Henrik Abgaryan

Yann Chevaleyre

Ararat Harutyunyan

Tien-Nam Le

House allocation with randomly generated preference lists

Keywords: house allocation, random preference lists, envy-freeness, agents, random trees, sparse graphs, perfect matching

We study the fair division problem consisting in allocating one item per agent so as to avoid envy, in a setting where only agents connected in a given network may experience envy. In our model, all items are distinct and each agent has a preference list which is a total order on the set of items. Our focus is on the case where the preference lists of agents are chosen uniformly randomly and independently, computing the probability of an existence of an envy-free allocation for different networks. Moreover, we give a heuristic, based on matchings in bipartite graphs, which tries to find an envy-free allocation when the given network is sparse.

In this paper we deal with a class of problems to which we refer as house allocation problems. Formally, there are n agents who collectively own n indivisible objects, say houses, and each agent has preferences over objects. An allocation is a matching of houses to agents and a matching mechanism is a systematic procedure to select a matching for each problem. Fairly allocating resources to agents is a fundamental problem in economics and computer science, and has been the subject of intense investigations [START_REF] Bouveret | Fair allocation of indivisible goods[END_REF][START_REF] Chevaleyre | Distributed fair allocation of indivisible goods[END_REF]. We study the fair division problem consisting in allocating one item per agent so as to avoid envy, in a setting where only agents connected in a given network may experience envy. Our paper studies the house allocation problem in the case where lists are uniformly and independently chosen random elements of S n , the set of all n! permutations of n elements. In this setting, our goal is to study the probability that there exists an envy-free assignment in different classes of graphs. On the other hand, as we show that if the graph is a set of non-incident edges (i.e., a perfect matching) then there is an envy-free assignment with at least constant probability, close to 1/2, independent of the number of vertices. We give a heuristic, based on matchings in bipartite graphs, which tries to find an envy-free allocation when the given network is sparse. We also provide statistics on heuristic's performance for different number of nodes of a network.

2. What is the evidence you provide to support your claim? Be precise.

In this paper we show that for specific dense graphs, if a graph consists of disjoint union of bounded number of cliques, then almost surely it does not have an envy-free assignment. To provide an evidence, we prove the following two theorems: Theorem 1. Let ℓ be a fixed integer and suppose that ℓ divides n. Let G be a disjoint union ℓ cliques each of order n/ℓ. Then a.s. G has no envy-free assignment.

We also consider sparse graphs, in particular, some trees and bounded degree graphs, showing that with constant probability there exists an envy-free assignment. We conjecture that this phenomenon should hold for all trees. To provide our claim with evidence we prove the following theorems: Theorem 2. Let G be the star on n + 1 vertices. Then with probability at least 1 12e , G has an envy-free assignment.

Theorem 3. Let G consist of a perfect matching on 2n vertices. Let f (1) = 1 2 and let f (n) = 1 -1 (2n)! f (n -1) for n ≥ 2.
Then G has an envy-free assignment with probability at least f (n). Moreover, f (n) > e -1.5(cosh 1-1) > 0.47 Theorem 4. Let G = P n+1 be the path on n + 1 vertices. There is ϵ > 0 such that G is envy-free with probability at least ϵ for any n.

Moreover we also prove that if G is a graph whose all components have bounded size, then G is envy-free with constant probability. Theorem 5. Let ℓ ≥ 2, let n be divisible by ℓ and let G be n-vertex graph whose each component is K ℓ . Then there is a constant ϵ ℓ > 0 depending only on ℓ such that G is envy-free with probability at least ϵ ℓ .

Finally, we give a heuristic that tries to find an envy-free assignment for general sparse graphs. Our heuristic is based on a matching algorithm.

3. What papers by other authors make the most closely related contributions, and how is your paper related to them? Provide journal references whenever possible. Don't rely only on a conference proceedings.

Abdulkadiro ǧlu and Sönmez (1998) introduced a alternative lottery mechanism to a related class of problems called housing markets. This class differs from house allocation problems in only one point: In house allocation problems agents own a set of houses, whereas in the housing markets each agent owns a particular house. Roth and Postlewaite (1977) show that whenever preferences are strict, there is a unique matching in the core of each housing market, and moreover this matching coincides with the unique competitive allocation. Abdulkadiro ǧlu and Sönmez (1998) introduce the idea of core from random endowments: For each house allocation problem randomly choose an endowment matching with uniform distribution, and select the core (or equivalently the competitive allocation) of the induced housing market. Morever, they show that the core from random endowments is equivalent to the random serial dictatorship. That is, for all house allocation problems both mechanisms select precisely the same lottery over matchings and thus they are two different formulations of the same lottery mechanism [START_REF] Abdulkadiro | Random serial dictatorship and the core from random endowments in house allocation problems[END_REF].

Foley and Duncan K. discuss a fairness measure or the notion of envy, which is very sensitive to the information available to agents [START_REF] Foley | Resource allocation and the public sector[END_REF]. Envy occurs when an agent prefers the share of some other agents over her own. Intuitively, an allocation will be locally envy-free if none of the agents envies other neighboring agents. This notion has been referred as graph, social, or local envy-freeness [START_REF] Cato | Local strict envy-freeness in large economies[END_REF][START_REF] Chevaleyre | Distributed fair allocation of indivisible goods[END_REF][START_REF] Abebe | Fair division via social comparison[END_REF][START_REF] Beynier | Local envy-freeness in house allocation problems[END_REF][START_REF] Aziz | Knowledge, fairness, and social constraints[END_REF][START_REF] Flammini | On social envy-freeness in multi-unit markets[END_REF][START_REF] Bredereck | Envy-free allocations respecting social networks[END_REF]. It finds its origins in Festinger's work on social comparisons which are not made globally but locally, i.e. with respect to an individual's neighbors in the social network [START_REF] Festinger | A theory of social comparison process[END_REF]. [START_REF] Bei | Networked fairness in cake cutting[END_REF]. Have you published parts of your paper before, for instance in a conference? If so, give details of your previous paper(s) and a precise statement detailing how your paper provides a significant contribution beyond the previous paper(s).

No we have not published any part of our paper.

Fairly allocating resources to agents is a fundamental problem in economics and computer science, and has been the subject of intense investigations [START_REF] Bouveret | Fair allocation of indivisible goods[END_REF][START_REF] Chevaleyre | Distributed fair allocation of indivisible goods[END_REF]. Recently, several papers have explored the consequences of assuming in such settings an underlying network connecting agents [START_REF] Abebe | Fair division via social comparison[END_REF][START_REF] Chevaleyre | Distributed fair allocation of indivisible goods[END_REF][START_REF] Bei | Networked fairness in cake cutting[END_REF][START_REF] Beynier | Local envy-freeness in house allocation problems[END_REF][START_REF] Bredereck | Envy-free allocations respecting social networks[END_REF][START_REF] Aziz | Knowledge, fairness, and social constraints[END_REF]. The most intuitive interpretation is that agents have limited information regarding the overall allocation. Two agents can perceive each other if they are directly connected in the graph.

A fairness measure, very sensitive to the information available to agents, is the notion of envy [START_REF] Foley | Resource allocation and the public sector[END_REF]. Indeed, envy occurs when an agent prefers the share of some other agents over her own. Accounting for a network topology boils down to replacing "other agents" by "neighbors". The notion of envy can thus naturally be extended to account for the limited visibility of the agents. Intuitively, an allocation will be locally envy-free if none of the agents envies her neighbors. This notion has been referred as graph, social, or local envy-freeness [START_REF] Cato | Local strict envy-freeness in large economies[END_REF][START_REF] Chevaleyre | Distributed fair allocation of indivisible goods[END_REF][START_REF] Abebe | Fair division via social comparison[END_REF][START_REF] Beynier | Local envy-freeness in house allocation problems[END_REF][START_REF] Aziz | Knowledge, fairness, and social constraints[END_REF][START_REF] Flammini | On social envy-freeness in multi-unit markets[END_REF][START_REF] Bredereck | Envy-free allocations respecting social networks[END_REF]. It finds its origins in Festinger's work on social comparisons which are not made globally but locally, i.e. with respect to an individual's neighbors in the social network [START_REF] Festinger | A theory of social comparison process[END_REF].

In this paper, we are concerned with the allocation of indivisible goods within a group of agents. The setting we study in this paper is arguably one of the simplest in resource allocation, known in economics as house allocation [START_REF] Abdulkadiro | Random serial dictatorship and the core from random endowments in house allocation problems[END_REF][START_REF] Hylland | The efficient allocation of individuals to positions[END_REF][START_REF] Zhou | On a conjecture by Gale about one-sided matching problems[END_REF]: agents have (strict) preferences over items, and each agent must receive exactly one item. In the case of a complete network, envy-freeness is not a very exciting notion in that setting; indeed, for an allocation to be envy-free, each agent must get her top object. When an agent is only connected to a subset of the other agents, she may not need to get her top-resource to be envy-free. The locations of the resources on the graph as well as the connections between the agents are then crucial issues in order to compute a locally envy-free allocation.

A set of objects O (sometimes also referred to as items) and a set of agents N are given. We assume that |O| = |N| = n. Each agent i has a preference relation ≻ i over O (a linear order). Let ≻= (≻ 1 , . . . , ≻ n) denote the preference profile of the agents.

We are also given a network modeled as an undirected graph G with vertex set N and edge set E. Each edge in E represents a relation between the corresponding agents. Two agents are directly connected in the network if they can perceive each other and they may envy each other. An instance of a resource allocation problem is thus described by a tuple ⟨N, O, ≻, G = (N, E)⟩. An allocation A is an assignment of the objects to agents such that each agent receives exactly one object and no object is assigned to two different agent. We denote by A(i) the object assigned to agent i in the allocation A. Thus, since the number of agents and objects are equal, an allocation may be viewed as a permutation σ ∈ S n on the set of objects, where σ(i) is the object assigned to agent i. An allocation A is called locally envy-free or simply envy-free if for no pair of agents we have both (i, j) ∈ E and A(j) ≻ i A(i). The graph G (with a given preference lists (≻ 1 , . . . , ≻ n)) is called envy-free if G has at least one envy-free allocation.

The degree of a vertex v ∈ N, denoted by deg G (v), is the number of edges incident to v. The maximum (respectively, minimum) degree of a graph G, denoted by ∆(G) (respectively, δ(G)) is the maximum (respectively, minimum) degree of its vertices.

Our paper studies the house allocation problem in the case where lists are uniformly and independently chosen random elements of S n , the set of all n! permutations of n elements. In this setting, our goal is to study the probability that there exists an envy-free assignment in different classes of graphs. As one would expect, dense graphs would have very little chance of having an envy-free assignment. For example, the complete graph K n is envy-free if and only if the first items of all the lists are distinct, which happens with probability n! n n → 0. On the other hand, as we will see below, if the graph is a set of non-incident edges (i.e., a perfect matching) then there is an envy-free assignment with at least constant probability, close to 1/2, independent of the number of vertices.

The paper is organised as follows. In section 2, we study dense graphs, showing that if a graph consists of disjoint union of bounded number of cliques, then almost surely it does not have an envy-free assignment. In section 3, we consider sparse graphs, in particular, some trees and bounded degree graphs, showing that the results here are more positive, i.e., with constant probability there exists an envy-free assignment. We conjecture that this phenomenon should hold for all trees. To this end, in section 4, we design an assignment algorithm based on Hall's Marriage theorem that works well for trees, thus showing that it provides evidence for the aforementioned conjecture on trees.

In what follows, we always assume that each vertex of the graph has a preference list which is a random permutation of objects and that the lists are independent. For 4 ease of notation, we often denote the preference list of a vertex v by L v .

Dense graphs

We denote by s 1 , ..., s n as the objects. Let G be a graph of order n. We assume that each vertex has a preference list which is a random permutation of s 1 , ..., s n . Furthermore, the random permutations are independent of each other. We denote by δ(G) the minimum degree of G. The following result is already known and first appeared in [START_REF] Beynier | Local envy-freeness in house allocation problems[END_REF]. We include its short proof. Theorem 6. Suppose that δ(G) ≥ cn, where c > e -1 is some constant. Then almost surely G is not envy-free.

Proof. Consider a fixed assignment σ of objects to people. Suppose that a vertex v is assigned an object s i . We will say that v is non-envious if for every object s appearing on N(v), s i ≻ v s. Clearly, an assignment of objects is envy-free if and only if every vertex is non-envious. Let A v be the event that v is non-envious. Clearly, since preference lists are completely independent, the events A v and A u are independent for all u v. We note also that as preference lists are random permutations, P(A v) = 1). Thus, by Markov's inequality, the probability that there is an envy-free assignment is o [START_REF] Abdulkadiro | Random serial dictatorship and the core from random endowments in house allocation problems[END_REF]. □

In fact, we conjecture that envy-freeness depends uniquely on the density of the graph, i.e., if a graph is sufficiently dense, then almost surely it has no envy-free allocation.

Conjecture 7. Let ϵ > 0 be any fixed constant. Suppose that G is a graph with δ(G) ≥ ϵn. Then the probability that G has an envy-free assignment is o(1).

To support this conjecture, we show that there exist graphs with minimum degree linear in n that a.s. do not have an envy-free assignment. To prove the next theorem, we need to make use of a well-known inequality in probabilistic combinatorics, called McDiarmid's Inequality [START_REF] Mcdiarmid | Concentration for independent permutations[END_REF]. In what follows, a choice is defined to be the position that a particular element gets mapped to in a permutation. Proposition 8 (McDiarmid's Inequality (Simplified Version) [START_REF] Mcdiarmid | Concentration for independent permutations[END_REF]). Let X be a random variable, not identically 0, that is completely determined by m random independent permutations Π 1 , ..., Π m . If there exist d, r > 0 such that • interchanging any two elements in any single permutation can affect X by at most d, and

• for any s > 0, if X ≥ s, then there exist a set of at most rs choices whose outcomes certify that X ≥ s, then for any

0 ≤ λ ≤ E[X], P[|X -E[X]| > λ + 60d rE[X]] ≤ 4e -λ 2 8d 2 rE[X]
Theorem 9. Let ℓ be a fixed integer and suppose that ℓ divides n. Let G be a disjoint union ℓ cliques each of order n/ℓ. Then a.s. G has no envy-free assignment.

Proof. We say that an object i is bad if in each clique i appears at least twice as the first element in the lists of the vertices. It is clear that if there is an envy-free assignment, there can be no bad objects. Now, the probability that i appears exactly twice as the first element in a given clique

is n/ℓ 2 n -2 (1 -1/n) n/ℓ-2 > 1 2eℓ 2 n-ℓ n 2 > 1 10ℓ 2 ,
when n is sufficiently large. Thus, the probability that i is bad is at least (1 10ℓ 2) ℓ . Let X be the number of bad objects. Clearly, E[X] > n(1 10ℓ 2) ℓ . Of course, the events that i is bad and j is bad are not independent. Nevertheless, X depends on random and independent permutations. We note that swapping two elements in a single permutation cannot change X by more than one. Moreover, if X ≥ s, this fact can be certified by exposing only 2ℓs choices, namely, for each of the bad items, the two choices corresponding to two vertices in each clique which certify that that item appears as the first element in the two lists of those vertices. This implies that we may take d = 1 and r = 2ℓ in McDiarmid's inequality. Hence, by applying McDiarmid's inequality with, say, λ = E[X]/2, we obtain that a.s X > 0. □

Trees and sparse graphs 3.1 Perfect Matchings

Before we go on to discuss trees, let us consider the simplest of cases: the graph G is a perfect matching on 2n vertices.

Theorem 10. Let G consist of a perfect matching on 2n vertices. Let f (1) = 1 2 and let f (n) = 1 -1 (2n)! f (n -1) for n ≥ 2. Then G has an envy-free assignment with probability at least f (n). Moreover, f (n) > e -1.5(cosh 1-1) > 0.47 Proof. We proceed by induction. The claim clearly holds for n = 1. For n ≥ 2, pick arbitrarily two matched vertices u, v in G. First, we try to assign items to u and v. The probability that u and v have identical lists is 1 (2n)! . If they do not have identical preference lists, then we can find two items s 1 and s 2 to assign to u and v such that they do not envy each other; indeed, we simply go down their preference lists and find the first position, say i, where the lists differ and assign u and v their respective elements in position i. Next, we remove s 1 and s 2 from the preference lists of all the other vertices. Since there are no edges between u, v and the other vertices, and the preference lists are independent and random, the probability that we have an envy-free assignment for the rest of the graph is at least f (n -1). Thus, the probability that we have an envy-free assignment for G is at least 1 -1 (2n)! f (n -1). Now, we show the bound on f (n). Note that f (n) = n i=1 1 -1 (2i)! . We will use the fact that 1t > e -t-t 2 for 0 < t < 0.69 (cf. [START_REF] Bollobas | Random graphs[END_REF], Chapter 1). For t ≤ 0.5, this latter bound gives 1t > e -3t/2 . Thus,

f (n) = n i=1 1 - 1 (2i)! ≥ n i=1 e -1.5 (2i)! = e -1.5 n i=1 1 (2i)! = e -1.5(cosh 1-1)
The latter value can be calculated to be larger than 0.47. □ Remark 1. One may think that perhaps f (n) can be improved to a function which is always at least 1/2. However, this is false since for n = 2 it can easily be shown that the probability of an envy-free allocation is less than 1/2.

Star

Theorem 11. Let G be the star on n + 1 vertices. Then with probability at least 1 12e , G has an envy-free assignment.

Proof. Let v c be the center of the star and let a c be the top item in the list of v c . Clearly, in an envy-free assignment, a c must be assigned to v c . We say that G is clean if a c is not the top item of any other vertex. Thus, we have

P(G is clean) = 1 - 1 n + 1 n > 1 e Let f (1) = 1 and f (n) = 1 -2 n 2 f (n -1) for n > 1. Note that f (n) > 1 2 n i=3 1 - 4 i 2 = 1 2 × (1 × 5) × (2 × 6) × (3 × 7)...((n -2) × (n + 2)) 3 2 × 4 2 ... × n 2 = 1 12
× (n + 1)(n + 2) (n -1)n > 1 12
We will prove the following claim.

Claim 12. P(G is envy-free | G is clean) ≥ f (n)
Note that from the Claim 12, we know that

P(G is envy-free) = P(G is envy-free | G is clean)P(G is clean) ≥ 1 12e ,
which completes the proof. Thus, it remains to prove Claim 12.

Proof of Claim 12.

P(b is bad) = n -1 n 2 < 1 n . Now, given two items b 1 , b 2
a c , we bound the probability that both of them are bad. In this event, there must exist vertices x, y whose preference list starts with b 1 , a c and b 2 , a c , respectively. Since the preference lists are random and independent we easily have

P(b 1 , b 2 are bad) ≤ (n -1)(n -2) • 1 n 2 2 ≤ 1 n 2
. Now we consider the preference list L v . Since G is clean, a c cannot be the top element of L v . Under the condition that G is clean (which we assume throughout this claim), let F be the event that all items before a c in the list L v are bad. There are two cases possible.

Case C 1 : a c is at the second position of L v and the item at the first position is bad. The probability that a c is at the second position is 1/n and the probability that the first position item is bad was shown to be at most 1/n. Thus, P(C 1) < 1 n 2 . Case C 2 : a c is at the third position or lower in L v (which happens with probability n-1 n and the top two items of L v are both bad (which happens with probability at most 1 n 2 as shown above). Thus,

P(C 2) < n-1 n • 1 n 2 < 1 n 2 . It follows that P(F) ≤ P(C 1) + P(C 2) < 2 n 2 .
Now, if F does not hold, then there is some item b at higher position than a c in L v such that b is not bad. We assign b to v. We remove the element b from the lists of all vertices of U. Since b is not bad, after its removal no vertex of U has a c as its top element. Hence Gv is clean after the removal of b from the lists of all vertices. By induction, we have

P(G -v is envy-free | G -v is clean) ≥ f (n -1)
If Gv has an envy-free assignment, then that assignment with b assigned to v is envy-free. Thus, we have

P(Gis envy-free | G is clean) ≥ P(F c) f (n -1) ≥ 1 - 2 n 2 f (n -1) = f (n). □ □

G is a path

Here we show that in the case of the path, G is also envy-free with a constant probability. For any v, let L 2 v be the top 2 items in L v . We say that a graph

G is 2-clean if L 2 u ∩ L 2 v = ∅ for every pair of neighbors u, v.
The following is a general claim for any tree.

Claim 13.

If G is a tree on n + 1 vertices, and n is sufficiently large, then

P(G is 2-clean) > 1 e 4 .
Proof. Root G at a vertex. Then G is not 2-clean if and only if there is a vertex u such that

L 2 u ∩ L 2 v
∅, where v is the parent of u. For each vertex u and its parent v, the probability that

L 2 u ∩ L 2 v
∅ is at most 4 n+1 . Since there are n such child-parent pairs, we have

P(G is 2-clean) = 1 - 4 n + 1 n > 1 e 4 . □ More generally, let L ℓ v be the top 2 items in L v . We say that a graph G is ℓ-clean if L ℓ u ∩ L ℓ v =
∅ for every pair of neighbors u, v. We have the following analogous claim.

Claim 14.

If G is a tree on n + 1 vertices, with n sufficiently large, then

P(G is ℓ-clean) > 1 e ℓ 2
Proof. The proof is virtually identical; we only have to note that for two adjacent vertices u, v, the probability that

L ℓ u ∩ L ℓ v ∅ is at most ℓ 2 n+1
□ Theorem 15. Let G = P n+1 be the path on n + 1 vertices. There is ϵ > 0 such that G is envy-free with probability at least ϵ for any n.

Proof. We make no effort to optimise the value of ϵ. We will condition on the fact that G is 2-clean. This happens with probability at least e -4 . We define f (n+1

) = P[G is envy-free | G is 2-clean].
We will show that f (n + 1) is at least some constant. Thus, henceforth we assume that G is 2-clean.

For any vertex v, we say that an item b is v-bad if assigning b to v and removing b from the lists of every vertex in Gv renders Gv not 2-clean.

We have the following. Proof. For b 1 to be v-bad, there must exist a vertex u v and a neighbor of u, say u 1 , such that

L 2 u ∩ L 2 u 1
∅ after b 1 is removed from all lists. There are at most 2n ways to pick this pair.

We may assume that only u has b 1 among its list of top two items. The probability of this event is 2 n+1 After removing b, the probability that the original third item in L u is in L 2 u 1 is at most 2 n-1 . Thus, P(b

1 is v-bad) < 2n • 2 n+1 • 2 n-1 < 8 n-1
. We now compute P(b 1 , b 2 are v-bad). If this event occurs, then there must exist two vertices u and w such that b 1 ∈ L 2 u , b 2 ∈ L 2 w and two neighbors of u ′ and w ′ of u and w, respectively, such that third items of the preference lists of u and w are in L 2 u ′ and L 2 w ′ , respectively.

First, consider the case when u = w. Then there are n choices to select u. The probability that

L 2 u = {b 1 , b 2 } is at most 2 n 2 . Moreover, the probability that the third element of L u is in L 2 u ′ is 2 n-1 .
As there are at most two ways to chose a neighbor of u, we have that the probability of this case (u = w) is at most 2n

• 2 n 2 • 2 n-1 < 8 (n-1) 2 .
For the case, u w, there are n(n -1) ways to choose the pair u, w. The probability

that b 1 ∈ L 2 u and b 2 ∈ L 2 w is 2 n+1 2
. There are at most four ways to choose u ′ and w ′ and the probability that third items of the preference lists of u and w are in

L 2 u ′ and L 2 w ′ , respectively, is 2 n-1 2 .
Algorithm 1 Envy-Free House Allocation with Perfect Matching 1: Generate a random tree T (graph) 2: Generate random preference lists for each of n vertices 3: k = coe f f icient × log 2 n (first k preferences of agents) 4: Create auxiliary bipartite graph H = (A, I) where A is the set of agents and I is the set of houses. An agent is adjacent to an item if that item is in top k of its preference list. 5: if H has a perfect matching then 6:

Let P be one of the perfect matchings in H Distribute items to agents according to the matching P 8:

if assignment resulting from P is envy-free in the tree T then Return FALSE 15: end if we add connections from the node set A to I in the following way. An agent a in A is adjacent to an item i in I, if in the preference list of a the item i is among the first k choices. For the fifth step we Recursively search all maximum matchings, and then select the one that is perfect matching. We use f t˘Karp algorithm, for enumerating all possible maximum matchings, which takes as input a bipartite graph and produces as output a maximum cardinality matching -a set of as many edges as possible with the property that no two edges share an endpoint. For deciding weather a maximum matching is perfect or not, we use NetworkX built in function isPer f ectMatching(). We were doing all of the experiments in Google Colaboratory, which allows us to run the codes on the cloud, on Google servers, however the resources are limited.

For the first experiment, we did the following: using NetworkX's built in library we generated random tree with 1000 nodes (n = 1000), with k = 2 3 * log 2 n which is approximately k = 6 then repeated the experiment for 28000 times. We divided the the "big" experiment (28 round) into smaller experiments of size 1000. So in each of that "small" sub experiment we generated the random tree once, and then executed Algorithm 1 starting from line 2 . We repeated the same experiment with different values of k. We have repeated the experiment with different values of fixed k for n = 1000, n = 3000, n = 5000 and n = 10000, and computed envy-free allocation percentages for each case. As a result we found out that for all of the above cases we got approximately 0.4% envy-free allocation. This shows that for trees, independent of their order, we seem to have a constant probability of success, which provides evidence for our aforementioned conjecture.

Experimental Results on trees and sparse graphs with custom value of k

In previous subsection we have provided the algorithm that tried to allocate items to the agents, such that the item is among agent's top k choices, where k was fixed. We showed that for random trees we get around 0.4% envy-free allocations when k is around log 2 n regardless of the number of nodes n.

In this section, we give a slightly modified version of the previous heuristic with custom value of k for each agent(node). To that end we change the value of k in the 3-rd step of the Algorithm 1, evrerything else is the same. The new formula for the value of k is the following:

k = (coe f f icient × log 2 n) deg(agent)
Where deg(agent) is the degree or the number of neighbours of the agent. Where coe f f icient is a parameter. Now instead of fixing the value of k, it dynamically changes based on the number of neighbours(degree) of each agent. To determine the optimal(for the largest envy-free allocation) value of coe f f icient, we have conducted several experiments with different values of coe f f icient. As we can see from Figure 1, we can conclude that the selection of coe f f icient does not depend on the number of nodes in random tree, and the percentage of envy-free allocation is again around 0.4%. Indeed the the results obtained from this new algorithm with custom value of k are the same as in Algorithm 1, and we gained some speed improvements over the previous algorithm with fixed k, as now there are fewer connections in the bipartite graph H in the 4-th step of the new algorithm. We have also conducted the same experiments Erdos-Reyni graphs, with different probabilities. The results in this case coe f f icient depends on the edge density of the graph. We have compared the results with different probabilities p = 2/n, p = 5/n. The results for p = 2/n are presented on Figure 2 and the results for p = 5/n are presented on Figure 3. For Erdos-Reyni random graphs with p = 2/n we have conducted 1000 iterations of the algorithm with uniform value of k, andgot around 0.6% envy-free allocations. For p = 5/n we have conducted 10000 iterations of the algorithm with uniform value of k, and got 0.1% envy-free allocations, the smaller envy-free allocation percentage is because the graph is denser than in the case of p = 2/n. As can be seen in all of these cases, as n increases, we seem to obtain a more or less constant probability of having an envy-free allocation, providing evidence to our conjecture that for sparse graphs, the probability of having an envy-free allocation is bounded away from 0. for random graphs with probability 5/n, and n = 1000, 5000, 10000. Black dots on the plot represent maximum envy-free allocation percentages. The results are based on 10000 run of the experiments.

1 n

 1 1 deg(v)+1 for every vertex v. Thus, clearly P(σis envy-free) ≤ 1 δ(G) + Thus, the expected number of envy-free assignments is at most n! 1

1 n 2

 12 Fix an arbitrary vertex v v c and call U = V(G)-{v, v c }. An item b a c is called bad if there is some u ∈ U such that the preference list L u of u starts with b at the top and a c right after it, i.e., L u = [b, a c , ...]. Note that the probability that L u = [b, a c , ...] is for a given vertex u ∈ U, and there are n -1 such vertices u. Thus,

Claim 16 .

 16 Let v be any vertex and b 1 , b 2 any two items. Then P(b 1 is v-bad) < 8 n -1 and P(b 1 , b 2 are v-bad) < 72 (n -1) 2

Figure 1 :

 1 Figure 1: Envy-Free allocation percentages based on different values of coef f icient in k = (coe f f icient×log 2 n) deg(agent)for random trees with n = 1000, 5000, 10000 . Black dots on the plot represent maximum envy-free allocation percentages. The results are based on 1000 run of the experiments.

Figure 2 :

 2 Figure 2: Envy-Free allocation percentages based on different values of coef f icient in k = (coe f f icient×log 2 n) deg(agent)for random graphs with probability 2/n, and n = 1000, 5000, 7500, 10000, 15000. Black dots on the plot represent maximum envy-free allocation percentages. The results are based on 1000 run of the experiments.

Figure 3 :

 3 Figure 3: Envy-Free allocation percentages based on different values of coe f f icient in k = (coe f f icient×log 2 n) deg(agent)

1 Introduction 1 .

 11 What is the main claim of the paper? Why is this an important contribution to the autonomous agents and multi-agent systems literature?

	*American	University	of	Armenia,	Computer	Science,	Email:	hen-
	rik_abgaryan21@alumni.aua.am						
	† LAMSADE, Université Paris-Dauphine, PSL Research University, 75016 Paris, France. Email:
	yann.chevaleyre@dauphine.fr						
	‡ LAMSADE, CNRS, Université ParisDauphine, PSL Research University, 75016 Paris, France.
	Email:ararat.harutyunyan@dauphine.fr				
								

§ Yelp, United Kingdom

Thus, the probability in this case 4n(n -1)

(n-1) 2 . Thus, P(b 1 , b 2 are v-bad) < 72 (n-1) 2 . □

We are now ready to finish the proof of the theorem. Note that there exist a constant δ > 0 such that f (n) > δ for all n < 10. Thus, we may assume that n ≥ 10. Let P n+1 = v 1 v 2 ...v n+1 and suppose that P n+1 is 2-clean. Let b 1 , b 2 be the items in L 2 v 1 . Suppose that b i , for some i ∈ {1, 2}, is not v 1 -bad. Then we assign b i to v 1 and remove v 1 from P n+1 and b i from the lists of all the remaining vertices. The remaining graph is still 2-clean, and v 1 will not envy v 2 for any assigment to v 2 . Moreover, since P n+1 is 2-clean v 2 will not envy v 1 provided it gets assigned an item from L 2 v 2 . Thus, by induction, f (n + 1) = 1 -72 (n-1) 2 f (n). It now follows that there exists ϵ 0 > 0 such that f (n + 1) > ϵ 0 . Finally, P n+1 is 2-clean with probability at least e -4 from which it follows that the probability that P n+1 is envy-free is at least e -4 ϵ 0 . □ Conjecture 17. There is a constant ϵ > 0 such that for any tree T, T is envy-free with probability at least ϵ.

In fact, we think that the conjecture holds also for graphs where the average degree is bounded.

Graphs with bounded components

In this section we prove that if G is a graph whose all components have bounded size, then G is envy-free with constant probability.

Theorem 18. Let ℓ ≥ 2, let n be divisible by ℓ and let G be n-vertex graph whose each component is K ℓ . Then there is a constant ϵ ℓ > 0 depending only on ℓ such that G is envy-free with probability at least ϵ ℓ .

Proof. Clearly, we may suppose that n is larger than any function of ℓ since with probability at least n! n n > e -n any graph has an envy-free assignment. The proof is divided into two parts. First, again we use the notion of cleanness. For our purposes, 2-clean will suffice.

Lemma 19. G is 2-clean with probability at least e -4ℓ .

Proof of Lemma 19. Orient the edges of G arbitrarily. We have to find the probability that for any arc, the terminal vertex does not have any of its top two items in the first two items of the initial vertex. As before, these events are completely independent for any two arcs. For a given arc uv, the probability that

Our proof is again by recursion, conditional on G being 2-clean. Let F be a component of G and let v 1 , ..., v ℓ be the vertices of F. Suppose that L 2 v i is the ordered pair (a i , b i), i.e., the top item in v i 's list is a i , followed by b i . We suppose that G is 2-clean so that the set

We consider two possible assignments of items to the vertices v 1 , .., v ℓ : (a 1 , ..., a ℓ and (b 1 , ..., b ℓ). If one of these assignments preserves the 2-cleanliness of the rest of the graph after we have erased the respective items from the remaining vertices, we can continue 10 by induction. To this end, let A be the event that G -F is not 2-clean after we remove the items a 1 , ..., a ℓ from the lists of each vertex. Similarly, let B be the event that G -F is not 2-clean after we remove the items b 1 , ..., b ℓ from the list of each vertex. We compute P[A ∩ B]. If the event A ∩ B holds then there is a vertex u and a neighbor of u, say u ′ , and a vertex v (not necessarily distinct from u or u ′) and a neighbor v ′ of v (not necessarily distinct from u or u ′) such that at least one of of a 1 , ..., a ℓ is in L 2 u and the third item of L u is in L 2 u ′ and at least one of of b 1 , ..., b ℓ is in L 2 v and the third item of L v is in L 2 v ′ . The number of ways to choose the vertices u, u ′ , v, v ′ is at most ((n -ℓ)ℓ) 2 < n 2 ℓ 2 . The worst case for the event A ∩ B is when the vertices u, u ′ , v, v ′ are all distinct and it is easy to see that this implies that

where k < 10ℓ 2 is some integer. Clearly, f (k) is bounded below by a function of ℓ and since ∞ i=1 1

Now, we have that the probability that G is envy-free is at least f (n)e -4ℓ by Lemma 19, which again is bounded below by only a function of ℓ. This completes the proof. □

Experimental Results on trees and sparse graphs:

A matching Algorithm

Experimental Results on trees and sparse graphs with uniform value of k

In previous sections, we showed that for some sparse graphs (in particular, some trees), with large probability we could find an envy-free assignment.

In this section, we give a heuristic that tries to find an envy-free assignment for general sparse graphs. Our heuristic is based on a matching algorithm. Given the graph G, what we want to do is to assign to each vertex an item from its list such that this item is among its top k choices, for some k. In this algorithm, we take k to be fixed value around log n as it is not hard to show that below this threshold almost surely we will not succeed. The hope is that if each vertex gets an item that is not too low in its preference list, then hopefully this will result in an envy-free assignment since the graph is sparse. To do this, we use matchings in bipartite graphs.

For the experiments we extensively used Python programming language. There are several Python packages that we widely used including NetworkX, Numpy, and Matplotlib for visualisations. Before discussing the results of the experiments, let us briefly explain the algorithm. The main steps of the algorithm are below.

On the first step, we generate a random tree T, using NetworkX's built in function. The implementation of the function is the following, it generates a uniformly random Prüfer sequence, then converts that to a tree since there is a bijection between Prüfer sequences of length n-2 and trees on n nodes, the tree is then chosen uniformly at random from the set of all trees on n nodes. For the second step, we use Pythons Random package, for randomly picking n houses from the list of houses, without repeating elements. Then we select the fixed value of k(k is the same for all agents) to consider first k choices of the agent (this will be used later in the algorithm). For the fourth step we use NetworkX built in function for creating bipartite graphs. After creating bipartite graph H = (A, I)