (ML) generated digital twin for the nearly autonomous management and control of nuclear power systems for prognostics and diagnostics supporting purposes. A more detailed discussion on digital twin concepts with uncertainty for nuclear power applications can be found in [START_REF] Kochunas | Digital twin concepts with uncertainty for nuclear power applications[END_REF]. Additionally, the work [START_REF] Ritter | Digital twin to detect nuclear proliferation: A case study[END_REF] focuses on the development of technologies that enable digital-twinning efforts in nuclear proliferation detection. The technical reports [START_REF] Mohanty | Physics-infused ai/ml based digital-twin framework for flow-induced-vibration damage prediction in a nuclear reactor heat exchanger[END_REF][START_REF] Mohanty | Development of digital twin predictive model for pwr components: Updates on multi times series temperature prediction using recurrent neural network, dmw fatigue tests, system level thermal-mechanical-stress analysis[END_REF] released by Argonne National Lab (ANL) describe the development of a digital twin predictive model for Pressure Water Reactor (PWR) components, in a physics-infused and AI/ML-based framework. Varé and Morilhat [START_REF] Varé | Digital twins, a new step for long term operation of nuclear power plants[END_REF] developed digital twins for models fed by operational online data and to benefit from data analytics to support long term operation of critical nuclear equipment. The work [START_REF] Jharko | Digital twin of npps: Simulation systems and verification[END_REF] aims to develop flexible modeling software package to simulate dynamic processes occurring in Nuclear Power Plant (NPP) power units with VVER-1000 reactors, meanwhile the authors insist that the flexible software package is the kernel of the digital twin of an NPP power unit.

Digital twin is defined as a virtual representation of a physical asset (e.g. a reactor core) enabled through data and simulators amenable to better understanding the behavior of nuclear reactor systems. This concept can be used for real-time prediction, optimization, monitoring, controlling, and improved decision making [START_REF] Rasheed | Digital twin: Values, challenges and enablers from a modeling perspective[END_REF]. In this regard, the objective of a digital twin in nuclear reactor domain can generally be taken as gains in economical efficiency and safety goals in nuclear power applications, particularly in reactor operations. The early application in reactor physics [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] proposes a prototype of reactor physics operational digital twin (RPODT) to predict neutron flux and power distributions in nuclear reactor cores for on-line monitoring purpose. The effectiveness of the proposed digital twin was illustrated through a real engineering problem based on HPR1000 reactor core. In general, there are three main problems associated with building a RPODT:

(i) building a forward solver to efficiently compute approximations to any high-dimensional physical field 𝑢(𝝁) for any given parameter 𝝁;

(ii) building an inverse solver to estimate the field 𝑢(𝝁) from (possibly sparse) data observation 𝑌 o when the true parameter 𝝁 is unknown;

(iii) building an inverse solver to estimate the parameter 𝝁 that can give rise to an observed state 𝑌 o and the related field 𝑢(𝝁).

The work in [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] suggested a non-intrusive reduced order model with machine learning methods to realize the first goal.

Considering the quick response of this forward solver, a naive approach based on Latin Hypercube Sampling (LHS) direct search is used in building the inverse solver to tackle the second and third problems. Consequently, additional work in modelling and analysis is needed to realise a more practical RPODT. This is what we discuss next. This paper is organised as follows. Section 2 introduces the related work and highlight the contribution of this paper. In Section 3, the forward model with machine learning based singular value decomposition (SVD) autoencoder (AE) and the inverse model with generalised latent assimilation are introduced. In Section 4, we introduce the detail applications to nuclear reactor physics. We first set up the reactor physics operation problems, then show the application of the forward model in Section 4.2 and show in Section 4.3 the application of the inverse model for parameter identification. The computational performance of the proposed RPODT is presented in Section 4.4. At last, some conclusion and perspectives are drawn in Section 5.

Related work and contribution

In this section, we present the related work regarding neutron field modelling and simulation tools, reduced-ordermodelling and data assimilation for digital twins.

Neutron field modeling and simulation tools

One of the key components of the RPODT is the simulation models. For the modeling and simulation of a reactor core, the most unique and important physical field one concerns is neutron field and the related core power distribution. The behavior of the neutron field is characterized by physical laws, which are often represented by governing equations in the form of Partial Differential Equations (PDEs), i.e., neutron transport equations, or their approximations [START_REF] Lewis | Fundamentals of nuclear reactor physics[END_REF][START_REF] Hébert | Applied reactor physics[END_REF][START_REF] Weston | Nuclear reactor physics[END_REF].

In a classical computational setting, numerical models discrete the governing equations, approximating the solution fields in different ways. The current mature industrial standard codes use different nodal methods to represent the field with node average value followed by pin power reconstruction in each node, such as CORCA-3D [START_REF] An | Development and validation of reactor nuclear design code CORCA-3D[END_REF], COCAGNE [START_REF] Calloo | Cocagne: EDF new neutronic core code for ANDROMEDE calculation chain[END_REF], SIMULATE-5 [START_REF] Bahadir | Studsvik's next generation nodal code simulate-5[END_REF], ANC9 [START_REF] Boyd | The whitestar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance[END_REF], PARCS [START_REF] Downar | Parcs: Purdue advanced reactor core simulator[END_REF], DONJON4 [START_REF] Hébert | Chambon rjÉpdmmq, canada, tech. rep. ige-300[END_REF], DYN3D [START_REF] Baier | reactor dynamics code dyn3d-models, validation and applications[END_REF], SCOPE2 [START_REF] Tatsumi | Pwr core tracking using a next-generation core calculation code, scope2[END_REF], Bamboo-Core [START_REF] Yang | Development and verification of pwr-core fuel management calculation code system necp-bamboo: Part ii bamboo-core[END_REF], DIF3D-VARIANT [START_REF] Smith | Pwr core tracking using a next-generation core calculation code, scope2. DIF3D-VARIANT 11.0[END_REF] etc. The typical computational time for one simulation of the whole core amounts to 30 seconds as reported in [START_REF] Argaud | Sensor placement in nuclear reactors based on the Generalized Empirical Interpolation Method[END_REF].

The recent programs such as CASL [START_REF] Szilard | The consortium for advanced simulation of light water reactors[END_REF], NURESIM [START_REF] Bradley | Neams update[END_REF] and NURESIM [START_REF] Chauliac | Nuresim -a european simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[END_REF] apply different strategies to develop the next generation high-fidelity simulation tools for NPP. Many of the codes developed are finite element-based with high-fidelity model and even coupled with other codes. For example, under CASL, the core simulator portion of VERA-CS [START_REF] Kochunas | Vera core simulator methodology for pressurized water reactor cycle depletion[END_REF], uses the advanced method of characteristics (MOC) to solve the neutron transport equations (MPACT code), coupled with the sub-channel analysis code CTF and the fuel performance code BISON directly. However, even with High-Performance Computing (HPC), the computational demand of such high-fidelity codes is far too high for a routine industrial application [START_REF] Wang | Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application[END_REF]. Thus the scientifically attractive approach remains a perception that it's immediately industrial adoption is currently impractical, due to the required computer power and the often strict time schedules for design and operation usage. However, this does not imply that the high-fidelity scheme is not viable in the long-term, especially in cases where there are no strict time constraints, e.g., to create a detailed understanding of design/operational effects, such as validation of a new type core [START_REF] Kochunas | Vera core simulator methodology for pressurized water reactor cycle depletion[END_REF].

In general, these tools quoted above meet the criteria for a digital model, but they are far from the level of constructing an real-time operational digital twin on their own. However, they can still serve a role in support of operational digital twin as a basis using reduced-order modelling (ROM) techniques. Particularly, further advances in ROM may help the investments in high-fidelity simulation give much return in the digital twin framework.

Reduced order models for digital twins

The reduced order modelling [START_REF] Bebendorf | Comparison of some reduced representation approximations[END_REF] offers new opportunities in reduction of computational effort that neutron simulation codes demand, without significant loss of precision. Therefore ROM is another key technology for real-time operational digital twin development for operation support. We refer to the recent surveys [START_REF] Antoulas | A survey of model reduction methods for large-scale systems[END_REF][START_REF] Benner | A survey of projection-based model reduction methods for parametric dynamical systems[END_REF][START_REF] Chinesta | Model Order Reduction: a survey[END_REF] for a thorough introduction to ROM.

Typically ROM is intrusive, requiring full knowledge of the governing equations and the numerical strategy of the full model of the underling physical system. A general way to construct the intrusive ROM is to project the (highfidelity) full-order model onto the reduced space [START_REF] Benner | A survey of projection-based model reduction methods for parametric dynamical systems[END_REF]. In most of nuclear engineering applications, access(probe) to the detail numerical frame of proprietary/commercial codes is generally unavailable. Thus the full model code is always viewed as black-box solver by users, which in turn limits the implementation of traditional ROM. In contrast, nonintrusive ROM aims to construct reduced order model by building the input-output map of the input parameter and the reduced basis through interpolation [START_REF] Ly | Modeling and control of physical processes using proper orthog-onal decomposition[END_REF][START_REF] Xiao | A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications[END_REF], regression [START_REF] Audouze | Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis[END_REF][START_REF] Audouze | Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations[END_REF][START_REF] Xiao | Non-intrusive reduced order modelling of fluid-structure interactions[END_REF], machine-learning [START_REF] Hesthaven | Non-intrusive reduced order modeling of nonlinear problems using neural networks[END_REF][START_REF] Hugo | Construction of reduced-order models for fluid flows using deep feedforward neural networks[END_REF][START_REF] César Quilodrán Casas | A reduced order deep data assimilation model[END_REF] or other approaches [START_REF] Mainini | Surrogate modeling approach to support real-time structural assessment and decision making[END_REF][START_REF] Peherstorfer | Data-driven operator inference for nonintrusive projection-based model reduction[END_REF][START_REF] Benner | Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[END_REF][START_REF] Chakir | A non-intrusive reduced basis approach for parametrized heat transfer problems[END_REF]. Thus non-intrusive ROM is amenable to representation simulation components of the digital twin as primarily real-time.

Data assimilation with ROM for digital twins

ROM also offers new opportunities for the integration of simulation models and physically observable quantities, which may be in a small-data scenarios. These approaches are also regard as data assimilation with ROM [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF], where the data is incorporated into a reduced model, see recent works [START_REF] Helin | Data assimilation with reduced basis and noisy measurement: Applications to nuclear reactor cores[END_REF][START_REF] Argaud | Sensor placement in nuclear reactors based on the Generalized Empirical Interpolation Method[END_REF][START_REF] Cheng | Observation data compression for variational assimilation of dynamical systems[END_REF][START_REF] Cohen | State estimation-the role of reduced models[END_REF] for detail description of this framework. This framework makes the combination of simulation model with measurement data more efficient to realise real-time operational digital twin. In more detail, simulation models of the digital twin are represented by reduced basis, while the coefficients of the reduced basis and the caused input parameters are determined with observations in an inverse framework. In the offline phase, ROM provides a way to learn the behaviour of the underline physical system, thus allows extracting the principal component information of the system and further more providing a guideline to set the amount and locations of instruments needed for economical consideration [START_REF] Argaud | Sensor placement in nuclear reactors based on the Generalized Empirical Interpolation Method[END_REF]. In the online phase, ROM speeds up computations allowing better explorations of the parameter space at an acceptable computational cost to meet the real-time requirement of operational objective.

Previous work

Our previous work [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] constructed a prototype of RPODT, that combines reduced-order models with machine learning to predict neutron flux and power distributions in a real-time level. The digital twin is not only able to solve forward problems given an input parameter, but also to solve inverse problems given some extra measurements. In the offline phase, the proper orthogonal decomposition (POD) is used to extract the reduced models, while the machine learning techniques, namely, K-nearest neighbours (KNN) and Decision tree (DT) are used to learn the map of the input-parameters and coefficients of the reduced basis. Thereafter the high-fidelity fields are able to be solved in a non-intrusive ROM way. In the online phase, the real time input parameters are used to rapidly reconstruct the neutron field with the digital twin. Further more, the input parameters can be adapted based on the real time measurements in an inverse framework. The effectiveness of the framework is illustrated based on HPR1000 [START_REF] Li | 177 Core Nuclear Design for HPR1000[END_REF] reactor core modelled by two-group neutron diffusion equations affected by the general input parameters of the reactor, such as control rod inserting step, burnup, power level and temperature of the coolant, etc. However, the investments in efficient forward and inverse methods in the digital twin may need further advances. For example, building a forward model with nonlinear machine learning is worth trying, in order to catch the non-linear dependence of the parameter. In building the inverse model, the naive approach shall be replaced with more meaningful methods with theoretical guidance, and the robustness with respect to observation noise shall also be investigated.

Contributions of this work

In the previous work of [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF], the general POD is used to construct the reduced model in a linear framework. Several works [START_REF] Kashima | Nonlinear model reduction by deep autoencoder of noise response data[END_REF][START_REF] Toby | An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion[END_REF][START_REF] Quilodrán-Casas | Adversarial autoencoders and adversarial LSTM for improved forecasts of urban air pollution simulations[END_REF] have highlighted the connection between AE and SVD (or POD), additionally, by choosing nonlinear activation functions, AE with SVD paves a way to perform nonlinear dimensionality reduction. Particularly, recent works [START_REF] Toby | An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion[END_REF][START_REF] Quilodrán-Casas | Adversarial autoencoders and adversarial LSTM for improved forecasts of urban air pollution simulations[END_REF] provide a novel hybrid SVD AE in developing the reduced-order model to solve eigenvalue problems of neutron diffusion equations, and its efficiency is illustrated numerically via a one dimension and two dimension benchmark problems. Though the SVD AE was implemented in an intrusive way as a projection-based ROM in [START_REF] Toby | An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion[END_REF], it is more suitable for implementation in a non-intrusive way directly. One of our main contribution in this work it to adapt the SVD AE to build a non-intrusive ROM which is able to couple with any industry code in building the real-time operational digital twin. The non-intrusive property is achieved again by KNN or DT to map the input parameter to the latent space i.e., the coefficients of the reduced basis. As we will show later, the SVD AE provides more accurate result than linear POD does.

Further more, because of the high-efficiency of the machine learning based ROM forward model, when constructing the inverse model to infer the input parameter with online sensor data, we proposed a relatively naive approach in [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] to approximate the model parameters from an ensemble of samplings generated using LHS around the initial guess. Meanwhile, the latest progress of data assimilation in latent space [START_REF] Mathis Peyron | Latent space data assimilation by using deep learning[END_REF][START_REF] Amendola | Data assimilation in the latent space of a neural network[END_REF][START_REF] Buizza | Data learning: Integrating data assimilation and machine learning[END_REF][START_REF] Cheng | Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting[END_REF][START_REF] Liu | Enkf data-driven reduced order assimilation system[END_REF] (also called latent assimilation) with machine learning make it possible to further simplify our inverse problem instead of the naive sampling approach. Thus our second contribution in this work it to adopt the generalised latent assimilation to solve the inverse problem, which ensures the high efficiency of the operation digital twin. Further more, the robust of the inverse algorithm with respect to observation noise is also tested, which shows a satisfactory result for engineering usage.

Digital twin architecture and methodology

A typical architecture of RPODT involves forward and inverse models. The forward model is a non-intrusive reduced order model, which permits to solve the forward problem for a given input parameter in a second or even less to meet real time properties. Particularly, we propose a machine learning based SVD AE to build the forward model in this work. Meanwhile, the CORCA-3D code, referred to as the high-fidelity model, is used to provide high-fidelity solutions for training the reduced order model. The inverse model is realized in a generalised latent assimilation framework, with a combination of the non-intrusive reduced order model and online observations from a nuclear reactor core, to identify which input parameter should comprise the current state.

Forward model: machine learning based SVD AE

This section briefly describes the key stages of constructing a non-intrusive reduced order model, including preparing high-fidelity snapshots, computing the reduced basis and SVD AE, learning the map from input parameter space to reduced space with machine learning, and constructing a projection-based reduced-order model.

High-fidelity snapshots

Consider a reactor core that maps an input parameter 𝝁 onto the power distribution field 𝑢, i.e., the power field 𝑢 varies in space, and depends on the input parameter of the system. Thus we have 𝑢 ∶ Ω ×  → ℝ, with the input parameter domain  ⊂ ℝ 𝑝 of dimension 𝑝 and the spatial domain Ω ⊂ ℝ 𝑑 which represents the reactor core of dimension 𝑑. In our practical nuclear engineering applications, the power field 𝑢(𝒓, 𝝁) is solved with the proprietary CORCA-3D code package [START_REF] An | Development and validation of reactor nuclear design code CORCA-3D[END_REF]. The solution manifold  ∶= {𝑢(𝒓, 𝝁)| 𝒓 ∈ Ω, 𝝁 ∈ } is composed of solutions of all possible input parameters from . For brevity, in the left part of this work, we omit 𝒓 and denote by 𝑢(𝝁) the parameter-dependent field unless otherwise specified.

Computing the reduced basis

The ROM aims to provide an efficient low-dimensional representation of the snapshots. Such a representation can be achieved using reduced basis [START_REF] Maday | Reduced basis method for the rapid and reliable solution of partial differential equations[END_REF][START_REF] Argaud | Sensor placement in nuclear reactors based on the Generalized Empirical Interpolation Method[END_REF][START_REF] Cheng | Observation data compression for variational assimilation of dynamical systems[END_REF], particularly the POD basis [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. II. Symmetries and transformations[END_REF][START_REF] Gong | Reactor power distribution detection and estimation via a stabilized gappy proper orthogonal decomposition method[END_REF], which is typically computed using discrete sampled training data, i.e., snapshots sampled from . Consider a collection of 𝑁 snapshots  = {𝒖(𝝁 𝑘 )} 𝑁 𝑘=1 corresponding to a discrete parameter set  𝑁 = {𝝁 1 , ..., 𝝁 𝑁 } ⊆ , where the 𝑀-dimensional vector 𝒖 ∈ ℝ 𝑀 is the discrete version of the power field 𝑢. Define the snapshot matrix 𝑺 ∈ ℝ 𝑀×𝑁 which contains the snapshots 𝒖(𝝁 𝑘 ) as its columns. The correlation matrix 𝐂 is then-formed by computing the inner product between each pair of snapshots, i.e.,

𝐂 𝑖,𝑗 = 1 𝑁 (𝒖 𝑖 , 𝒖 𝑗 ), ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁. (1)
The eigenvalues { 𝜆 𝑖 } and the corresponding eigenvectors { 𝒗 𝑖 } of 𝐂 are then computed. The 𝑗-th POD basis 𝒒 𝑗 is given by a linear combination of snapshots

𝒒 𝑗 = 𝑁 ∑ 𝑖=1 𝒗 𝑖 𝑗 𝜙 𝑖 , (2) 
where 𝑣 𝑖 𝑗 denotes the 𝑖-th element of the 𝑗-th eigenvector. The magnitude of the 𝑗-th eigenvalue 𝜆 𝑗 describes the relative importance of the 𝑗-th POD basis. Assemble the first 𝑛 POD basis in a matrix 𝑽 𝑛 = [𝒒 1 , ..., 𝒒 𝑛 ] ∈ ℝ 𝑀×𝑛 . Among all orthonormal bases of size 𝑛, the POD basis minimizes the least squares error of the reconstruction of snapshot matrix 𝑺,

min 𝑽 𝑛 ‖𝑺 -𝑽 𝑛 𝑽 𝑇 𝑛 𝑺‖ 2 𝐹 = 𝑁 ∑ 𝑘=𝑛+1 𝜆 𝑘 . ( 3 
)
Thus the POD basis provides an efficient low-dimensional representation of the field in the manifold . For any 𝒖(𝝁) ∈ , the 𝑛-dimensional representation of 𝒖(𝝁) is approximated by

𝒖(𝝁) 𝑛 = 𝑛 ∑ 𝑖=1 𝛼 𝑖 (𝝁)𝒒 𝑖 . (4)

SVD autoencoder

Traditional POD with equation 4 provides an linear expansion of 𝑢(𝝁) with POD basis. Autoencoders provide a nonlinear model reduction alternative to POD/SVD [START_REF] Kashima | Nonlinear model reduction by deep autoencoder of noise response data[END_REF], that may capture features of the high-fidelity snapshots more efficiently. An autoencoder is an unsupervised learning technique in which we leverage a special type of feed-forward neural network for the task of representation learning. In particular, we build a neural network architecture which forces a reduced representation of the original input data by imposing a bottleneck .

As shown in Figure 1, the core of a SVD AE is an autoencoder, which is composed of two networks: the encoder and the decoder, the former maps an input data to the latent variables, and the latter maps from the latent variables to the output data. If we denote the input data by 𝒙 ∈ ℝ 𝑀 , the output data by x ∈ ℝ 𝑀 and the latent variables by x ∈ ℝ 𝑛 , then the autoencoder can be represented as a composition of and encoder and decoder functions,

x = 𝑓 AE (𝒙, 𝒘 AE ) = 𝑓 DEC ( x, 𝒘 DEC ) = 𝑓 DEC (𝑓 ENC (𝒙, 𝒘 ENC ), 𝒘 DEC ), (5) 
where 𝑓 AE , 𝑓 ENC , and 𝑓 DEC represent the autoencoder, encoder, and decoder, with associated weights 𝒘 AE , 𝒘 ENC and 𝒘 DEC respectively. The encoder and the decoder are then trained jointly with the mean square error (MSE) as the loss function

𝐽 (𝒘 ENC , 𝒘 DEC ) = 1 𝑁 AE train 𝑁 AE train ∑ 𝑗=1 ‖𝒙 𝑗 -x𝑗 ‖ 2 , ( 6 
)
where 𝑁 AE train represents the size of the AE training dataset. Figure 1 gives an example of the architecture of SVD AE with a fully connected autoencoder with three encoder layers and three decoder layers. With this network, a twelve-dimensional high-fidelity field 𝒖 is first reduced into a six-dimenaional variable 𝒙 in the form of reduced basis coefficients 𝜶, then this six-dimenaional variable is compressed into one latent variable x and then expands back to the original six-dimenaional variable x, with the six-dimenaional variable as coefficients α of the six reduced basis {𝒒 1 , ..., 𝒒 6 }, the field û can be reconstructed in the form of û = ∑ 6 𝑖=1 𝛼 𝑖 𝒒 𝑖 .

The combination of POD and AE (also known as SVD AE) was introduced in the recent works of [START_REF] Toby | An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion[END_REF][START_REF] Quilodrán-Casas | Adversarial autoencoders and adversarial LSTM for improved forecasts of urban air pollution simulations[END_REF] for constructing a reduced-order model of neutron diffusion eigenvalue problems. This method consists of two stages of dimension reduction. In the first stage, we apply the POD to obtain the principle components of the associated field; in the second stage, we use the first 𝑛 principle components' coefficients (corresponding to the first 𝑛 largest eigenvalues) as input data to train a dense autoencoder with fully connected neural networks to further reduce the problem dimension by learning the nonlinearity of the field. As pointed out by [START_REF] Toby | An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion[END_REF], since the POD considerably reduces the size of the input data (compared to using high-fidelity data) in AE, applying fully connected neural networks layers is computationally affordable without concerning over-parameterization. Thus the input data of SVD AE is the first 𝑛 POD coefficients 𝒙 = 𝜶 = (𝛼 1 , ..., 𝛼 𝑛 ) 𝑇 ∈ ℝ 𝑛 , and the latent variables x is of dimension 𝑟, with 𝑟 < 𝑛. In this work, we use the 𝛼-leaky rectified linear unit (𝛼-LReLU) as the activation function of neural networks, where 𝛼 = 0.2 as suggested in [START_REF] Moritz Geist | Numerical solution of the parametric diffusion equation by deep neural networks[END_REF]. The detail structure of the SVD AE used in this work is summarised in Table 1. x and then expands back to the original six-dimenaional variable x, with the six-dimenaional variable as coefficients α of the six reduced basis {𝒒 1 , ..., 𝒒 6 }, the field û can be reconstructed in the form of û = ∑ 6 𝑖=1 𝛼 𝑖 𝒒 𝑖

Non-intrusive reduced order model

Once the reduced space is constructed by POD or SVD AE, the final work to build a non-intrusive ROM is to construct a map from the input parameter vector 𝝁 to the coefficients of the reduced space. As noted in [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF], DT and KNN are more fit for engineering applications with limited data [START_REF] Khayyam | Limited data modelling approaches for engineering applications[END_REF], that is exactly the circumstances we are interested in this work. We follow the work [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] and use DT and KNN to learn the input-output map, and we further denote the non-intrusive machine learning forward model by 𝑓 ML (𝝁). For SVD AE, in the train stage, the input data is the first 𝑛 POD coefficients 𝜶(𝝁) and the output data is the latent variable x, thus we have

x(𝝁) = 𝑓 ENC (𝜶(𝝁)). ( 7 
)
Once x is solved by 𝑓 ENC (𝜶(𝝁)) for a training set of 𝝁, we can train the map from 𝝁 to x with DT or KNN algorithm, Then we use the POD basis to recover the high-fidelity field 𝒖 ML for a given 𝝁. In the end, 𝒖 ML (𝝁) can be represented by 𝑓 ML (𝝁) as follows,

x(𝝁) = 𝑓 ML (𝝁). (8) 
𝒖 ML (𝝁) = 𝑓 ML (𝝁) = 𝑽 𝑛 αML (𝝁) = 𝑽 𝑛 xML (𝝁) = 𝑽 𝑛 𝑓 DEC ( xML (𝝁)) = 𝑽 𝑛 𝑓 DEC (𝑓 ML (𝝁)). (9) 
Note here that, the setting of the hyper-parameters of DT and KNN are the same as used in [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF], and we will show later in the Section 3.3.

Inverse model with generalised latent assimilation

For the inverse modelling, only partial observations of the entire field are available. Data-driven models such as data assimilation (DA) approaches can be applied [START_REF] Arridge | Solving inverse problems using data-driven models[END_REF][START_REF] Cheng | Error covariance tuning in variational data assimilation: application to an operating hydrological model[END_REF]. Recently, latent assimilation techniques are introduced in the work of [START_REF] Amendola | Data assimilation in the latent space of a neural network[END_REF][START_REF] Mathis Peyron | Latent space data assimilation by using deep learning[END_REF][START_REF] Cheng | Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting[END_REF] where the DA is performed after having compressed the state and the observation data into the same latent space. However, as noted in the work [START_REF] Cheng | Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models[END_REF], it is almost infeasible to compress the full state space and observations into a same latent space in a wide range of DA applications, where only a part of the state are observable. Thus in this work, the Generalised Latent Assimilation (GLA) is used, in which we split the observations and the background field into two parts, that only the background field stays in the latent space. In this work, the background state 𝝁 𝑏 is of dimension four and represents the initial guess of the four model parameters. Applying the machine learning forward model 𝑓 ML and the decoder function 𝑓 DEC , a background prediction of the full physical space can be obtained,

𝒙 𝑏 = 𝑓 DEC (𝑓 ML (𝝁 𝑏 )). (10) 
Denote by  full the transformation function which links the full physical field 𝑽 𝑛 𝒙 to observations 𝒚, i.e., 𝒚 =  full (𝑽 𝑛 𝒙) + 𝜖 𝑦 , [START_REF] Bebendorf | Comparison of some reduced representation approximations[END_REF] where 𝜖 𝑦 is the observation error, supposed to be centered Gaussian in this paper. Applying variational assimilation to estimate the model parameters 𝝁 will lead to the loss function,

𝐽 = 1 2 ||𝝁 -𝝁 𝑏 || 2 𝑩 -1 + 1 2 ||𝒚 - full (𝑽 𝑛 𝑓 DEC (𝑓 ML (𝝁)))|| 2 R -1 (12) 
where B and R denote the prior errors in the state and the observation space, respectively [START_REF] Cheng | Background error covariance iterative updating with invariant observation measures for data assimilation[END_REF]. However, as pointed out by the recent works of [START_REF] Cheng | Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models[END_REF][START_REF] Cheng | Parameter flexible wildfire prediction using machine learning techniques: Forward and inverse modelling[END_REF], the minimisation of equation ( 12) can be challenging due to the complexity and the non-differentiability of ML functions. Following their ideas, we make use of the GLA algorithms by computing a local polynomial surrogate functions that links 𝝁 and 𝒚. More precisely, LHS is performed to build a polynomial regression (PR) learning ensemble {𝝁 𝑞 𝑏 } 𝑞=1..𝑛 𝑠 around the background state within certain range 𝑟 𝑠 . We then fit the forward model and the decoder fundction by a local polynomial function 𝑝 , i.e.,

𝑝 = argmin

∈𝑃 (𝑑 𝑝 ) ( 𝑛 𝑠 ∑ 𝑞=1 ||𝑝(𝝁 𝑞 𝑏 ) - full (𝑽 𝑛 𝑓 DEC (𝑓 ML (𝝁 𝑏 ))|| 2 2 ) 1∕2 , ( 13 
)
where 𝑃 (𝑑 𝑝 ) denotes the set of polynomial functions of degree 𝑑 𝑝 and {𝑑 𝑝 , 𝑛 𝑠 , 𝑟 𝑠 } are the hyperparamters of the GLA algorithm. Thus, the cost function 𝐽 GLA of GLA problems reads:

𝐽 GLA = 1 2 ||𝝁 -𝝁 𝑏 || 2 𝑩 -1 + 1 2 ||𝒚 -𝑝 (𝝁)|| 2 𝑹 -1 , ( 14 
)
𝒙 𝑎 = argmin 𝒙 𝐽 GLA . ( 15 
)
A flowchart of the GLA is illustrated in Figure 2 and the algorithm is summarised in Algorithm 1. )

𝝁 𝑎 = argmin 𝝁 ( 1 2 ||𝝁 -𝝁 𝑏 || 2 B -1 + 1 2 ||y -𝑝 (𝝁)|| 2 R -1
) outputs: 𝜇 𝑎

Hyperparameter tuning

In this study, an ensemble of 18479 CORCA-3D simulations is split into three datasets with 14479, 1000 and 3000 samples, used for training, validation and testing, respectively. The forward machine learning models and ROMs are trained on the training set. The exact networks for the SVD AE approach are shown in Table 1. To select the most appropriate model parameters, the hyperparameter tuning is carried out on the validation dataset as shown in Table 2. 

Application to nuclear reactor physics

Set up of reactor physics operation problems

The realistic engineering background is to reconstruct the power distribution in a reactor core, e.g., during the operation of the PWR HPR1000 [START_REF] Li | 177 Core Nuclear Design for HPR1000[END_REF]. The core is filled with a total of 177 vertical nuclear fuel assemblies, among those 44 are instrumented with self powered neutron detectors (SPNDs) which are used to measure the neutronic activity fields thereafter the power field in the core. In Fig 3, we illustrate a horizontal slice of the HPR1000 core and an axial slice of an assembly with SPNDs implemented in. Because of the symmetry along the 𝑥 and 𝑦 axis, only one quarter of the core is given. The fuel assemblies in gray represent the assemblies with control rod, and those marked with D present the assemblies with SPNDs. We refer to [START_REF] Li | 177 Core Nuclear Design for HPR1000[END_REF] for a glance at HPR1000 and the generic neutronic physical model of the reactor. For the sake of completeness, we list here the description of the model with minor modification. This part is original introduced in [START_REF] Gong | Optimal and fast field reconstruction with reduced basis and limited observations: Application to reactor core online monitoring[END_REF][START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF] for the study of data assimilation and then the first work in RPODT. During the normal operation of HPR1000, two types control rods are used to control the reactor, the first one is compensation rods, which used for coarse control and/or to remove reactivity in relatively large amounts. There are four subtypes compensation rods, i.e., G1,G2,N1,N2. The second one is regulating rods (R rods), which are used for fine adjustments and to maintain desired power or temperature [START_REF] Li | 177 Core Nuclear Design for HPR1000[END_REF]. We consider the power evolution induced by i) the movement of the control rods, ii) the burnup of the nuclear fuel in the whole core, iii) the variation of the power level of the reactor core and iv) the variation of the inlet temperature coolant. The evolution of the power field 𝑢 is modelled by two-group diffusion equations as shown in [START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF], and solved numerically with the advanced node core code package CORCA-3D [START_REF] An | Development and validation of reactor nuclear design code CORCA-3D[END_REF], developed at Nuclear Power Institute of China (NPIC), which is able to solve the 3D few-group diffusion equations, consider the thermal-hydraulic feedback, and the pin-by-pin power reconstruction.

In this work, we treat CORCA-3D as a black box solver with input parameter 𝝁 and output 𝒖. Specifically, the power field 𝒖 is limited to depend on the vector of "general" parameters which give the stage of the life cycle: 𝝁 ∶= (𝑆 𝑡 , 𝐵 𝑢 , 𝑃 𝑤 , 𝑇 𝑖𝑛 ).

(16)

• 𝑆 𝑡 : the inserting steps of control rods, which ranges from 0 to 615. Consider the movement of the compensation rods from all rod clusters out (ARO) to fully inserted (615 steps, considering the overlap steps).

• 𝐵 𝑢 : the average burnup of the fuel in the whole core. It is a measure of how much energy is extracted from the fuel so it is an increasing function in time. It ranges between 0 (for the beginning of the life cycle) and 𝐵 𝑢,max (the end of the life cycle, in this work, we set 𝐵 𝑢,max =2500 MWd/tU) and its exact evolution depends on the operating history of the reactor.

• 𝑃 𝑤 : the power level of the reactor core. It ranges between 0.3 and 1 FP (Full Power).

• 𝑇 𝑖𝑛 : core coolant temperature at inlet. It ranges between 290 and 300 • C.

Thus, 𝒖 can be represented by 𝒖(𝝁) = 𝒖(𝑆 𝑡 , 𝐵 𝑢 , 𝑃 𝑤 , 𝑇 𝑖𝑛 ) implicitly thanks to CORCA-3D. There are 177 fuel assemblies in HPR1000, each assembly is numerically represented using 28 vertical levels. Thus, 𝒖 is a vector of dimension 𝑀 = 4956 (177 × 28). The discrete solution set 𝑺 ∶= {𝒖(𝝁)|𝝁 ∈  𝑠 } consists of 18480 solution snapshots with the parameter sampling scheme  𝑠 ∶= 𝐵 𝑠 𝑢 ⊗ 𝑆 𝑠 𝑡 ⊗ 𝑃 𝑠 𝑤 ⊗ 𝑇 𝑠 𝑖𝑛 , where 𝑆 𝑠 𝑡 = {0, 1, ..., 615}, 𝐵 𝑠 𝑢 = {0, 50, 100, 150, 200, 500, 1000, 1500, 2000, 2500}, 𝑃 𝑠 𝑤 = 𝑅𝑈 3(30, 100), and 𝑇 𝑠 𝑖𝑛 = 𝑅𝑈 3(290, 300), the operator 𝑅𝑈 3(𝑎, 𝑏) represents a random uniform sampling in the closed set [𝑎, 𝑏], (𝑎 < 𝑏) for three times.

The configuration of the observations in node wise can be found in Figure 3, and the observation vector 𝒚 (possibly with noise) is of dimension 𝑚 = 308 (44 × 7) in the whole core. In this work, observations used in the analysis process are not coming from real measurements, but coming from numerical simulations with CORCA-3D. The observations 𝒚 with combination of prior information on the input parameter 𝝁 𝑏 are used to improve the quality in estimating the input parameter 𝝁, thereafter the power field 𝒖. In this work, the case with observation noise is also studied.

Forward model prediction with reduced order model

We first assess the performance of machine learning based reduced order models to solve the forward problem for a given input parameter 𝝁. There are four models considered, the KNN POD model, the KNN SVD AE model, the DT POD model and the DT SVD AE model. In this study, an ensemble of 18479 CORCA-3D simulations is split into three datasets with 14479, 1000 and 3000 samples, used for training, validation and testing, respectively. The forward machine learning models and ROMs are trained on the training set. The detail hyperparameter tuning policy is shown in Table 2.

Figure 4 presents the decay of the first 1000 singular values of the discrete manifold 𝑺 of 18479 CORCA-3D snapshots. As shown in Table 1, We select the first 500 POD basis and the corresponding coefficients to feed the SVD AE, to make sure the truncated error over the discrete manifold less than 10 -5 , which seems to improve three orders of magnitude than just select the first 30 POD basis to build the reduced model directly. In this regards, we try to compress a 500 dimensional POD coefficient information into a 30 dimensional latent variable, by further learning the nonlinearity of the manifold with SVD AE.

For a given input parameter 𝝁 in the test dataset, we first introduce the relative 𝐿 2 error 𝑒 ML as shown in Equation 17to evaluate the quality of each model, where the superscript ML presents the four models quoted above, and 𝒖 True presents the field in the test set, which is regarded as the true field.

𝑒 ML = ‖𝒖 ML -𝒖 True ‖ 𝐿 2 ‖𝒖 True ‖ 𝐿 2 (17) 
To evaluate the overall quality of each model, we then introduce the average relative 𝐿 2 error 𝐸 ML over the test dataset as shown in Equation 18, where 𝑁 test = 3000 in this work. We first show in Figure 5 the behaviour of the first three latent variables for KNN SVD AE and DT SVD AE models in the test dataset. In each figure, the true values are rearranged in ascending order. It is clear that the latent variables learned by KNN stand closer to the true values than DT does, thus KNN based models provide more accuracy results than DT. This could also be confirmed by the results shown in Figure 6.

𝐸 ML = ∑ 𝑁 test 𝑖=1 𝑒 ML 𝑖 𝑁 test (18) 
We illustrate in Figure 6 the average error 𝐸 ML in the full physical space against the dimension of the latent/reduced space for the four models, i.e., the KNN POD, KNN SVD AE, DT POD and DT SVD AE models. We investigated the performance corresponds to the latent/reduced space of dimension 𝑛 = 5, 10, 20, 30. Obviously, compared with the results of POD based forward machine learning models, the accuracy of SVD AE based forward machine learning models has been significantly improved. Particularly, with only 20 latents variables, the SVD AE convergences to the best accuracy, meanwhile, POD needs more than 30 reduced basis, the latter would results more computing resource. 

Inverse model for parameter identification

In this section, we investigate the performance of the inverse model with GLA, given noisy observations 𝒚 =  full (𝒖) + 𝜖 𝑦 , where 𝜖 𝑦 is the observation error, supposed to be centered Gaussian distribution of standard derivation 𝜎.

Before we start to analyse the performance of the inverse model, we first give in Figure 7 the importance rate of input variables in the form of gini coefficient in the DT forward algorithm. It is clear that the control rod inserting step 𝑆 𝑡 is the most important parameter that affects the output of the model, followed by the burnup 𝐵 𝑢 , and the total power level 𝑃 𝑤 . The parameter that has the least impact on the model is inlet temperature. This finding is consistent with common sense in reactor physics from the engineering point of view.

In Figure 8, we illustrate the absolute prior and post errors of the four input parameters for both DT and KNN methods, for the case of noise level 𝜎 = 3%. This is again consistent with the result shown in Figure 7, that 𝑆 𝑡 parameter is more sensitive than other three, thus GLA algorithm improves the estimation of 𝑆 𝑡 a lot both for DT and KNN methods. Considering the different importance of each input parameter, we use the average relative 𝐿 2 error of the reconstructed power field 𝒖 defined in Equation 19 to quantify the quality of the inverse model.

𝐸 ML inverse = ∑ 𝑁 noise 𝑖=1 𝑒 ML (𝝁 𝑎 (𝒚 𝑖 )) 𝑁 noise , ( 19 
)
where 𝑒 ML (𝝁 𝑎 (𝒚 𝑖 )) is the relative 𝐿 2 error defined in Equation 20 for a given observation sample 𝒚 𝑖 .

𝑒 ML (𝒚 𝑖 ) = ‖𝒖 ML (𝝁 𝑎 (𝒚 𝑖 )) -𝒖 True ‖ 𝐿 2 ‖𝒖 True ‖ 𝐿 2 (20) 
The parameter 𝑁 noise is set as follows. If the observation noise level 𝜎 = 0, we set 𝑁 noise = 1, i.e., only one sample is enough. If the noise level 𝜎 ≠ 0, we set 𝑁 noise = 50, i.e., we sample the observation 𝒚 for 50 times in Gaussian distribution, centered at zero with standard derivation 𝜎.

We then show in Figure 9 the prediction results of latent variables with background in blue line and assimilated in yellow line parameters for the test dataset. The observation error level is set to be 𝜎 = 3% for both DT and KNN methods. It is clear that even with noisy observations, our proposed inverse model with GLA is able to make use of observation information, thus improve the estimation of latent variables with respect to a relative bad background (the initial guess). Further more, KNN model provides better estimation than DT does.

The results for the whole test dataset for noise level 𝜎 = 4% and 𝜎 = 8% for both DT and KNN methods are illustrated in Figure 10. In these figures, both background error and assimilated error are shown for comparison purpose. It is easy to find that with GLA, the error of the reconstructed field improves a lot than only using the background information. In more detail, we present in Figure 11 the error evolution of DT and KNN methods when the observation noise level varies from zero to 0.14. In this case, the background error is fixed to be ∼ 0.22. From this figure, from the engineering point of view, once the observation is more accurate than the background, the inverse model we proposed is able to provide improved results than just only using the background information.

Computational performance

The computational work in this paper, including offline training and online predictions are carried out with Intel CPUs (2.30GHz and 26.75Gb RAM) of Google Colab environment. In fact, thanks to the dimension reduction of SVD in the first stage, the training of SVD AE doesn't require the use of GPU which is an important advantage regarding other deep learning (DL)-based AEs. The high-fidelity snapshots are computed with CORCA-3D code package at an industry server at NPIC. The averaged computational time for offline training and online prediction for different ML methods are presented in Table 3. The dimension of the latent space is fixed to be 𝑛 = 30. Particularly, in the online phase, both forward and inverse models can be solved in one second, thus permits the proposed reactor physics operational digital twin to be in real time, which is of practical value from engineering point of view. 

Conclusion

In this paper, a reactor physics operational digital twin is proposed (developed) to predict the power distribution of a nuclear reactor core. The operational digital twin is designed to solve forward problems given operational input parameters, as well as to solve inverse problems given some extra measurements of the power field. Our main contribution is to implement a SVD AE reduced order model to build a non-intrusive forward model with machine learning methods such as KNN and DT, which has a better performance than using general reduced order method such as POD. The second contribution is to apply the generalised latent assimilation method to build the inverse model of the operational digital twin. Benefits from the rapid response of the machine learning based SVD AE forward model, which is far less than solving the forward problem using an industrial code directly. The digital twin is able to evaluate the forward model many times in the iteration process of the GLA based inverse model, thus helps the inverse model to be solved in one second, to realise the real-time property of the operational digital twin.

The operational digital twin is tested through a real engineering problem in nuclear reactor physics i.e., reactor core simulation in the life cycle of HPR1000. Numerical results proved the efficiency and accuracy of the forward/inverse model, even with noisy observations, it is still acceptable from the engineering point view. This work is valuable because of its systematical structure, easy implementable and satisfactory accuracy and time cost for the prediction of operational input parameters and the related power field. Thus it successfully supports the implementation of real engineering scale operational digital twin of nuclear power plants. The framework proposed is general, it can be also adapted to other industry domain to build the operational digital twin. The next work is to bring out the uncertainty qualification of the operational digital twin systematically, to push forward the real engineering applications. 
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 21 Figure 2: Flowchart of the inverse model for parameter identification using GLA.
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 3 Figure3: A quarter of the HPR1000 core in radial direction (white square: fuel assembly with SPNDs, gray square: fuel assembly with control rods, D: fuel assembly with neutron detectors)[START_REF] Gong | Data-enabled physics-informed machine learning for reduced-order modeling digital twin: Application to nuclear reactor physics[END_REF].
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 4 Figure 4: The decay of the first 1000 singular value of the snapshots manifold.
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 5 Figure 5: Prediction results of latent variables (blue) against true values (red) in the test data set.
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 7 Figure 7: Importance rate (gini coefficient) of input variables in the DT forward algorithm.
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 8 Figure 8: Prior and Post error of parameter estimation with 3% of observation error.
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 9 Figure 9: Prediction results of latent variables with background (blue) and assimilated (yellow) parameters in the test data set. The observation error level is set to be 3% for both DT and KNN methods.
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 10 Figure10: Relative prediction error in the full physical space using background and assimilated parameters on the test dataset of 3000 samples.
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Table 1

 1 Neural network structure of the SVD AE

	Layer (type) Output Shape Activation
	Encoder		
	Input	500	
	Dense (128)	128	0.2-LReLU
	Dense (30)	30	0.2-LReLU
	Decoder		
	Input	30	
	Dense 128	128	0.2-LReLU
	Dense 799	500	0.2-LReLU

Table 2

 2 Hyperparmater grid search space

	Model/Hyperparamters	Grid search space	Final set
	DT		
	split criteria	{ 'gini', 'entropy'}	'gini'
	𝑛 features	{ 'log2','sqrt'}	'sqrt'
	KNN		
	𝑘	{ 5,10,20}	5
	Metric	{𝐿 1 , 𝐿 2 }	𝐿 2
	GLA		
	𝑑 𝑝	2-6	4
	𝑛 𝑠	{200, 500, 1000, 2000}	1000
	𝑟 𝑠	10% -100%	30%

Table 3

 3 Averaged

	offline training			online evaluation		
	SVD AE KNN	DT	KNN-based DT-based GLA (KNN) GLA (DT) CORCA-3D
	542.07s	0.01s 0.14s	0.076s	0.079s	0.885s	0.923s	∼ 40s

computational time for offline training and online prediction for different ML methods. The dimension of the latent space is fixed to be 𝑛 = 30.
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