FROM QUANTUM TO CLASSICAL BY LETTING THE DIMENSION DIVERGE

Introduction

Quantum mechanics is undividable from classical mechanics. This fact generated many misunderstandings, especially at the beginning of the theory, when people thought that the description of nature should involve two different theories, necessary for explaining different phenomenological aspects.

Nowadays the general feeling is that the world is quantum, and that the classical phenomena live "at the border" of the quantum theory.

Quantum mechanics stresses the need of leaving aside the essentialist classical vision of the world: properties are not assigned to particle or objects, but are "decided" right at the moment one asks for them. And this decision is random. A good picture of this is in the case of "polls": usually the result of a poll contains three answers: right, left and "don't know yet". Classically the important information is given in terms of people who have made their decision yet: a poll is considered as being serious if the percentage of undecided people is low. Quantum mechanics world is the one where (almost) everybody is "undecided", but says that, with a certain percentage, she/he is going to vote left or right. The statistics are then made on undecided people, and not on those ones who know. Right after a vote the undecided persons know, and probably would vote the same, but are undecided again for another vote later on.

Classical mechanics deals with sets (geometrical spaces) and quantum mechanics deals with matrices on Hilbert spaces. So are classical and quantum coherent spaces in linear logic. The link between (a certain class of) matrices on Hilbert spaces and geometrical space is well understood in quantum mechanics: it passes through the infinite dimension limit of the Hilbert space and attributes to a matrix a "symbol", a function defined of a geometrical space.

The main feature of matrix calculus is non-commutativity. Matrices don't commute (by multiplication), but certain matrices almost do, in the sense that:

(1.1)

AB -BA := [A, B] = O( 1 N )
where A, B are (N-dependent) N ×N matrices. The traces of this on symbols says that there is a non-commutative algebra of symbols (non-commutative as being in on-to-one correspondence with matrices), depending on the dimension N, which tends to a commutative one as N → ∞. Form (1.1) one sees that N[A, B] = O(1), therefore is candidate to have a limit as N → ∞. A good "symbolic" calculus A → σ(A), the symbol of A, will indeed provide such a limit, by giving rise to the fundamental T. PAUL intertwining equality of semiclassical quantum mechanics:

(1.2) σ N i [A, B] = {σ(A), σ(B)} .
The Poisson bracket {., .} is the fundamental object of classical mechanics, as it provide the good geometrical setting: a symplectic structure. Kinematics and dynamics follow from this Poisson bracket.

Semiclassical approximation is often described in terms of microlocal analysis, a theory of oscillations sharing many facts with optics. In this paper we would like to present some aspects of semiclassical theory by concentrating on the infinite limit of the dimension of vector spaces. There are two motivations for this: some interesting physical situations (some outside the natural scope of quantum mechanics) and a program that could be summarized as follows;

what could be a semiclassical theory of coherent spaces

We will try to illustrate as much as possible the presentation with links, some time purely methodological, between quantum mechanics and the little bit of (linear) logic that the author (who is asking for indulgence from the reader) knows: the theory of coherent spaces.

To finish this introduction we would like to stress three issues:

• succession of Boolean (like spins) towards a single particle (section 6.4) • decoherence, interaction with a reservoir, the preferred basis and the subject (section 6.5) • the measure of entanglement, and non separability, and positive maps (section 6.2).

Classical vs. Quantum

Classical Mechanics lives on space, on sets. Inherited form the early beginning of modern science the concept of point, belonging to an absolute space, is the keystone of our understanding of classical physics. In this way the ("standard") coherent spaces are classical. Quantum Mechanics has changed drastically the paradigm by introducing a formalism living on vector spaces, Hilbert spaces, instead of regular geometrical spaces, and handling matrices instead of functions. Although quantum mechanics is often presented as going "against intuition", it is in fact much simpler to formulate, and easier to understand than classical mechanics.

Indeed matrices are just collections of numbers, and everybody can multiply matrices as soon as she (he) can multiply numbers. At the contrary functions on geometrical spaces are difficult, as seen when one considers the difficulty of presenting them in old fashion mathematics. At the same time the natural symmetry involved in quantum mechanics is the one of unitary matrices (the ones for witch the inverse equals the adjoint), and the classical concept of symplectic geometry appeared much later after the birth of classical mechanics.

One more important feature of quantum mechanics is the fact that simple quantum systems exhibit much richer structures than simple classical ones: the case of a spin (quantum Boolean), that is to say a two-states quantum system, possesses already a great number of quantum subtleties, although a classical system that could move only on two positions is totally trivial.

This facts have to do with the fact that quantum mechanics endows a linear structure (superposition principle in physics) and linearity has this wonderful property of mixing simplicity and fullness. But simplicity in linear situations is quite spoiled when the dimension is getting large, as elementary practice of matrix diagonalisation, inversion or even just multiplication shows easily. Therefore it is not surprising that classical situation, with their intrinsic complexity, will be recovered at some large dimension limit of quantum mechanics. The aim of this paper is to show and illustrate this fact.

Notations

• matrix: collection of n × n numbers.

• vector (Dirac notation): |any name > (e.g. |broccoli >).

• : Planck's constant : in fact any number (small) "Pavillon de Sevres"'s style value : 10 36 . • < ., . >: scalar product, < |broccoli >, |broccoli >>=< broccoli|broccoli > • T * M = T * (M): cotangent bundle over M.

• O(x): any function of x whose modulus is bounded, as x → 0 by C × x for some C ∈ R 4. Why Quantum Mechanics is not classical? At a very elementary scale (see [START_REF] Paul | La mécanique quantique vue comme processus dynamique[END_REF] and [START_REF] Paul | A propos du formalisme mathématique de la Mécanique Quantique[END_REF] for further details) quantum mechanics reduces to :

• a Hilbert space H (in the finite dimension case just a vector space with a scalar product)

• a dynamics, inside H, preserving the scalar product (Schrödinger equation) • a way of gluing several ones: one glues together two systems associated with two Hilbert spaces H 1 and H 2 as getting the resulting one associated to the Hilbert space H := H 1 ⊗ H 2 (note that dimH = dimH 1 × dimH 2 ) • a measurement process, which projects generic vector on eigenvectors of a given observable (e.g. u ⊗ u ′ + v ⊗ v ′ → u ⊗ u ′ ) As we already saw, vectors in H := H 1 ⊗ H 2 are not always factors, that is to say vectors of the form u 1 ⊗ u 2 , u j ∈ H j . All linear combinations are allowed, whose consequence is the exponential growing of dimensions. A highly non-classical feature, as we are going to see now. The example of the musical notation shows how non-classical is quantum mechanics (see [START_REF] Paul | La mécanique quantique vue comme processus dynamique[END_REF]). If you denote vectors in Hilbert space (see before) by the Dirac notation |name >, it is easy to understand that the musical notation can be "rephrased" in the vocabulary of quantum mechanics as : We get the following table :  You can listen:

| do > or | mi > or | do > ⊗| mi > or | mi > +| sol > you can even listen (| mi > +| sol >) ⊗ (| do > +| si >)
BUT YOU WILL NEVER LISTEN:

(| mi > ⊗| do >) + (| sol > ⊗| si >)
The strong novelty of quantum mechanics is the way it mixes this two signs + and ⊗.
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Let us recall to finish this section that quantum mechanics was invented in order to solve a paradox, the one given by the planetary vision of the atom, which is not stable in classical mechanics, as the energy is not bounded from below. Finding a "mechanics"which would handle this paradox was not an easy task, and took several decades. Moreover its incidence was a profound change of paradigm, so it is not astonishing that the scope of incidence of the theory spread around microphysics. Quantum coherent spaces is an example.

As mentioned before, on of the most intriguing change consists in replacing functions by matrices. In the next section we will show how to associate "naturally" a function to a matrix.

Sets and matrices

5.1. Diagonal matrices with 0, 1 entries and sets. It is well known that a set of cardinality n, together with the sets of its subsets can be put in bijection with the set M of diagonal matrices with entries belonging to {0, 1}. Denoting the set S := {1, 2, . . . , n} and an element k ∈ S by the matrix (S k ) ij = δ ij δ ik we get a bijection between P(S) and M by {k} → S k and the rule a ∈ P(S) → S a := k∈a S k . The following is immediate Let us remark that the fact that a ∩ a = a is reflected by the fact that S a is a projector.

It is natural to think of extending this in, at least, two ways:

-extending the entries to other values than 0, 1 -extending to non diagonal matrices. The first extension looses the "projector" property and has a "probabilistic" interpretation.

The second one looses the "set" flavour, at least apparently. We will see that in fact a double set flavour can be recovered.

The fact that the space has to be doubled has to be placed together with the same phenomenon which occurs in classical mechanics. Indeed if one considers the Newton's equations of dynamics:

F = mγ where γ = d 2 x
dt 2 is the acceleration and F the force, it has been realized later on that the correct geometrical setting should consist in doubling the space (more precisely passing to the cotangent bundle of the configuration space), in such a way that the fundamental laws of dynamics should be written as first order equations (Hamiltonian formalism). The doubling of the set (space) we mentioned concerning the non-diagonal matrices will be the same, as introducing the co-tangent bundle T * . 5.2. The off-diagonal case. Let us consider a diagonal matrix:

A =        A 1 0 . . . 0 0 0 0 A 2 . . . 0 0 0 0 0 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 A n-1 0 0 0 . . . 0 0 A n        .
Let us suppose that A i = α(i ) for a given function α and a given value of the constant . For the moment we don't impose any regularity condition on α.

Let

Z =        1 0 . . . 0 0 0 0 2 . . . 0 0 0 0 0 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 n -1 0 0 0 . . . 0 0 n       
The following is easy, by the spectral decomposition theorem.

Proposition 5.2.

A = α(Z)
Z is a labelling operator for the space S = {1, 2, . . . , n}, in the sense that the spectrum of Z is in bijection with S.

Suppose now that we take BOTH

n → ∞ → 0 WITH n = 1.
Then, in that limit, Z → the "labelling" operator of the segment [0, 1] The "symbol" of the matrix A is, by definition, the function α(z), z ∈ [0, 1]. To do this we need now to impose some regularity condition on α, let us say α ∈ C ∞ ([0, 1]). By this limiting procedure we see that some (special) categories of diagonal matrices "correspond" to the unit interval,

{(certain) diagonal matrices} ⇔ interval [0, 1] ,
T. PAUL in the sense that this algebra of diagonal matrices is isomorphic to a space of functions on the interval [0, 1].

Let us add now some sub-diagonals and consider matrices of the form:

H =        A 1 B 2 . . . 0 0 0 B 2 A 2 . . . 0 0 0 0 B 3 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 A n-1 B n 0 0 . . . 0 B n A n        with again B i = β(i )
Let us define

J + =        0 1 . . . 0 0 0 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 1 0 0 . . . 0 0 0       
and

J -=        0 0 . . . 0 0 0 1 0 . . . 0 0 0 0 1 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 0 0 0 . . . 0 1 0       
It is easy to have the intuition that H should be expressible with the Z 0 , J + , J -, but several expressions could represent H:

H = α(Z) + β(Z)(J + + J -) or α(Z) + β(Z)J + + J -β(Z) ?
In fact an easy computation shows that:

H = α(Z) + β(Z)J + + J -β(Z).
From the fact that J 2 + has two extra off-diagonal parts ((J 2 + ) ij = δ i+2,j ):

(5.1)

J 2 + =        0 0 1 . . . 0 0 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 1 0 0 . . . 0 0 0 0 0 . . . 0 0 0       
, which has to be seen as analog to (e iθ ) 2 = e 2iθ , we check that the symbol of J + is e iθ and the symbol of J -= J T

+ is e -iθ for some angle θ. Therefore the symbol of H has to be:

σ(H) = f (z, θ)
for a certain function f on [0, 1] × S 1 , where S 1 is the unit circle. In fact it is easy to check that, if n is the dimension of the vector space, J n+1 + = J n+1 -= 0, therefore the function f will contain, in the variable θ, only n Fourier components. Definition 5.3. the function f is called the symbol of the matrix H.

Let us remark that the fact that the vector space is finite dimensional implies that the function f is "cut-offed" in the Fourier space of the variable θ; f (x, θ) = n+1 0 f k (z) cos θ. Moreover the functions f k (z) are not uniquely defined as they enter the game only through their values at z = j, j = 1 . . . n. Therefore we see that we have an underlying set-theory setting, of cardinality, this time, equal to n 2 . We can also remark that, thanks to elementary interpolation results, the θ dependence of the function f is also defined by its values on the set θ l = l 2π n . At this point topological arguments are going to enter the game, as there are many choice of (global) manifolds locally homeomorphic to [0, 1] × S 1 .

Topological considerations will fix the symbol of H as σ(H) = α(z) + z(1z)β(z)cos(θ) in the case of the sphere, thanks to the following classical result:

Lemma 5.4. : f (z)cosθ is a C ∞ function on the sphere f (z) = z(1 -z)g(z), g ∈ C ∞ [0, 1].
Let us now describe briefly a general methodology related to the preceding discussion, and which exhibits the space of the underlying classical situation:

• J -has the property, by definition, of decreasing the label of the entry by 1: J -: |i >→ |i -1 >, therefore it should be possible to represent it by an operator Link e d dz acting on polynomials f (z), since the latter decreases by 1 the order of polynomials.

• topological considerations fix the underlying space (factor z(1z)), which fixes itself the scalar product of the Hilbert space H of polynomials.

• it is a general fact that such spaces of polynomials have a reproducing kernel property:

∃ |z, θ >∈ H/ |z, θ > ⊗ < θ, z|dzdθ = Identity H
(which is the same as |i > ⊗ < i| = I on an orthonormal basis) the crucial fact is now that one can find a "symbol" of a matrix H satisfying:

H = σ AW (z, θ)|z, θ > ⊗ < θ,

z|dzdθ that is to say a decomposition analog to:

A = a i |i > ⊗ < i| (diagonalisation on an orthogonal basis) but which is valid now for any non-diagonal matrices.

The vector |z, θ > is called a coherent state at (z, θ).

In the case of the 2d-sphere one can add more diagonals. We still get a symbol of H=g(z, θ) which is a regular function on the sphere [START_REF] Sobrero | Univeristé Denis Diderot Paris VII[END_REF], [START_REF] Paul | Dispersionless full Toda[END_REF].

Other geometrical choices are possible, each of them relies to a different physical situation, for example when z is a periodic angle,we get a torus. To summarize let us say that:

Quantum Mechanics = • a classical phase space M , i.e. a symplectic manifold (supposed here to be of finite volume)

• a value of the Planck's constant, which characterizes the degree of quanticity. In many interesting situations 1 is proportional to integers, those last numbers being related to a fiber bundle over M [START_REF] Borthwick | Semiclassical spectral estimates for Toeplitz operators[END_REF].

• a Hilbert space H, of dimension ∼ 1 . Actually this Hilbert space is generally a space of sections of the fiber bundle just mentioned. In full generality the dimension of the space is given by the magic formula:

dimH = V ol(M) dimM 2
which corresponds to the Heisenberg principle of putting one (independent) state per volume

dimM 2
Examples are:

V ol(sphere) = 1, = 1 2 , dim = 2 ⇒ spin 1 2 V ol(sphere) = 1, = 1 3 , dim = 3 ⇒ spin 1 V ol(sphere) = 1, = 1 2n+1 , dim = 2n + 1 ⇒ spin n 5.
3. Properties of symbols (Weyl): In the preceding section we have seen, on an example, how to associate to a matrix H a symbol. The construction is, of course, much more general, but in all interesting situations the symbol map satisfies the following list of properties: matrix

H -→ σ(H) • tr(H) = 1 σ(H) • ||H|| ≤ C||σ(H)|| ∞ but not ∼ • ||H|| Hilbert-Schmidt = 1 ||σ(H)|| L 2 • f (H) n → ∞ -→ → 0 f (σ(H)(z, θ))
that is to say: σ(f (H)) ∼ f (σ(H)).

6. Gluing with tensorial product 6.1. Gluing with tensorial product. One of the axioms of quantum mechanics gives the procedure of "putting" together several quantum systems. It says the following: the superposition principle, that is to say the fact that the space of states has to be a vector space, implies the necessity of considering vectors which are not tensorial products.

It is important to notice how this construction can be misleading if taken to conservatively in terms of classical structures. 6.2. The bi-partite essentialism: the Horodecki criterion. Let us consider a bi-partite system, that is to say a quantum system "composed" of two parts. Its Hilbert space is therefore H = H 1 ⊗ H 2 . A state (density matrix, see the definition below) of H is a positive matrix of trace 1. A state ρ on H is called "separable" if it belongs to the convex hull (envelop) of the set of states of the from ρ 1 ⊗ρ 2 , ρ i being a state on H i . The criterion of separability due to the Horodeckis is: Theorem 6.1. [START_REF] Horodecki | Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments[END_REF] ρ is separable if and only if, for every positive map λ : L(H 2 ) → L(H 1 ) we have:

(6.1) (I ⊗ λ) ρ ≥ 0 on L(H 1 ) ⊗ L(H 1 ). Note that I ⊗ λ : L(H 1 ) ⊗ L(H 2 ) → L(H 1 ) ⊗ L(H 1 ) so (I ⊗ λ) ρ ∈ L(H 1 ) ⊗ L(H 1 )
6.3. A little exercise on classical coherent spaces. A simple example of quantum coherent space, that we met already, is the set of diagonal matrices with 0, 1 entries: for example 

           0 
          
In this case and by the argument of paragraph 5.1, the bipolar condition [START_REF] Girard | Le point aveugle[END_REF] gives rise to the definition of coherent space as the set of subsets of S which is bipolar by the condition that:

a, b ∈ P(S), a ∼ b ⇔ #a ∩ b ≤ 1.
Let us consider one more time matrices of the form: (6.2) We see clearly that positive maps should have something to do with linear implication ⊸,a link that should be clarified.

P a =            0 

6.4.

A magical result of group theory and the definite abandon of essentialism: spins and Boolean. As we mention earlier the notion of "parts" of a quantum system has to leave away the classical notion of partition.

We will give an example as the case of several 1 2 -spins together, and show how, under a symmetry condition, putting together n 1 2 -spins is "equivalent" to handle a single n 2 -spin [START_REF] Ribeiro | [END_REF]. A spin is a quantum system with only two "levels", two states, that is to say with a state space which is two dimensional, i.e. C 2 . Let us consider a system of three of them. The total space is

H = C 2 ⊗ C 2 ⊗ C 2
Let us denote by {|0 >, |1 >} an orthogonal basis of C 2 . {|000 >, |001 >, |010 >, . . . , |111 >} is a basis of H and let is define H sym as the space of symmetric, with respect to permutations, vectors of H. A simple computation shows that H sym is of dimension 4, and: This means that the S j generate a 4-dimensional representation of the Lie-algebra of the 3 dimensional rotation group. In other words:

{|000 >, 1 √ 3 (|001 > +|010 > +|100 >), 1 √ 3 (|011 > +|101 > +|110 >), |111 >}
H sym is the space of a particle of spin 3 2 .

{3 spins 1 2 symmetrized} = 1 spin n 2 More generally

{n spins 1 2 symmetrized} = 1 spin n 2
And more generally it is possible to prove that:

H ⊗ n m 2 := C 2m+1 ⊗ C 2m+1 ⊗ . . . . . . • • • ⊗ C 2m+1 n times (H ⊗ n m 2 ) sym = H nm 2
And even more generally

H ⊗ n m 2 = H nm 2 ⊕ H nm 2 -1 ⊕ H nm 2 -2 ⊕ .
. . The interpretation of this mathematical result is the very simple fact that particles don't exist in quantum mechanics, we have to forget about essentialism.

The "translations" in terms of Boolean, each corresponding to two values of truth that we call, for simplicity true, false is the following: 

(true, false) n sym ⇔                   
                   or (true, false) n sym ⇔                    . . .
                   6.5.
Coupling to a big system, decoherence and the return of the subject. We have seen already that quantum states are sometimes represented by density matrices, namely d×d positive matrices of trace 1. Density matrices are "traces" of pure states when one neglects a part of the system: indeed let us consider a bipartite quantum system, the state-spaces of each σ is not (in general) a projector anymore, but σ is Hermitian positive and tr(σ) = 1. In fact the only case where σ is a (one) dimensional projector is the case where the original state ψ > is factorized, that is to say |ψ >=

|ψ 1 > ⊗|ψ 2 >, |ψ i >∈ H i .
The most important property of this construction in the fact that, if we compute the expectation value of an observable "living" in H 1 , i.e. of the form:

(6.3) O = O 1 ⊗ I 2
where I 2 is the identity of H 2 , we get the following formula, easy to derive, (6.4)

< O >:=< ψ|O|ψ >= tr(O 1 σ).
When an interaction couples H 1 and H 2 , and in the limit dimH 2 → ∞, the main result of the decoherence phenomenon is that there exists an orthonormal basis of H 1 such that σ evolves to a diagonal matrix:

σ → σ, σ ij = σ i δ ij .
In particular when looking at expectation values of an observable O of the system 1, that is to say < O >:= tr(Oσ), we get that:

(6.5) < O >→ i σ i < i|O|i >
One could think at first sight that the formula (6.5) is tautological, as the matrix σ being Hermitian, it can be diagonalised, and therefore there exist an orthogonal basis of eigenvectors {|ψ l >} and eigenvalues λ l such that (6.6)

< O > l λ l < ψ l |O|ψ l > .
But the crucial fact here is that the decomposition (6.5) DOES NOT depend on the eigenvectors decomposition of σ, but only on a UNIVERSAL basis.

In fact what shows the decoherence is the fact that, by coupling a quantum system to an "infinite" one (one has to think about the dichotomy microscopic/microscopic) the dynamics"chooses" a basis, and a kind of distinction "object/subject" is back. In [START_REF] Girard | Le point aveugle[END_REF] is expressed the fact that choosing a basis corresponds to the choice of a point of view, that is to say to something that should be seen as a subject. The decoherence tell us that this phenomenon actually occurs inside the quantum dynamics, when the coupling operates with a macroscopic situation. This is a semiclassical limit and it is created by a diverging dimension limit.

Let us finally remark that not all the measurement process is here: the final step, the random one which gives one single value, corresponds to sending σ to a spectral projector: σ → σ performing a measurement without reading it.

The fact that measurement should be decomposed in two pieces is in fact something natural when one thinks that measuring IS perturbing the system. First one perturbs, second we reads the result. Decoherence fulfills the first action. But in fact let us note here that this decomposition is also meaningful in the classical situation, where in fact one first let the measurement process (for example by putting a thermometer and waiting the mercury to dilate), and secondly read the trace of it on the scale. But in this case one doesn't notice this two-steps action since the result is supposed to be independent of the "reading" process.

Reading the result of a measure is NOT a process given by an evolution of Schrödinger type.

Let us finish this section by evoking a link with coherent spaces. The decoherence process transform the fully quantum pure state into a density matrix, considered as a "statistical mixing". The reason for this interpretation is the fact that the matrix can be written in the form:

(6.7) σ → σ = i σ i |i >< i|
where |i >< i| denotes the orthogonal projector on the element "i" of the basis. Each |i >< i| represents a pure state, the |i >, and the sum over i the "melange". The set of density matrices is exactly the setting of the so-called probabilistic coherent spaces, and imposing that σ is a projector leads to σ i = δ ik for some k. We see that the process of decoherence reduces very much to a classical (probabilistic) situation, corresponding to a set theoretic setting with cardinality equal to the dimension of the Hilbert space. This is another link between dimension and cardinality. But in the case of quantum mechanics the decoherence, that is to say the process from quantum to classical (probabilistic) is the result of a dynamics. What's about logic? Let us finally notice that "processing to a measurement without reading it" seems to be inside the frame of a general geometry of the interaction.

The infinite dimension limit

We already saw briefly that classical mechanics is recovered from quantum mechanics by letting the dimension diverge.

Let us go back to this idea more precisely. For sake of simplicity we will restrict ourselves to the case of tridiagonal matrices. We have seen that, if H is a matrix of the form:

H =         α( 1 N ) β( 2 N ) . . . 0 0 0 β( 2 N ) α( 2 N ) . . . 0 0 0 0 β( 3 N ) . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . β( N -2 N ) α( N -1 ) N) β( N -1 N ) 0 0 . . . 0 β( N -1 N ) α( N N = 1)        
it can be written as : 

H = α(Z) + β(Z)J + + J -β(Z). with Z =        1 0 . . . 0 0 0 0 2 . . . 0 0 0 0 0 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 n -1 0 0 0 . . . 0 0 n        , J + =        0 
      
Of course, as far as N is kept finite, there are several choices for the functions α and β, since only their values at points of the from i N appear. Therefore the notion of "symbol", as we mention in section 5,

σ(H) = α(z) + z(1 -z)β(z)cos(θ)
is ambiguous, in the sense that several symbols can be associated to H.

But all functions, with sufficient regularity, α N and β N , which take the same values at the points i N differ from each other by a quantity of order 1 N . Therefore, at the limit N → ∞ they all tend to the same functions α and β, and the symbol is well defined at the limit of diverging dimension. This is precisely the fact that insures that the classical limit permits, without ambiguity, to associate functions, that are geometrical spaces, to operators (matrices), that are quantum objects. But the morality is that the transition from quantum to classical goes together with a passage to continuum

Quantum mechanics outside quantum mechanics

We would like to finish this paper by mentioning several situations where semiclassical methods, or even "full" quantum mechanics, are used outside their natural domain. Besides this the logic of quantum coherent spaces is a good example. and some considerations concerning a possible way of handling their semiclassical limit will be presented in the next section. 8.1. Classical integrable systems [START_REF] Bloch | Dispersionless Toda and Toeplitz operators[END_REF]. The theory of classical integrable systems is a very live domain, especially since the introduction of the concept of Lax pair. In many situations the information necessary to describe a system of n classical particles interacting in an integrable way can be encoded in a matrix L and the dynamic (non-linear) is given by an equation which has the von Neuman form: L = [B(L), L].

In the famous case of a Toda system of n classical particles the dynamical variables reduce to a tridiagonal Hermitian matrix

L =        A 1 B 2 . . . 0 0 0 B 2 A 2 . . . 0 0 0 0 B 3 . . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 A n-1 B n 0 0 . . . 0 B n A n       
and the dynamics is given, after a suitable rescaling of time, by the equation:

∂L ∂t = 1 [L, Z].
The fact that Z is Hermitian show that this equation is a quantum one comparable to the one in section 5, and that: large n limit ⇐⇒ semiclassical limit. In other words we are in a situation where:

n classical particles on R 2

1 quantum particle on the sphere.

8.2.

Chocs for hyperbolic non-linear equations [START_REF] Paul | Burger's equation and quantumhydrodynamics[END_REF]. The Burger's equation is a simple and efficient model for hyperbolic equations developing shocks. It reads: u t + uu x = 0 where the unknown is u = u(t, x).

In other word:

(8.1) ∂u ∂t (t, x) + u(t, x) ∂u ∂x (t, x) = 0
For short times, i.e. 0 ≤ t ≤ t 0 the solution is given by composing the initial condition by a flow Φ(t, .) which is explicit.

u(t, x) = u(0, Φ(t, x)).
As t ∼ t 0 , the flow Φ(t, .) "explodes", and after t 0 there is no underlying flow anymore. In fact, for t > t 0 , Φ(t, .) is not singly defined anymore but presents a threefold ambiguity.

A way of regularising this situation consists in "perturbating" the equation (8.1) as, for = 0, :

(8.2) ∂ t ρ + ∂ x (ρu) = 0 u t + uu x - 2 2 ∂ x ∂xx √ ρ √ ρ = 0
which formally reduces to (8.1) as → 0. One can show that (8.2) has a regular solution for any time t, simple consequence of the fact that it is strictly equivalent to ...... a free Schrödinger equation [START_REF] Madelung | Quanten Theorie in hydrodynamischer Form[END_REF].

In fact u t +uu x -

2 2 ∂ x ∂xx √ ρ
√ ρ = 0 → u t +uu x = 0, as → 0, but the solution does NOT follows, and the classical situation (singular) is not recovered, the flow becomes mad and the solution oscillates.

(once again the essentialist vision is lost) . [1]. An application of the method of section 6.4 consists in studying a system of bosons coupled with many spins (fermions). Without entering in the details let us say that the underlying classical dynamics exhibits an unstable fixed point. When the original state is localized near this point the number of bosons is maximal. Waiting for an evolution at a time t ∼ log( 1 ) let the number of fermions increase, up to the maximum, and after that starts again to decrease up to 0. It turns out that the numbers of photons and of fermions are related by the formula:

Fermions vs bosons

N photons (t) + N spins (t) = N ∼ 1 fixed.
The formalism predicts oscillations (in time) of these numbers, corresponding to exchanges between bosons and fermions. This phenomenon is purely quantum, and moreover remains at the limit → 0: non-classical effect are still valid at the classical limit .

Coherent spaces and semiclassical limit

In this little final section we would like to inquire on the opportunity of considering semiclassical coherent spaces.

We have seen how, in quantum mechanics, the semiclassical limit is at the same time necessary and natural. Necessary to understand the fact that we don't see so much quantum effects in "real" life, and natural since the limit on dimension behave in a nice and elegant way. Link between "classical" and "quantum" coherent spaces might be less natural to handle, although we have to remember that semiclassical limit in physics is also a powerful method for problems which have nothing to do with microphysics. Also the example of having many particles, purely quantum, behaving, as the number of them increases, like a single one in the semiclassical regime, indicates clearly that the methodology has a kind of universality.

The main point of semiclassical limit seats on two facts: we have to consider non-diagonal matrices (in order to recover the phase-space of the classical theory) and we have to take the limit on infinite dimension N, both for matrices whose entries have a particular behaviour with respect to N.

How could this fit with coherent spaces? First of all we have to notice that, as we saw before, the "classical" coherent spaces, namely the ones corresponding to diagonal matrices, corresponds to finite sets. And classical mechanics on finite sets, finite geometry, is a strange domain. Secondly one should think of "passing" to the continuous limit S → [0, 1]. And after that, corresponding to the off-diagonal parts, should be doubled the space, something natural in the context of classical dynamics.

Finding a link between these last considerations and logic would be certainly a first step towards a semiclassical theory/limit of coherent spaces.

APPENDIX: Solve vs. Compute Let us ask the following question: is it easier to solve an equation or to compute an integral? The solving problem is a priori more difficult, as computing an integral consists, roughly speaking, in summing quantities, si is a constructive activity. On the other hand solving an equation is clearly on the "classical" side, as it produces an "essential" object: the solution. Computing (oscillating) integrals has to do with quantum mechanics. A radical way of seeing this is to consider the Feynman formalism of path integrals for quantum mechanics [START_REF] Feynman | Quantum mechanics and path integrals[END_REF]: no equation, only a superposition of all possible path from one point to another. Let us take for example, for f real function, the equation :

f (x) = 0
and let us consider, for each value of , the integral :

f (x) 2π e i R x f (y)dy xdx.
A computation of this integral thanks to the "stationary phase lemma" shows easily that

| f (x) 2π e i R x f (y)dy xdx| = x 0 + O( 1/2 )
with, precisely, f (x 0 ) = 0. that is to say: the computation of the integral solves the equation at the limit → 0.

To understand the (very powerful) meaning of the stationary phase formula, see [START_REF] Hörmander | The analysis of partial differential operators I[END_REF], let us remark that, if we call F (x) :=

x f (y)dy, a primitive of f , and perform a Taylor expansion of F (x) near a given point x 0 , we have that, all the contributions of the phase F (x) ∼ F (x 0 ) + F ′ (x 0 )(xx 0 ) + F ′′ (x 0 ) 2 (xx 0 ) 2 + . . . near x 0 compensate, as the sign of xx 0 , the leading term, varies. Therefore the contribution of them to the integral oscillate so much that, at the limit → 0, the integral vanishes, except if F (x) ∼ (xx 0 ) 2 that is to say if F ′ (x 0 ) = 0. In that case the quadraticity ensures a constructive contribution. So the non vanishing part of the integral determines the values x 0 such that F ′ (x 0 ) := f (x 0 ) = 0.

Moreover, when several "roots" x i , such that f (x j ) = 0, are present it still works perfectly, by adding the different parts of the integral. for example when two roots are present: We get a formula involving an interaction between x 1 and x 2 If we remark that the integrand oscillates more and more as → 0, we understand that, more is small, more efforts we have to do for computing the integral, and therefore the limit case corresponds to a kind of infinite limit (for example on the decimal approximation a computer will have to do in order to evaluate the integral).

• • • = x 1 e i F (
But there is more than that. The condition of stationary phase reduces, at the limit → 0, the computation of oscillating integrals to finding the solutions of the equations f (x) = 0. In the case where there are several solutions, the classical problem, i.e. solving the equation, gets in trouble. The quantum one, on the contrary, by computing the integral, goes very well with it. In other words computing integrals gives meaning to functions whose graph....is not a graph.

|

  do > for a c note played by a violin, | do > +| mi > for a chord c e again played by a violin and | do > ⊗| mi > for c played by a violin together with e played by a piano.

Lemma 5 . 1 .

 51 for a, b ∈ P(S), #a ∩ b = Tr(S a S b ) and #a = Tr(S a ) where Tr is the matrix trace.

P

  a∩b = P a P b a ⊂ b ⇔ P b ≥ P b P a∪b = P a + P b -P a P b , the last equation following the remark that ∩ and ∪ are exchanged by P ↔ 1 -P .

  S j := σ j ⊗ Id ⊗ Id + Id ⊗ σ j ⊗ Id + Id ⊗ Id ⊗ σ j where σ i , i ∈ {x, y, z}, are the Pauli matrices. We have:[S x , S y ] = iS z .

x 1 )

 1 + x 2 e i F (x 2 ) and | . . . | = x 2 1 + x 2 2 [(1cos F (x 1 ) -F (x 2 ) ) 2 + (1sin F (x 1 ) -F (x 2 ) ) 2 ].

  T. PAUL "part" being respectively H 1 and H 2 . To a pure state on H = H 1 ⊗ H 2 , that is to say a normalized vector |ψ >∈ H, we can associate the orthogonal projector P := |ψ >< ψ| on |ψ >. In fact to any projector P on H 1 ⊗ H 2 we can associate the following operator (matrix): σ := tr H 2 (P ) where tr H 2 (P ) is the operator on H 1 defined trough: (tr H 2 (P )) ij := k < i|⊗ < k|P |k > ⊗|j > where |i >, |j > ∈ H 1 and |k >∈ H 2 .