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Optimal Planning of Single-Port and Multi-Port
Charging Stations for Electric Vehicles in Medium

Voltage Distribution Networks
Biswarup Mukherjee, Member, IEEE, and Fabrizio Sossan, Member, IEEE

Abstract—This paper describes a method to cost-optimally
locate and size chargers for electric vehicles (EVs) in power
distribution grids as a function of the driving demand while
respecting the grid’s constraints. The problem accounts for the
notion of single-port chargers (SPCs), where a charger can
interface one EV maximum, and multi-port chargers (MPCs),
where the same charger can interface multiple EVs, leading to
possible cost savings and improved arbitrage of the charging
power. The formulation is capable of accounting for and modeling
the flexibility of EV owners’ in plugging and unplugging their
EVs from and to chargers at different hours of the day, a
factor that can impact chargers’ utilization and thus charging
infrastructure requirements. Simulation results from a synthetic
case study show that implementing MPCs is cost-beneficial over
both SPCs and owners’ flexibility for EVs with small batteries
(16 kWh). However, this cost benefit vanishes when considering
EVs with larger batteries (60 kWh).

Index Terms—EVs; Charging stations; Distribution networks;
Optimal power flow; single-port chargers; multi-port chargers.

I. INTRODUCTION

The massive adoption of electric vehicles (EVs) will play
a central role in decarbonizing road transportation [1]–[4].
Recharging EVs requires to develop an extended and pervasive
charging infrastructure. Reference [5] estimates that, between
2019-2025, more than 2 billion Dollars will be necessary
to improve the public and residential charging infrastructure
across major U.S. metropolitan areas, whereas, in France, 2
billion Euros will be required to achieve the target of 7 million
deployed public and private chargers by 2030 [3], [6]. In
addition to these investments, others will be necessary to adapt
the electrical grid infrastructure, in particular distribution grids.
Indeed, it is well known that the connection of many charg-
ers in distribution grids might lead to congesting substation
transformers and power lines and to violations of statutory
voltage limits (e.g., [7], [8]). This is because distribution grids
were designed to host prescribed amounts of demand and
with predefined voltage gradients on the feeders, which are
altered when massively recharging EVs. The large investments
required to both install suitable charging infrastructure for EVs
and upgrade existing distribution networks motivate the need
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to research formal methods to locate and size EV chargers ac-
counting for realistic driving demand patterns, technical limits
of existing distribution grids, and the cost of the chargers.

In this context, this paper proposes a method to locate
and size EV chargers accounting for the driving demand
and the constraints of existing distribution grids. The method
can model different types of chargers, such as fast and slow
chargers, as well as single-port chargers (SPCs) and multi-
port chargers (MPCs). In addition, it can model the avail-
ability of the EV owners to plug and unplug EVs to and
from public charging stations, an element that can achieve
better utilization of the charging columns, thus impacting the
number of chargers to deploy. The method is thought for an
integrated distribution system operator (DSO)/urban planner
willing to estimate a cost-optimal charging infrastructure while
accounting for the technical limitations of the grid, different
types of chargers, and EV owners’ behaviors.

The problem of planning the EVs recharging infrastructure
is not new and has been extensively investigated in the
literature, although not in the terms proposed in this paper,
as it will be now discussed. A multi-objective planning model
for laying out EV charging stations is proposed in [9], with-
out considering, however, the distribution grid’s operational
constraints. The work in [10] proposes joint planning of EVs
charging stations and distribution capacity expansion, without
modeling, however, MPCs and EV owners’ flexibility. Authors
of [11] proposed a method for the cost-optimal planning of
EV charging stations in a distribution grid considering grid
constraints; however, this work did not consider MPCs that,
as shown in this paper, can lead to different EV chargers
configurations. Optimal planning of charging stations was
also developed in [12], [13], without however including grid
constraints. The work in [14] proposes a planning method
for MPC chargers considering a parking slot; we extend this
notion to a whole distribution grid. In [15], and similarly
in [16], both power flows in a power distribution grid and
traffic flows in a transportation network were used to identify
appropriate nodes to locate and size the EV charging stations.
This work uses a genetic algorithm to solve nonconvex AC
load flows, a formulation that could not scale well to a
large number of EVs, and does not consider voltage and line
ampacities constraints, only the rated power of the nodes. The
work in [17] proposes a data-driven approach for identifying
driving demand and, based on this information, advises system
planners on suitable locations for the charging infrastructure
without considering, however, grid constraints. More recently,
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the work in [18], [19] proposed a two-stage optimization
framework to co-optimize the design and operations of EV
charging, power grid, and gas network. This work does not
include multi-port chargers and EV owners’ flexibility.

In the light of the current state-of-the-art, the main contribu-
tion of this paper is a planning method to site and size chargers
of EVs in distribution grids accounting for grid constraints,
multiple charger typologies, and EV owners’ flexibility in
plugging and unplugging their EVs. The problem is formulated
as an economic optimization and is based on a mixed-integer
linear program (MILP) that can be solved with off-the-shelf
optimization libraries. Results are developed for EVs with two
different battery sizes to illustrate how this impacts recharging
patterns and the final planning results.

The paper is organized as follows. Section II describes the
problem statement, input quantities, and model assumptions.
Section III describes the models adopted in the planning
problem and its formulation. Section IV describes the model of
EV owners’ flexibility. Section V describes the synthetic case
study adopted to test the models. Section VI presents results
and discussions. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Problem statement

It is considered the perspective of an integrated grid op-
erator/urban planner wishing to attain minimum capital in-
vestments to roll out the EV charging infrastructure in a
power distribution grid. More specifically, the objective of
the problem is to identify the location, rating (i.e., fast and
slow charging), and the number of chargers in the grid to
satisfy the charging demand of a given population of EVs at
the minimum capital cost and while respecting the distribution
grid’s constraints.

Both single- and multi-port chargers are considered in the
problem. This is to evaluate the techno-economical benefits of
one or the other configuration, or a mixed one. The distinction
between these two charger typologies is that SPCs have a plug
for each charging column, whereas MPCs have a centralized
AC/DC power conversion stage and multiple ports (each with
a DC/DC converter to enable power flow control to each EV)
to enable the connection of multiple EVs (Fig. 1). As an
MPC might have a smaller AC/DC converter than a group
of SPCs for the same number of plugs, it could lead to
reducing capital investments for the charging infrastructure.
From an operational perspective, MPCs enable arbitraging the
charge among multiple vehicles, offering increased flexibility
for congestion management. Because MPCs do not require the
EV owners to plug and unplug their vehicles from and into a
charger manually, they can also lead to optimized utilization
of the chargers.

Although the proposed methodology is general and can
be adapted to model arbitrary power rating of the charging
stations, we specifically consider two charger ratings for SPCs,
i.e., fast and slow chargers, with kVA rating denoted by F̄ and
S̄ (with F̄ > S̄), respectively. For MPCs, the charger rating
is assumed to be a multiple of S̄ or F̄ .

Fig. 1: Single-port chargers (SPCs) on the left, and multi-port
chargers (MPCs) on the right.

B. Input information and notation

This section introduces the notation and input information
used in the problem. Let index n = 1, . . . , N denote the nodes
of the power grid (see for example Fig. 5), t = 1, . . . , T the
time intervals, and v = 1, . . . , V the EVs. N , T , and V are the
total numbers of nodes, intervals and vehicles, respectively.

1) Input information for EVs: The inputs are the parking
location over time, the EV battery discharging power due to
driving, and the energy storage capacity of the EV batteries.

The EVs’ parking locations are encoded in the following
input binary parameters:

pnvt =

{
1, if EV v is connected to node n at time t
0, otherwise.

(1)

The subscript “nvt”, and similarly other subscripts introduced
in the paper, denotes quantities for node n and vehicle v at
time interval t, and not the product among these indexes. It is
illustrative to mention that because a vehicle can be parked at
one node only, the following inequality holds:

N∑
n=1

pnvt ≤ 1 ∀t and v. (2)

The EV battery discharging power is denoted by pEV-
vt .

This quantity depends primarily on the driving/transportation
demand, but also on other factors, such as driving style and
regenerative breaking, auxiliaries’ consumption (e.g., [20]),
battery self-discharge, and battery state in general. Because
this discharging power is an input quantity, the method pro-
posed in this paper is independent from the specific way it is
computed. For example, it can be computed by way of trans-
port simulations (e.g., [21]), or estimated from experimental
measurements or statistics (e.g., [22]–[24]).

Finally, the energy storage capacity of the EVs is denoted
by Ev .

All these inputs will be exemplified in the case study
description in Section V.

2) Input information for the power grid: The inputs are
the grid topology, lines characteristics, and nodal injections
due to demand and distributed generation. These pieces of
information are necessary to model the operational constraints
of the distribution grid with (linearized) load flow equations
so as to produce chargers deployment plans that are respectful
of grid constraints. They will be formalized when introducing
the grid model.
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C. Overview of the modeling principles and optimization
problem

Figure 2 depicts and introduces all the modeling elements
involved in the planning problem. The figure is now explained,
from top to bottom. At the top of the figure (black and dark
yellow boxes), the evolution in time of the vehicles’ SOCs is
computed as a function of the battery discharging power due
to driving. In order to keep the EVs in a functional state and
satisfy the driving demand of the EV owners, the SOCs should
be within the physical limits (e.g., between 10% and 100%,
or any other configurable range). To this end, the problem
computes when recharging the EVs (red box): a prerequisite
for an EV to be charged is being plugged into a charger (first
blue box from the top), which is in turn possible only when
a vehicle is parked (this information is available from the
input variables pnvt, discussed in the former section). The EV
plugged-in state does not depend on its parking state only but
also on i) a charger availability and ii) EV owners’ availability
to unplug a charged EV and plug in an EV that needs to be
recharged. For example, it is unlikely that an EV is plugged
into a charger in the early morning hours as its owner might
sleep: this flexibility of the owner is specifically modeled with
a dedicated set of constraints, as explained in Section IV.

An additional constraint of the charging problem is that
charging an EV should not engender violations of the grid
operational constraints (green box); the parking location of
the EVs (known from pnvt) establishes the link between the
EVs’ recharging demand and the power demand at the grid’s
nodes, allowing to model grid quantities.

Once all the charging schedules are determined (grey
boxes), they are used to evaluate how many chargers are
needed to meet the recharging demand. The total number
of chargers is finally used to assess the total cost of the
infrastructure, which is the objective function that the problem
minimizes. An additional set of constraints (denoted by the last
blue box) models whether SPCs or MPCs are allowed in the
problem.

The problem is an economical cost minimization formulated
as a MILP program. The problem formulation is presented in
sections III and IV. In particular, elements are introduced in
the following order:
• section III-A describes the EVs recharging model;
• III-B explains the models of the SPCs, MPCs, and the

cost function of the planning problem.
• III-C formulates the grid nodal injections based on the

EVs’ recharging demand and the power grid’s constraints;
• III-D presents the complete formulation of the optimiza-

tion problem;
• III-E describes a linear approximation of the nonlinear

optimization problem;
• III-F extends the model to V2G;
• finally, Section IV describes the constraints to model the

EV owners’ plugging-in and unplugging behaviors.
It is worth remarking that a byproduct of the planning

problem illustrated in Fig. 2 is the optimal recharging policy
that EV owners should adopt to recharge their vehicles. In this
respect, the proposed model assumes that EV owners follow

Fig. 2: The main elements used in the planning problem.

these recharging policies and that the operator can reliably
estimate their recharging needs.

III. METHODS

The problem is formulated as a constrained economic
optimization program with the objective of minimizing the
capital investment of the chargers subject to meeting the
EVs’ recharging demand and respecting the grid’s operational
requirements. All these elements are described here below.

A. Plugged-in state, charging power, and SOC of the electric
vehicles

1) Modeling connection and charging state: For each vehi-
cle v and time interval t, the binary variables f plugged

vt , splugged
vt

define whether the EV is plugged into a fast and a slow
charger, respectively. As an EV cannot be connected to a fast
and slow charger simultaneously, it holds that f plugged

vt and
splugged
vt cannot be active at the same time; moreover, as an

EV can be plugged only when parked, f plugged
vt and splugged

vt can
be active only if at least one pnvt among all nodes is active.
These two requirements can be formalized in the following
inequality constraint:

f plugged
vt + splugged

vt ≤
N∑
n=1

pnvt ∀t and v. (3)

Two additional binary variables per vehicle and time inter-
val, denoted by f charge

vt , scharge
vt , indicate whether a vehicle v is

charging from a fast or a slow charger at time t. As EVs can
charge only when plugged into a charger, it holds that:

f charge
vt ≤ f plugged

vt ∀t and v (4a)

scharge
vt ≤ splugged

vt ∀t and v (4b)



4

Quantities f plugged
vt , splugged

vt , f charge
vt , scharge

vt are variables of the
optimization problem; based on these variables, the charging
power of the EVs, as well as the needs for fast and slow
chargers are determined, as it will be explained next.

2) Charging power: With the above definitions in place,
the charging power of a vehicle v and time t is:

pEV+
vt = f charge

vt · F̄ · cosφF + scharge
vt · S̄ · cosφS , (5a)

where input parameters F̄ and cosφF are the kVA rating and
power factor of the fast charger, respectively, and similarly for
S̄ and cosφS . The reactive power associated to this charging
demand is:

qEV+
vt = f charge

vt · F̄ · sinφF + scharge
vt · S̄ · sinφS . (5b)

It is worth highlighting that chargers are assumed to be
operated on and off, in other words the recharging power
cannot be modulated in intensity. However, the recharging
power of all chargers can be modulated in time, ultimately
achieving power intensity modulation at the aggregated level
and allowing for grid congestion management.

3) Vehicles’ state-of-charge (SOC): The evolution of the
vehicles’ SOC depends on the charging power pEV+

vt , given by
(5a), and the discharging power pEV-

vt , which is an input of the
problem. The SOC of vehicle v at time t is modeled as:

SOCv(t) = SOCv(0) +
Ts
Ev

t−1∑
τ=0

(
η · pEV+

vτ − pEV−
vτ

)
, (6)

where SOCv(0) is the initial SOC (a problem decision vari-
able, as it will be discussed later), Ts the sampling time in
hours, Ev the nominal energy capacity of the EV’s battery (in
kWh), and η is the charging efficiency.

It is worth highlighting that since the discharging power is
assumed estimated directly from the vehicles’ SOCs, it is not
weighted by the efficiency in (6).

Model (6) is linear in the charging power. This model, com-
monly adopted in the literature (e.g. [25]), assumes constant
battery’s voltage and efficiency. These assumptions, which
trade-off accuracy for increased model tractability, can be
considered acceptable in a planning problem with sparse
temporal resolution (e.g., 1 hour). The vehicles’ SOCs should
be within a feasible range, denoted by (SOC,SOC). This
constraint reads as:

SOC ≤ SOCv(t) ≤ SOC. (7)

B. Identifying the need for charging infrastructure

It is now explained how the number of chargers and their
locations are identified. Based on the number of chargers,
the capital investment of the charging infrastructure is then
modeled.

1) Single-port chargers: It is first considered the case of
single-port chargers, which feature an equal number of plugs
and chargers (Fig. 1). The following explanation refers to fast
chargers; for slow chargers, the principles are identical and
not repeated.

The modeling principle used to compute the number of
chargers to install consists in evaluating the maximum number
of chargers in use at each grid node. For example, if at node
2, a maximum of 10 vehicles are simultaneously plugged into
a charger over the whole planning horizon, then 10 chargers
will be necessary to meet the demand for chargers at this node.
This modeling principle is now formalized.

The number of fast chargers in use at a specific grid node
can be evaluated by coupling the information in f plugged

vt (telling
whether an EV is plugged into a charger) and pnvt (the
EV parking location). More specifically, the number of fast
chargers in use at time interval t at node n is the sum over
all vehicles of the product between pnvt and f plugged

vt . The
maximum value over time of this expression is the required
number of fast chargers to be installed, denoted by F chargers

n .
Formally, it is:

F chargers
n = max

t

{
V∑
v=1

pnvt · f plugged
vt

}
, n = 1, . . . , N. (8a)

Because SPC chargers have one plug per charger by design, the
number of available plugs must match the number of chargers.
Say F plugs

n is the number of plugs, then the following equality
constraint must hold:

F plugs
n = F chargers

n . (8b)

For slow chargers, similar expressions hold:

Schargers
n = max

t

{
V∑
v=1

pnvt · splugged
vt

}
, n = 1, . . . , N (8c)

Splugs
n = Schargers

n . (8d)

where Schargers
n and Splugs

n are the number of chargers and of
plugs, respectively.

2) Multi-port chargers: Differently than a SPC, a single
MPC can have have multiple plugs. The numbers of plugs
and chargers now follow from different models, as explained
hereafter.

The number of fast chargers is calculated considering the
variables f charge

vt , which tell, for a given time t, how many
vehicles are recharging at the same time, so providing in-
formation on the rated power required to meet the realized
recharging demand. Following the same principle discussed
above for SPCs, coupling this information with pnvt enables
to locate this power demand in the grid. Formally, the number
of fast and slow MPCs is:

F chargers
n = max

t

{
V∑
v=1

pnvt · f charge
vt

}
, n = 1, . . . , N (9a)

Schargers
n = max

t

{
V∑
v=1

pnvt · scharge
vt

}
, n = 1, . . . , N. (9b)

The number of plugs for, e.g., fast chargers is instead
calculated considering the variables f plugged

vt , which provide the
information of how many vehicles are connected to a charger
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at the same time. Formally, the numbers of plugs for fast and
slow chargers are:

F plugs
n = max

t

{
V∑
v=1

pnvt · f plugged
vt

}
, n = 1, . . . , N (9c)

Splugs
n = max

t

{
V∑
v=1

pnvt · splugged
vt

}
, n = 1, . . . , N. (9d)

It is worth to highlight that the planning problem for MPCs
is a generalization of the one of SPCs. This is because, if the
solution of the MPCs’ problem is such that f charge

vt = f plugged
vt

and scharge
vt = splugged

vt for all v and t, then formulations in (9)
and (8) are the same and the two problems would have the
same solution.

3) Investment costs for the charging infrastructures: Based
on the required numbers of plugs and chargers, we can esti-
mate the capital cost of the charging infrastructure. The total
investment cost is denoted by J(·), where notation (·) refers to
the dependency of J on the problem decision variables f plugged

vt ,
splugged
vt , f charge

vt , and scharge
vt , which is not explicitly reported for

compactness. It reads as:

J(·) = JFplugs + JFchargers + JSplugs + JSchargers (10a)

where JFplugs, J
F
chargers are the cost of fast-charging plugs

and stations, and JSplugs and JSchargers are the cost of slow-
charging plugs and stations. The components of (10a) are as
follows:

JFplugs =

N∑
n=1

F plugs
n · costFplugs (10b)

JSplugs =

N∑
n=1

Splugs
n · costSplugs (10c)

JFchargers =

N∑
n=1

F chargers
n · costFchargers (10d)

JSchargers =

N∑
n=1

Schargers
n · costSchargers (10e)

where costFplugs, costFchargers, costSplugs, costSchargers are the
unitary cost of plugs and chargers for fast and slow charging.
Service life and maintenance of all these components are
assumed the same regardless of their use and cycle ageing
(e.g., [26]), so their unitary costs can be directly compared in
the cost function without rescaling them.

C. Nodal injections due to EVs charging demand and grid
model

The problem formulation so far has focused on modeling
the connection of EVs to chargers, the EVs’ charging process,
and how these reflect on the cost of the charging infrastructure.
In this section, the charging demand of the EVs is used in a
grid’s load flow model to assess whether grid constraints are
respected. These additional constraints are implemented in the
planning problem with the specific objective of locating the
chargers in the distribution grid without engendering violations

of its operational limits. As load flow models are nonconvex,
we resort to a linearized load flow based on sensitivity
coefficients, as proposed in [27]–[30], to retain the problem’s
tractability.

We denote the total charging demand for the EVs connected
to node n by P EV

nt , and the associated reactive power demand
by QEV

nt . These quantities are computed by coupling the
information on the charging power of the individual EVs, pEV+

vt

in (5), with their parking location, pnvt. Formally, they are:

P EV
nt =

V∑
v=1

pnvt · pEV+
vt ∀t and n (11a)

QEV
nt =

V∑
v=1

pnvt · qEV+
vt ∀t and n. (11b)

The nodal power injections at the various nodes of the
distribution grid are given by the total charging demand of
the EVs in (11) along with conventional demand and local
distributed generation. Conventional demand and distributed
generation is modeled in terms of net demand, denoted by
P net
nt , given by the difference between the two. The net demand

is an input of the problem. Nodal active and reactive power
injections read as:

P node
nt =

∑
v∈V

pnvt · pEV+
vt + P net

nt (12a)

Qnode
nt =

∑
v∈V

pnvt · qEV+
vt +Qnet

nt . (12b)

Because the grid voltage is constrained in a narrow band, we
use the approximation that nodal power injections are voltage-
independent. Voltage-dependent power injections, that could
be integrated into the linearized grid model as proposed in
[31], will be considered in future works.

Nodal voltage magnitudes vtn, line current magnitudes itl in
lines l = 1, . . . , L, and apparent power flow at the substation
transformer St0 are denoted with the following notation

vtn = fn
(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(13a)

itl = gl
(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(13b)

St0 = hl
(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(13c)

which highlights the dependency between grid quantities and
nodal injections through the functions fn, gl, and hl. The
problem dependency on the admittance matrix (i.e., topology
and cables’ characteristics), and slack bus voltage are omitted
from this notation for simplicity. Using the notion of sensitivity
coefficients, functions fn, gl, and hl can be expressed as a lin-
ear function of the nodal power injections around linearization
points (assumed given).

Operational constraints of the distribution grid are nodal
voltage magnitudes within prescribed limits (v, v), currents in
the lines below the lines’ ampacities il, and power flow at the
substation transformer less than its rating S0. These reads as:

v ≤ vtn ≤ v ∀t and n (13d)

|itl| ≤ il ∀t and l (13e)

St0 ≤ S0 ∀t. (13f)



6

In addition to these constraints, we require nodal injections to
be below the apparent power limit of the node, Sn:

(P node
nt )

2
+ (Qnode

nt )
2 ≤ (Sn)2. (13g)

Constraint (13g) is useful in the case of apparatus with
apparent power limitations connected at the nodes, such as
nodes hosting substation step-down transformers.

D. Planning problem

The planning problem consists in finding the binary vari-
ables

x = [f charge
11 , . . . , f charge

V T , scharge
11 , . . . , scharge

V T ] (14)

y = [f plugged
11 , . . . , f plugged

V T , splugged
11 , . . . , splugged

V T ] (15)

that minimize the capital investment for the EV charging
infrastructure while subject to grid constraints.

To avoid that the problem solution depend on the initial
SOC values in (6), we choose to set them as problem variables,
denoted by:

z = [SOC1(0), . . . ,SOCV (0)] ∈ RV . (16)

Besides, the final SOC should be larger than or equal to the
initial one to avoid benefiting from the initial energy stock:

SOCv(T ) ≥ SOCv(0), for all v. (17)

In this way, the planning problem accounts for the charging
demand of the vehicles, regardless of their specific initial
conditions.

The planning problem is formulated as a constrained eco-
nomic optimization. Its formulation reads as:

min
x,y∈{0,1}V ×T ,z∈RV

{J(·)} (18a)

subject to the following constraints:

Plugged-in only if parked (3) ∀t and v (18b)
Charge only if plugged-in (4) ∀t and v (18c)
EV charging power (5) ∀t and v (18d)
SOC model and constraints (6), (7), (17) ∀t and v (18e)
Nodal injections (11) and (12) ∀t and n (18f)
Linear grid models and constraints (13) (18g)
Chargers and plugs number model:

(8) for SPCs, or (9) for MPCs (18h)

E. Problem properties and approximations

Problem (18) is nonlinear due to the set maximum in (8)-
(9), the point-wise maximum in (25d) (a new constraint,
explained in the next section), and the quadratic expression
in (13g). Suitable reformulations or approximations of these
constraints are now discussed to render the problem linear. The
set maximum, here denoted by v̄ = max{vt, t = 1, . . . , T} for
convenience, is replaced by T linear inequalities v̄ ≥ vt for all
t. As the problem (18) entails minimizing expressions of the

same kind as v̄, this reformulation holds as exact. The point-
wise maximum, a+ = max(a, 0), is replaced by 2 inequalities,
a+ ≥ a and a+ ≥ 0 and can be used to replace convex
constraints in the form of max(a, 0) ≤ ā with linear ones
[32].

Finally, the apparent power constraint in (13g), now denoted
by P 2 +Q2 ≤ S2 for simplicity, is approximated by replacing
the reactive power with an upper bound Q = S · sinφ; since
Q ≤ Q, it follows that:

P 2 +Q2 ≤ P 2 +Q
2 ≤ S2 (19a)

P 2 ≤ S2 −Q2
= S2 − S2 · sin2

φ = S2cos2φ (19b)
P ≥ −S · cosφ and P ≤ S · cosφ. (19c)

In summary, the original quadratic constraint is replaced by
two linear inequalities, (19c), with cosφ as a lower-bound
estimate of the load power factor. An alternative approach is
to approximate the convex set (13g) with linear inequalities
(e.g., [33]), typically preferrable when reactive power is an
explicit control variable of the problem. With these equiva-
lent formulations and approximation, it is possible to write
the optimization problem as a mixed integer linear problem
(MILP).

F. Extension to V2G

It is shown here how the formulation can be extended to
model V2G support from the EVs with bidirectional chargers.
For brevity, this is shown for slow chargers only. For fast
chargers, similar equations can be derived by replacing the
relevant variables.

Similarly to the binary variable scharge
vt that denotes if an

EV is recharging or not, we introduce a new binary variable,
sdischarge
vt , that indicates whether an EV is discharging. Because

an EV can either be charged or discharged at the same time,
and can be discharged only when plugged, the following two
constraints must hold:

sdischarge
vt + scharge

vt ≤ 1, (20)

sdischarge
vt ≤ splugged

vt , ∀t and v. (21)

The V2G power is:

pV2G
vt = sdischarge

vt · S̄ · cosφS . (22)

The SOC model in (6) now needs to account for the discharg-
ing power too. The update model reads as:

SOCv(t) = SOCv(0)+

+
Ts
Ev

t−1∑
τ=0

(
ηpEV+
vτ − pEV−

vτ − 1

η
pV2G
vt

)
∀v (23)

Finally, the nodal injections model are modified to include the
contribution of V2G:

P node
nt =

∑
v∈V

pnvt ·
(
pEV+
vt − pV2G

vt

)
+ P net

nt . (24)
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IV. MODELING EV CONNECTION AND DISCONNECTION
PREFERENCES

It has been said that f plugged
vt and splugged

vt (denoting if an
EV is plugged into a charger) can be active only when an
EV is parked. However, there is more. Because plugging an
EV into a charging column is an operation performed by the
EV owner (or driver), their availability to plug and unplug an
EV should also be modeled. For example, a person driving
home in the evening and using a public charging column
might prefer to plug their EV at the arrival rather than queuing
for a charger to become available. To model this preference,
we introduce additional constraints on f plugged

vt and splugged
vt to

capture two scenarios of EV owners’ flexibility for plugging
and unplugging their EVs. To explain these constraints, we
refer to the case study analyzed in this paper, which is a home-
work commute where EVs are used in the morning, parked in
the central part of the day, used again in the afternoon, and
finally parked overnight (as encoded in the input parameters
pnvt). The constraints to model EV owners’ flexibility are
discussed in the rest of this section.

A. Modeling connection to and disconnection from chargers

Before describing the EV owners’ flexibility scenarios, the
models of connection-to-a-charger and disconnection-from-a-
charger events are explained. For fast chargers, let binary vari-
ables cfvt, d

f
vt denote the events when EV v is connected to and

disconnected from a charger, respectively, and similarly for
slow chargers, with variables csvt and dsvt. In these variables,
the logical state “1” denotes a connection or a disconnection
event, and 0 no event. Connections and disconnections are
modeled by detecting rising and falling edges of f plugged

vt and
splugged
vt (Fig. 3). Formally, this is as (with max as the point-

wise maximum):

cfvt = max
(
f plugged
vt − f plugged

v(t−1), 0
)

∀t and v (25a)

dfvt = max
(
f plugged
v(t−1) − f

plugged
vt , 0

)
∀t and v (25b)

csvt = max
(
splugged
vt − splugged

v(t−1), 0
)

∀t and v (25c)

dsvt = max
(
splugged
v(t−1) − s

plugged
vt , 0

)
∀t and v. (25d)

Disconnected stateConnected state

EV Charger
State 1

State 0

Connection event Disconnection event

  0    1    2     3     4     5    6    7     8     9    10   11  12  13  14   15  16 
 Time (hour of the day) 

Fig. 3: Example of the connection-state variable (f plugged
vt or

splugged
vt ) and connection and disconnection events (blue and

red arrows), corresponding to the raising and falling edges of
the connection state, respectively.

B. EV owners’ (drivers) flexibility scenarios

Let the time interval (τ
(1)
v , τ

(2)
v ) denote the overnight park-

ing stay, and (τ
(3)
v , τ

(4)
v ) the parking stay during the central

hours of the day for vehicle v. The two EV owners’ flexibility
scenarios are as follows.

Scenario A (forgetful EV owners): In both parking in-
tervals, drivers plug their EVs to a charger only at the
arrival time, and unplug them only at the departure time. In
other words, drivers let their vehicles plugged into a charger
whenever their EVs is parked. Formally, this is implemented
by enforcing no connection outside the initial parking time
interval (for both fast and slow chargers)

cfvt ≤ 0 for all t except t = τ (1)v and t = τ (3)v (26a)

csvt ≤ 0 for all t except t = τ (1)v and t = τ (3)v , (26b)

and no disconnection outside the final parking time interval

dfvt ≤ 0 for all t except t = τ (2)v and t = τ (4)v (26c)

dsvt ≤ 0 for all t except t = τ (2)v and t = τ (4)v . (26d)

Scenario B (cooperative EV owners): For overnight park-
ing, drivers plug their EVs to a charger only at the arrival
time, and unplug them only at the departure time; when
parking in the central part of the day, drivers allow one
disconnection. In the central part of the day, drivers allow
one disconnection to give to others the possibility of using that
charging spot. This is implemented by enforcing no connection
outside the initial parking time for the overnight time interval

cfvt ≤ 0 for all t except t = τ (1)v (27a)

csvt ≤ 0 for all t except t = τ (1)v , (27b)

and up to one disconnection in the central parking hours
τ4∑
t=τ3

dfvt ≤ 1, (27c)

τ4∑
t=τ3

dsvt ≤ 1. (27d)

C. Implementing the scenarios

Scenarios are implemented by adding either (26) or (27) to
the optimization problem in (18). A comparative analysis of
these 2 scenarios is performed in the results section to evaluate
the impact of EV owners’ flexibility on the problem solution.

V. CASE STUDY

This section describes the case study adopted to exemplify
the operations of the proposed planning method.

The case study is reasonably guessed to reproduce a real
possible scenario. However, the contributions of this paper do
not depend on this specific case study; in particular, input
information can be tuned or changed as a function of the
specific situation to model, on the basis of, for example,
information from the distribution grid operator and urban
planner.
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A. Number of EVs and driving demand

It is considered a home-work commute where EVs are
used in the morning, parked in the central part of the day,
used again in the afternoon, and parked overnight at the
origin node. The different parking (and charging) locations
correspond to different nodes of the grid. The residential nodes
where EVs are parked overnight are indicated as the green
nodes (“Cluster 1”) in Fig. 1, whereas the destination nodes
are the purple nodes (“Cluster 2”). In total, there are 1’000
EVs in this grid. This value is chosen based on the rating
of this power grid, and it is in line with other studies (e.g.,
[30], [34]). The origin and destination nodes of the EVs are
assigned randomly and uniformly to all nodes hosting EVs.
The number of EVs parked during the night and central hours
are shown in Fig. 4a and 4b, respectively. The EVs’ morning
departures and arrivals are sampled from uniform distributions
with values between hours 5-8 and 8-11, respectively; evening
departures and arrivals are sampled from uniform distributions
with values between hours 14-18 and 17-21. Based on this
information, variables pnvt are then built. As remarked earlier,
this is an input of the problem, and other methods can be used,
including using real data.

The total energy demand for driving is estimated using data
from [22]. The discharging power pEV-

vt , necessary to model
the SOC evolution in (6), is a positive constant quantity when
the vehicle drives, and zero when the EV is parked. The
discharging power is such that its total energy demand amounts
to the quantity estimated above.

To illustrate the impact on the planning results, two different
values for the EV battery’s energy capacity are considered:
16 kWh and 60 kWh, under the same driving demand. The
EVs’ charging efficiency, η, is 0.95.

The statistics of the daily recharging demand for driving
(mean value plus/minus three times the standard deviation)
are 8.2 ± 1.9 kWh and 17.1 ± 4.0 kWh, for the EVs with
smaller and larger batteries, respectively.

B. Planning horizon

The planning horizon refers to how many temporal samples
are considered in the optimization problem (parameter T ).
Because the number of variables of the optimization problem
increases linearly with T and the complexity of the (NP-hard)
MILP problem increases exponentially with the number of
variables, it is necessary to limit the value of T to retain
problem’s tractability. In this paper, T is set to 24 samples
(i.e., 1 day with samples each 1 hour) for the 16 kWh
battery and to 120 (i.e., 5 days) for the 60 kWh battery
under the assumption that this interval is either a worst-case
scenario of the driving demand or a pattern regularly occurring
throughout the service life of the charging infrastructure. Other
methods to attain a tractable formulation of the optimization
problem are scenario reduction or decomposition methods to
decompose the temporal dimension of the problem and will be
considered in future works. A similar scalability issue would
be encountered when extending to distribution grids with a
much larger number of nodes, as this would require increasing

the number V of EVs involved in the problem. This aspect will
be investigated in future works.

The reason for the longer optimization horizon for the larger
batteries is that EVs with larger energy capacity can make
multiple trips on a single charge and might not require to
charge each day, possibly staggering the charging process
and contributing to avoiding grid overloading. The 1-day-long
demand profiles are replicated five times to attain the input
time series for the 5-day planning period.
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(b) Cluster 2

Fig. 4: Number of EVs’ parked at different grid nodes under
two clusters during the day and night hours.

C. Chargers ratings and prices

We consider fast and slow chargers with kVA ratings of
20 kVA and 2.4 kVA, respectively, and power factors of 0.9.
Their costs is 20’000C and 1’500C, inspired from the existing
technical literature [35]–[37] (although some price volatility
might exist due to different regions, operators, and need for
labor). The price of the charging plugs is assumed to be 15%
of the price of a single-port charger.

D. Distribution grid and demand

It is considered the European version of the 14-bus CI-
GRE benchmark grid for medium voltage (MV) systems [38]
(Fig. 5). The low-voltage (LV) grids connected at the MV
grid nodes are modeled in terms of their aggregated power.
This modeling accounts for constraints of the rated power
of the MV/LV substation transformer through (13g), and
assumes that there are no violations of voltage levels and line
ampacities in the LV grid. The MV grid is modeled as a single-
phase equivalent assuming transposed conductors and loads
balanced on the 3 phases. The demand of the grid is simulated
considering the load profile proposed in [38], scaled according
to the rated power of each node (Table I). At this stage, no
distributed renewable generation is considered. The reactive
power of the nodal injections is modeled assuming a constant
power factor (Table I). Statutory voltage levels are 1 ± 3% per
unit of the base voltage (20 kV). Line ampacities are according
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to the conductor diameter. The sensitivity coefficients for the
linearized grid model are computed once for the nominal
demand profiles; one could compute successive linearizations
to improve the linear estimates.

TABLE I: Nodal nominal demand and power factors

Node Apparent Power [kVA] Power factor Cluster
1 15’300 0.98 -
3 285 0.97 1
4 445 0.97 1
5 750 0.97 1
6 565 0.97 2
8 605 0.97 1
10 490 0.97 2
11 340 0.97 2
12 15’300 0.98 -
14 215 0.97 2

Load

Switch/CB

Cluster -1 

Cluster -2

Transformer

Bus

Fig. 5: Topology of the CIGRE European MV distribution
network benchmark for residential system [38].

VI. RESULTS AND DISCUSSIONS

We first present the results for the small-battery EVs to
illustrate some of the formulation’s properties. Then, the anal-
ysis is extended to the EVs with larger batteries. The accuracy
of the linear grid estimates is discussed in Appendix A. The
MILP problem is implemented in MATLAB and solved using
Gurobi.

A. Results for the 16 kWh EVs

This section presents the results for the EVs with small
batteries and one-day-long optimization horizon. The opti-
mization problem for 1’000 EVs is solved in about 90 minutes
on an Intel i7 machine with a MIP gap setting of 10%.

Fig. 6 exemplifies the meaning of the variables splugged
vt

and scharge
vt for ten sample EVs in Scenario A and MPCs in

order to illustrate their meaning. It shows that, i), vehicles
are mostly connected to the chargers. This is in line with

the definition of Scenario A, which foresees EVs connected
to the chargers whenever they are parked; ii), the planning
algorithm arbitrages the charging of plugged EVs. This is done
to respect grid constraints, ensure the EVs have correct SOC
levels throughout the day and attain a minimum investment
cost, as dictated by the problem cost function. We can thus
infer that arbitraging the charge is beneficial to reducing the
number of chargers, as explained hereafter.
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Fig. 6: Variables splugged
vt (a) and scharge

vt (b), showing the
connection and charging state, respectively, for 10 sample EVs.
Grey filling is 1, white filling is 0.

The number of required chargers and plugs for SPCs, MPCs,
and the two scenarios for driver’s flexibility scenarios A and
B are reported in Table II. For SPCs, the number of plugs is
not indicated as it is the same as the number of chargers. The
following findings can be derived.
Finding 1. Fast chargers are not required; (cheaper) slow
chargers are enough to satisfy the charging demand.
Finding 2. Moving from forgetful (Scenario A) to cooperative
EV owners (Scenario B) attains smaller numbers of chargers
and plugs for both SPCs and MPCs. This is because increasing
the availability of the EV owners to plug/unplug their EVs
leads to better utilization of the charging infrastructure, ulti-
mately requiring fewer chargers to satisfy the same charging
demand.
Finding 3. Implementing MPCs requires less chargers (and
more plugs) than SPCs; because the MPCs problem is a
generalization of the SPCs’ and the problem aims at finding the
economic minimum, we can infer that MPCs are conducive to
lower infrastructure costs. Fig. 7 summarizes the cost achieved
by the various cases. MPCs achieve higher cost savings than
cooperative EV owners: choosing MPCs over SPCs attains
a cost reduction of 38% and 30% in Scenario A and B,
respectively, whereas implementing cooperative EV owners
(Scenario B) achieve a cost reduction of 13% and 3% for SPCs
and MPCs, respectively. This has the interesting implication
that a technological solution obtains a better effect than a
change of consumer behavior.
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Finding 4. Different scenarios and charger typologies
(MPCs/SPCs) lead to a different spatial distribution of the
chargers: chargers of Scenario A/SPCs are nearly equally split
between the nodes of clusters 1 and 2, whereas Scenario
B/SPCs has more chargers in Cluster 1, where vehicles are
parked overnight. This is due to longer parking stays, which
offer a higher potential for arbitrating the charge between a
larger group of vehicles, leading to a more efficient use of the
charging infrastructure.

TABLE II: Number of slow chargers and plugs (1’000 EVs,
16 kWh battery).

Scenario A Scenario B
Node MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
3 44 124 41 36 111 32
4 70 197 130 50 173 109
5 119 287 215 89 271 242
6 60 115 155 87 110 124
8 96 234 133 75 212 143
10 29 60 130 53 63 119
11 41 103 130 56 64 71
14 3 10 87 14 14 46

Cluster1 329 842 519 250 767 526
Cluster2 133 288 502 210 251 360

Total 462 1130 1021 460 1018 886
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Fig. 7: Cost of the four cases.

Fig. 8 shows the distribution quantiles (in different shades of
green) and median values (thick green line) of the injections of
active power (conventional demand plus EVs) across the nodes
over time. Nodal injections are scaled by the rated power of
each node, so that one per unit (denoted by the horizontal
dashed lines) corresponds to the maximum power flow at
that node. Nodal injections and power transformer limits in
(13g) were found to be the active constraints of the planning
problem. In all the cases, the nodal injections hit the limit
value in the evening hours. This is due to the combination
of the evening’s conventional demand and the EVs’ charging
demand. With SPCs, the grid is mostly loaded in the day’s
central hours, whereas with MPCs, the grid is mostly loaded
in the afternoon and evening hours. This denotes that MPCs
tend to shift the charging demand from the central part of
the day to the afternoon and evening hours. This observation
is in line with the previous consideration that the MPCs case
has more chargers in the nodes corresponding to the overnight
parking locations.

TABLE III: Number of slow chargers and plugs with V2G.

Scenario A Scenario B
MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
434 1005 1000 440 992 881

TABLE IV: Total EV charging demand versus V2G injections.

Scenario A Scenario B
SPCs MPCs SPCs MPCs

Charging demand (kWh) 15’062 10’893 10’768 10’338
Discharging demand (kWh) 1’246 257 553 112

Finally in this section, we evaluate whether V2G leads to
lower development costs of the charging infrastructure. For
a fair comparison with the former case, the cost of V2G
chargers is assumed to be the same as the one-directional
chargers. Table III shows the number of V2G chargers and
plugs obtained by the planning problem. By comparing tables
III and II, one can see that V2G achieves a slightly smaller
number of total chargers, between 6% (Scenario A, MPCs)
and 0.5% (Scenario B, SPCs). As the cost of the charging
infrastructure is proportional to the number of chargers, the
cost savings of V2G are also proportional. However, because
the cost savings are comparable to the MIP gap setting adopted
to solve the optimization problem (i.e., 10%), this gain is
deemed as not specially significant. Table IV shows the total
charging and discharging energy of the EVs, calculated as∑
v,t p

EV+
vt and

∑
v,t p

V2G
vt , respectively. The total discharging

demand is a small fraction of the total charging demand,
between 1% and 7%, denoting limited use of V2G. Overall, we
can conclude that using V2G leads to marginal improvements
in this case study.

B. Results for the 60 kWh EVs

This section presents the results for the EVs with the
larger battery size (60 kWh) and longer optimization horizon
(5 days). The optimization problem is now solved with a
MIP gap of 15% to reduce the computation time. In these
settings, the optimization problem was solved in around 5
hours. Results are reported in Table V. We can derive the
following observations.
Finding 5. Slow chargers are still the favourite choice of the
planning problem.
Finding 6. The numbers of installed chargers/plugs are the
same for MPCs and SPCs, as opposed to the former case with
smaller batteries where there was a significant gap between
these two numbers. This is because charging EVs takes longer
when their battery is larger, assuming the same charging power
and initial state-of-charge. Due to longer recharging times and
the fact that chargers tend to be in operation whenever an EV is
plugged in, the feature of swapping among several EVs (thanks
to MPCs or increased driver flexibility) falls unused, without
leading to more optimal use of the charging infrastructure.
In support of this statement, we report the ratio between
the EV’s total charging time and the EV’s total plugged in
times for the SPC/Scenario A case, which is 0.60 for the
smaller batteries and 0.83 for the larger ones, denoting longer
recharging times and nearly saturated utilization factor of the
charging infrastructure in the latter case.
Finding 7. The number of chargers (or plugs) required for
the 60 kWh EVs is smaller than for the 16 kWh EVs. This
is because EVs with smaller batteries need to be recharged
more often, possibly at different nodes, thus requiring the
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Fig. 8: Quantiles and median values of the active power injections across the grid nodes over time with the 16 kWh EVs.

installation of more chargers. Instead, EVs with larger batteries
and more driving autonomy can perform multiple travels on a
single charge and stagger the recharging process.

Finally, Fig. 9 shows the distribution quantiles of the nodal
injections over the whole planning horizon. Compared to
the case with smaller batteries which featured significant
differences among the nodal injections for different chargers
and EV owners’ flexibility, nodal injections in the various
cases are now similar.

TABLE V: Number of slow chargers and plugs (1’000 EVs,
60 kWh battery).

Scenario A Scenario B
Node MPCs SPCs MPCs SPCs

Chargers Plugs Chargers Chargers Plugs Chargers
3 62 59 59 62 63 64
4 140 142 140 139 140 142
5 235 237 236 236 237 236
6 127 130 127 127 127 127
8 146 146 153 149 149 153
10 78 78 80 78 78 78
11 76 77 76 76 76 77
14 31 28 32 28 28 27

Cluster 1 583 584 588 586 589 595
Cluster 2 312 313 315 309 309 309

Total 895 897 903 895 898 904

VII. CONCLUSIONS

This paper presented a method to cost-optimally site and
size chargers for EVs accounting for the constraints of the
power distribution grid. The formulation considered both slow,
fast, single-port, and multi-port chargers, and vehicle-to-grid.
In addition, it included models to describe the flexibility of
the EV owners (drivers) to plug and unplug their vehicles
for optimized utilization of the charging infrastructure. By
suitably modifying several nonconvex constraints appearing in
the formulation, we derived a mixed-integer linear formulation
of the problem that can be solved with off-the-shelf software
libraries in a reasonable time. The method was applied on a

14-bus MV network considering a population of 1’000 EVs
with two different EV battery sizes, 16 kWh and 60 kWh.

For the EVs with smaller batteries, results showed that
multi-port chargers (MPCs) and cooperative EV owners are
conducive to decreasing the number of chargers to install.
However, with larger batteries, EV owners’ flexibility and
MPCs resulted in similar planning options as forgetful EV
owners and SPCs. In the proposed case study, slow chargers
were generally preferred over fast chargers. Simulation on
a larger network with 30 nodes from [39] denoted similar
findings.

The number of variables in the planning problem depends
on the length of the optimization problem and on the number
of vehicles. Because mixed-integer linear programs are NP-
hard and their computation time drastically increases with the
number of decision variables, carefully selecting the length
of the input times series is needed to attain tractable com-
putational times. In this work, this was done by selecting
a short planning horizon (1 day for the smaller batteries,
and 5 days for the larger one) under the assumption that
inputs repeat periodically over the service life of the charging
infrastructure. Similar conditions apply to the size of the net-
work. Future work is in the direction of formulating problem
approximations to increase the tractability of the problem
when considering more extended input information.

APPENDIX A
ACCURACY OF THE LINEARIZED GRID MODELS

The accuracy of the linearized grid model is evaluated by
comparing the linear estimates against the respective ground-
truth quantities, which are computed by running a nonlinear
load flow with the nodal injections from the optimization
problem.

The histogram of the errors of the linear voltage and current
estimations are shown in figures 11 and 12, respectively.

In the proposed case study, the active constraints of the
problem were the nodal injections in (13g). It was verified
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Fig. 9: Quantiles and median values of the active power injections across the grid nodes over time with the 60 kWh EVs.
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Fig. 10: Cost of the four cases for the extended 5-day long
horizon.

that grid’s voltage and current constraints would not have
been violated even when accounting for the estimation errors
of the linear model. However, in order to (conservatively)
hedge against these modeling errors, one could add back-off
terms to voltage and current constraints in (13d) and (13e)
considering, for example, worst-case modelling errors from
these histograms.
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Fig. 11: Errors of the linear estimates of the nodal voltage magnitudes (in per unit of the base voltage).
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