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Vibrations of Molecules and Solids

C. Tannous
Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

(Dated: September 17, 2022)

Vibrations in molecules and in condensed matter are described and discussed. Forces between
neighboring atoms are considered classically as radial or angular meaning that vibrational potential
energy is due either to length change in bonding distance (two-body effect) or angle change (bending)
of bonding configuration (three-body effect). After describing the historical (Diamond case) and
later the general theory of vibrations in condensed matter, we apply it to the 1D diatomic chain to
explain the notions of acoustic and optic phonons from their dispersion and density of states points
of view. Application to Graphene is later described as a general methodology for phonon dispersion
and density of states determination.

PACS numbers: 61.48.De, 63.22.m, 63.20.Dj, 81.05.Uw, 71.15.Mb
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I. INTRODUCTION

Vibrations in molecules and solids are discussed using mass and spring description of deformation energy then
applied to the case of a triangular molecule in order to review thoroughly the handling of vibration coordinates while
accounting for symmetry constraints allowing writing the equations of motion and determination of eigenmodes.

The example of a triangular molecule is not trivial and displays symmetries that belong to hexagonal systems like
graphite and graphene and should be handled with care in order to get the eigenmodes properly.

Historically Diamond was used as an example of a vibrating structure to explain its specific heat leading Einstein
and later Debye to study it in a pioneering way that opened fully the modern field of condensed matter vibrations
along with its thermodynamics and its relations to other physical properties (optical, mechanical, thermal...).

Afterwards we describe the general theory of vibrations in condensed matter and apply it to the case of 1D diatomic
chain to illustrate acoustic and optic phonons and move later to the description of Graphene.

The vibration formalism when devoted to Graphene relies on several possible oscillation scenarios that are tested
experimentally with the measurement of many structural, mechanical and thermodynamic quantities that are discussed
accordingly.

https://orcid.org/0000-0002-9293-1763
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II. MOLECULAR VIBRATIONS: TRIANGULAR MOLECULE

While the example of a triangular molecule is very pedagogic, yet it bears some of the symmetries that we encounter
in the solid state with graphite and graphene structures whose vibrations are analyzed in section V.
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Fig. 1: (Color on-line) Triangular molecule1,2 made of atoms with same m, the atomic mass and κ the spring
constant corresponding to binding energy between atomic neighbors. Vectors linking neighboring atoms are:
r23,r31 and r21, whereas small displacements of the atomic masses m are given by: ui � �xi, yi�, i � 1,2,3.

Following the labeling of Fig. 1 we have the unit vectors linking neighboring atoms Ãr23 � �1,0�, Ãr31 � �� 1
2
,
º

3
2
� andÃr21 � � 1

2
,
º

3
2
�.

The displacements of the masses1–3 are: ui � �xi, yi�, i � 1,2,3. Applying formula A3 we get the potential energy:

V �
1
2
κ �1

2
�x2 � x1� � º

3
2
�y2 � y1�	2 � 1

2
κ ��1

2
�x1 � x3� � º

3
2
�y1 � y3�	2 � 1

2
κ �1

2
�x2 � x3��2 (1)

The kinetic energy writes:

T �
1
2
m �ẋ2

1 � ẏ2
1 � ẋ2

2 � ẏ2
2 � ẋ2

3 � ẏ2
3� (2)

In order to find the modes it suffices to write down the Lagrangian and derive Euler-Lagrange equations of motion.

d

dt
�∂T

∂q̇i
� � ∂V

∂qi
� 0, qi � xi, i � 1,2,3, qi � yi, i � 4,5,6 (3)

We substitute qi � ai exp�jωt� with ω �

¼
λκ
m

obtaining from the Lagrange equations 3 the secular equation:
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Expanding the determinant, we get: D�λ� � λ6
� 6λ5

� 45λ4~4 � 27λ3~4 and the eigenvalues are λ � 0, λ � 3~2 and
λ � 3.

The confirmation of these values as well as their multiplicities is given by the plot of D�λ� versus λ depicted in
fig. 2 and displaying three roots: triple λ � 0, double λ � 3~2 and simple λ � 3 implying that D�λ� can be factored as
D�λ� � λ3�λ � 3~2�2�λ � 3�.
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Fig. 2: (Color on-line) From the local aspect (cubic, parabolic or linear) of the secular determinant D�λ� around
the crossings with the λ axis as depicted in the right figure, we infer that we have three solutions: triple λ � 0,

double λ � 3~2 and simple λ � 3

III. CRYSTAL VIBRATIONS: EARLY APPROACHES AND THE ENTROPY CATASTROPHE

In the classical mass-spring model picture of a 3D solid, a mole is made of 3NA vibrating atoms/molecules where
NA is Avogadro number.

Thus the number of degrees of freedom required by the equipartition theorem is 6NA since each vibrating
atom/molecule is made of a mass m with kinetic energy mẋ2

2
and a spring with constant κ yielding potential energy

κx2

2
where x, ẋ are coordinate and velocity along some direction. Thus the total energy is U � 6NA �

kBT
2

� 3NAkBT

yielding a constant volume specific heat given by: CV � �∂U
∂T
�
V
� 3NAkB . This is the Dulong-Petit law stating that

CV saturates at all temperatures.
However, the constant volume specific heat is given by: CV � T � ∂S

∂T
�
V

implying that CV

T
� � ∂S

∂T
�
V

and since CV is
constant this may be integrated as: S � CV lnT �C1 where C1 is a constant.

Consequently when T � 0K S � �ª. This is the entropy catastrophe (since S should be positive) akin to the ultra-
violet catastrophe of the blackbody radiation that was solved by Planck with the introduction of Quantum Mechanics.

In the year 1907, Einstein who was at the time at the Swiss Patent Office and had read 1901 Planck paper, decided
to quantize the classical Dulong-Petit law as he quantized the photoelectric effect in 1905.

Following Planck, Einstein considered 3NA quantum oscillators all having the same energy ÒhωE with mean number
given by Planck factor `ne � 1

�exp�ÒhωE~kBT ��1� , thus the energy becomes U � 3NA
ÒhωE`ne � 3NA

ÒhωE

�exp�ÒhωE~kBT ��1� .
Calculating the specific heat, he obtained:

CV � �∂U

∂T
�

V
� 3NAkB � ÒhωE

kBT
�2 exp�ÒhωE~kBT ��exp�ÒhωE~kBT � � 1�2 (5)

Thus we get the two limits: kBT Q ÒhωE , CV � 3NAkB recovering Dulong-Petit in the classical case and when:

kBT P ÒhωE , CV � 3NAkB � ÒhωE

kBT
�2

exp��ÒhωE~kBT �.
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Fig. 3: (Color on-line) Comparison of Debye, Einstein and experimental results of molar CV for Diamond. Molar

CV is defined in the Debe case as 3fD�xD�, whereas in the Einstein case as 3 � ÒhωE

kBT
�2

exp�ÒhωE~kBT �
�exp�ÒhωE~kBT ��1�2 and the

Debye temperature ΘD � ÒhωD~kB used is 2200K (Pure Diamond Debye temperature is 1860K) whereas the Einstein
temperature ΘE � ÒhωE~kB is 1320K. The experimental points are taken from DeSorbo paper4.

In spite of the fact, Einstein could not know about phonons nor their statistics, he treated them like blackbody
photons, obtaining a result showing that the entropy is positive and goes to zero when T � 0K as required by Nernst
third principle of thermodynamics. In order to fit the available results at low temperature of the specific heat of
Diamond he used an oscillator energy ÒhωE equivalent to a temperature ΘE � ÒhωE~kB of 1320K (see Kittel5).

When new experimental results were obtained on Diamond at low temperature with greater precision, the specific
heat appeared to follow Debye T 3 acoustic phonon result and Einstein result was interpreted as valid rather for optic
phonons5. Very generally, when excitations have an energy gap Òhω0 the specific heat behaves as exp��Òhω0~kBT �.

In the Debye approach, one considers in a 3D crystal a linear dispersion of phonons (see next section) yielding a
density of states given by gD�ω� � Vcω2

2π2v3
λ

where λ is the acoustic phonon branch with the sound velocity given by vλ,
Vc is the crystal volume and the total vibrational energy for the branch is given by:

Uλ � S
ωD

0
dω � Vcω

2

2π2v3
λ

� Òhω�exp�Òhω~kBT � � 1� (6)

This can be rewritten as: Uλ � AT 4f�xD� with A �
Vck4

B

2π2v3
λ
Òh3 and f�xD� � R xD

0 dx x3

�ex
�1� with xD �

ÒhωD

kBT
�

ΘD

T
where

ΘD is Debye temperature.
The calculation of the specific heat given by CV � �∂U

∂T
�
V
� 4AT 3f�xD� �AT 4 ∂f�xD�

∂T
.

The derivation of f�xD� with respect6 to T yields AT 3 ��ÒhωD

kBT 2 � x3
D

�exD�1� . Thus we have:

CV � 4AT 3 S
xD

0
dx

x3�ex � 1� �AT 4 � ÒhωD

kBT 2
� x3

D�exD � 1� (7)

This result was also obtained by Debye7, nevertheless several authors8 in the literature give the result:

CV � 3NkBfD�xD�, fD�xD� � 3
x3

D
S

xD

0
dt

t4et�et � 1�2 (8)

Both expressions of CV are same since A �
Vck4

B

2π2v3
λ
Òh3 and ωD can be evaluated from the conservation of total modes

which is given by: R ωD

0 gD�ω�dω � 3N .
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This means ω3
D �

18Nπ2v3
λ

Vc
yielding A � ÒhωD

kBT
�3

� 9NkB implying the equality of both CV expressions 3NkBfD�xD�
and 4AT 3 R xD

0 dx x3

�ex
�1� �AT 4 � ÒhωD

kBT 2 � x3
D

�exD�1� .

In the literature, the dilemma is that most authors call both functions appearing in Uλ and CV as Debye functions
whereas in the Mathematics9 literature, the Debye function is given by R x

0 dx x3

�ex
�1� .

Note however that recently Dubinov et al.10 gave a classification of both types of Debye functions D1�n,x�,D2�n,x�:
D1�n,x� � n

xn�1 S
x

0
dt

tn�et � 1� , D2�n,x� � n

xn S
x

0
dt

tn�1et�et � 1�2 (9)

Actually, there is no need to define Type 2 Debye functions since an integration by part is sufficient to transform
the function fD�x� � 3

x3 R x
0 dt t4et

�et
�1�2 into the regular Type 1 Debye function as defined by Mathematical Tables9.

In effect, define u � t4, du � 4t3dt and v � � 1
�et

�1� , dv � dt
�et

�1�2 , then one writes:

fD�x� � 3
x3 S

x

0
dt udv �

3
x3

��uv�x0 � S x

0
dt

4t3�et � 1�� (10)

Thus fD�x� � 12
x3 R x

0 dt t3

�et
�1� �

3x
�ex

�1� is defined solely with the type 1 Debye function.

IV. GENERAL DESCRIPTION OF CRYSTAL VIBRATIONS

There are many approaches to describe vibrations in crystals depending on their nature: Metals, Semiconductors
(covalent), Ionic (Insulators, Molecular crystals...), Magnetic...

The earliest approach is the mass and spring model, a hybrid approach where the crystal ions are treated classically
whereas their vibrations are quantized in order to avoid the entropy catastrophe.

Starting with the mass and spring model, the Hamiltonian of a vibrating crystal is given by11

H �Q
nli

Mn

2
u̇2

i �n, l� � 1
2
Q
nli

Q
ml�j

Φij �m n
l l�

�ui�n, l�uj�m, l��, (11)

where

Φij �m n
l l�

� � � ∂2V

∂ui�n, l�∂uj�m, l��	
eq

(12)

V is the ion-ion interaction potential, Mn is the mass of atom n, ui�n, l� is a small displacement of atom n in the

lattice cell l along direction i. Φij �m n
l l�

� is the force constant matrix linking an atom n in lattice cell l along direction

i to atom m in the lattice cell l� displaced by unit distance along direction j. Symbol eq indicates the second derivative
is taken at equilibrium lattice configuration.

The equation of motion of atom n in the lattice cell l is given by:

Mnüi�n, l� � � Q
ml�j

Φij �m n
l l�

�uj�m, l��. (13)

Exploiting crystal translational symmetry, the small displacement can be written as a plane-wave:

ui�n, l� � 1º
Mn

un
i ei�k�rn�l��ωt�, (14)

where un
i is the amplitude of vibration of atom n along direction i and rn�l� is the lattice translation vector.

Using the above expression of ui�n, l� turns eq. 13 into an eigenvalue equation:
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Q
ml�j

1
Mn

Φij �m n
l l�

�uj�m, l�� � ω2ui�n, l� � 0 (15)

Thus we define the Fourier transform of the force constant matrix as the dynamical matrix:

Dij�mn,k� � 1º
MmMn

Q
l

Φij �m n
l l�

� e�ik�rn�l� (16)

This results into the eigenvalue equation:

Q
m,j

Dij�mn,k�um
j � ω2un

i (17)

The dynamical matrix is Hermitian [Dij = D�

ji], thus its eigenvalues are real and yield the vibration spectrum.
Eigenvalues are obtained from:

SDij�mn,k� � ω2δijδmnS � 0. (18)

Force constant matrix Φij �m n
l l�

� possess the following properties:

1. Φij �m n
l l�

� being a second-order partial differential, thus:

Φij �m n
l l�

� � Φji �n m
l� l

� . (19)

2. Translational symmetry implies that Φij �m n
l l�

� is a function of rm�l� - rn�l��. Hence,

Φij �m n
l l�

� � Φij �m n
0 l

� , (20)

where 0 refers to the origin of coordinates.

3. Invariance of potential energy under rigid body displacement of the whole crystal yields:

Q
n,l

Φij �m n
0 l

� � 0. (21)

4. If the crystal has inversion symmetry then

Φij �m n
0 l

� � Φij �m n
0 �l

� . (22)

These properties are useful in finding out relations between various force constants. The evaluation of force constants
is such that we suppose uj�m� be the relative displacement of atom m along direction j with respect to atom n.
Then the force acting on atom n along direction i due to displacement of atom m only is:

fi � κmei�m�Q
j

ej�m� �uj�m�, (23)

where e���m��� is the unit vector along rm�l� and κm the spring constant between n and m atoms. We infer that the
total force acting on atom n along direction i due to neighboring atoms is:

Fi �Q
ml

κmei�m�Q
j

ej�m� �uj�m�. (24)

Comparing the above equation with equation(19) and using the definition of Φij �m n
0 l

�, we infer that:

Φij �m n
0 l

� � �κmei�m�ej�m�. (25)

We consider below the example of the diatomic chain in order to illustrate the existence of acoustic and optic modes.
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A. Acoustic and Optic modes

Let us consider a 1D diatomic chain made of a sequence of M1 and M2 A M1 masses in the unit cell separated by
a distance a and κ the elastic constant coupling them. Consequently the lattice constant is 2a.

We omit the (ij) index from Φij since we have a linear chain, we derive from the elastic energy involving relative
displacements of M1,M2 in cell n and those of M1 in cell n � 1 and M2 in cell n assuming that the same elastic
constant κ is involved in all cases:

Q
n

κ

2
�u�1, n� � u�2, n��2 � κ

2
�u�1, n � 1� � u�2, n��2 (26)

Thus, the following force constant matrices are determined by picking the value n � �1 leading to cells numbered -1
and 0:

Φ�1, 2
0, 0

� � Φ�1, 2
0,�1

� � �κ11 (27)

11 is the unit 2� 2 matrix and Φ�1, 2
0, 0

� is a force constant matrix linking first and second atoms in cell 0 whereas

Φ�1, 2
0,�1

� relates first and second atoms in cell 0 and -1 respectively.

Matrix Φ�1, 1
0, 0

� is found from the sum rule in equation (21) as:

Φ�1, 1
0, 0

� �Φ�1 2
0, 0

� �Φ�1, 2
0,�1

� � 0, (28)

yielding Φ�1, 1
0, 0

� � 2κ11

We derive from eq. 25 the matrices describing the forces involving the second atom in unit cell 0 as:

Φ�2, 1
0, 1

� � Φ�2, 1
0, 0

� � �κ11.

Hence from the sum rule:

Φ�2, 2
0, 0

� �Φ�2, 1
0, 1

� �Φ�2, 1
0, 0

� � 0, (29)

to yield Φ�2, 2
0, 0

� � 2κ11.

The dynamical matrix is obtained from eq. 16 as:

D �
��

2κ
M1

�
κº

M1M2
�1 � eika�

�
κº

M1M2
�1 � e�ika� 2κ

M2

�� (30)

The lower eigen-frequencies are acoustic and given by:

ω2
A � κ� 1

M1
�

1
M2

� � κ

¿ÁÁÀ� 1
M1

�
1

M2
�2

�
4 sin2�ka�

M1M2
. (31)

The acoustic term is due to the fact in the long-wavelength limit (k � 0) ωA � vsk with sound velocity vs �

2a

½
κ~2

�M1�M2� .
whereas the higher eigen-frequencies (optic) are given by:

ω2
O � κ� 1

M1
�

1
M2

� � κ

¿ÁÁÀ� 1
M1

�
1

M2
�2

�
4 sin2�ka�

M1M2
. (32)
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Fig. 4: (Color on-line) Acoustic ωA�k� (green) and Optic ωO�k� (magenta) phonon dispersion branches of the
diatomic chain. Their symmetry stems from Kramers theorem proper to time reversal symmetry yielding

ωA�k� � ωA��k� and ωO�k� � ωO��k� (see section IV B). Einstein (red) and Debye (blue) approximations are
displayed. The exact acoustic dispersion is very close to the Debye approximation with a slope equal to the sound

velocity vs � 2a

½
κ~2

�M1�M2� . The energy gap between
¼

2κ
M1

and
¼

2κ
M2

values is visible between the acoustic (green)

and optic (magenta) branches. Debye (blue) linear dispersion curve violates Bragg reflection forcing flat dispersion
at the Brillouin zone boundaries and makes an incursion in the gap region.

In the long-wavelength limit (k � 0) ωO � non-zero constant equal to
½

2κ � 1
M1

�
1

M2
�.

Since masses M1,M2 are different, there is a gap between the bands at the zone boundaries ��π~2a� (see fig. 4).
In the case of more complicated systems, Group theory is very useful in determining the properties and symmetries

of the force constant matrices as well as the form of the eigenvalue equations (see for example ref.12).

B. Vibrational density of states

The density of states g�ω� is defined such that the number of k states in the interval �ω,ω � dω� is such that:

g�ω�dω � Q
λ,k

ωBωλ�k�Bω�dω

(33)

where ωλ�k� is the dispersion relation of a phonon branch indexed with λ > �1, νd�. d is system dimension and ν
is the number of atoms/molecules per unit cell. There are d acoustic branches and ν�d � 1� optic branches at higher
energy. For instance, diamond is made of two FCC lattices displaced by � 1

4
, 1

4
, 1

4
� with respect to one another5. Thus

diamond has two Carbon atoms in the unit cell and consequently ν � 2 yielding six phonon branches in 3D: three
acoustic and three optic13.

The density of states (DOS) is generally determined from the group velocity and in 1D g�ω� � L
πSvg S where the 1D

group velocity is vg �
dω
dk

and L is the system typical linear length. Thus g�ω� � L
π
S dk
dω
S.

In d dimensions, Kittel5 defines the density of states g�ω� for a system of typical linear length L as given by
g�ω� � � L

2π
�d R dSω

vg
with k integration performed such that ω @ ω�k� @ ω�dω. vg is the d dimension group velocity

modulus of the vibration excitations5: vg � S©kω�k�S and dSω is the differential area element on the constant surface
ω�k� � ω.
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Specializing to the Debye case ωD�k� � vg SkS � vgk, the above expression of the density of the states can be
expressed analytically since the constant energy surface ω�k� � ω is a hypersphere with radius k � ω~vg and surface
equal to Sω � sdk

d�1
� sd�ω~vg�d�1 where sd is the unity radius hypersphere surface given by14 sd � 2πd~2~Γ�d~2�.

For instance, sd � �2,2π,4π� for d � �1,2,3�.
The d dimension Debye density of states is: gD�ω� � � L

2π
�d Sω

vg
that is gD�ω� � � L

2π
�d 1

vg

2πd~2

Γ�d~2� � ω
vg
�d�1

. In 3D

we get gD�ω� � Vcω2

2π2v3
g

as used in section III with vg replacing vλ and Vc � L3 the 3D system volume.
Note that in the Debye case, there is a cutoff frequency obtained from the condition that the total number of

modes per acoustic branch is given by R ωc

0 gD�ω�dω � Nd where N is the number of cells.

The Einstein case is much simpler since the dispersion is a constant given by ω � ωE (constant) and consequently
gE�ω� � Ndδ�ω � ωE�.

Specializing to the diatomic chain case we evaluate vg from eq. 31 and eq. 32. Both equations are rewritten as:
ω2

� A �

»
A2 �C sin2�ka� where A � κ � 1

M1
�

1
M2

� and C �
4κ2

M1M2
. Performing the derivatives we get:

� Acoustic branch: S dk
dω
S � 2ω�A�ω2�

a
»

A2
��ω2

�A�2»C�A2
��ω2

�A�2 for 0 B ω B

¼
2κ
M2

.

� Optic branch: S dk
dω
S � 2ω�ω2

�A�
a
»

A2
��ω2

�A�2»C�A2
��ω2

�A�2 for
¼

2κ
M1

B ω B

½
2κ � 1

M1
�

1
M2

�
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Fig. 5: (Color on-line) Phonon branches with k in π~2a units and corresponding DOS. The acoustic DOS is almost

constant since it is close to a Debye line (see fig.4) of the form vsk where vs is sound velocity given by 2a

½
κ~2

�M1�M2� .

Given that, in the Debye approximation, the DOS g�ω� � ωd�1 and d � 1 we get a constant g�ω� � L
πSvsS . Note the

divergence of the acoustic DOS near the boundary zone at ω �

¼
2κ
M2

. The optic DOS show divergences near the

boundary zone at ω �

¼
2κ
M1

and near zone center (k � 0).

The DOS results in fig. 5 display a divergence in the acoustic branch due to the flattening (giving a zero vg) of
the dispersion close to the zone boundary as well as in the optic branch which has a divergence near the zone center
due to flattening of the branch. Kramers theorem5 implying time-reversal symmetry at Γ point (k � 0) induces
flattening of the branches around zone center since ω�k� � ω��k� and an optic mode goes to a non-zero constant at
long-wavelength limit.
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To summarize, when ν the number of atoms/molecules per unit cell is larger than unity, we have two types of
modes:

� Lower energy acoustic modes that correspond to in-phase vibrations behaving as vλk when k � 0 and flattening
at zone borders due to Bragg reflections. In d dimensions, there are d acoustic branches.

� Higher energy optic modes that correspond to out-of-phase vibrations, flattening when k � 0 to non-zero
constant and additionally at zone borders due to Bragg reflections. In d dimensions, there are ν�d � 1� optic
branches.

V. APPLICATION TO GRAPHENE

Graphene has two Carbon atoms in the unit cell (see fig. 6), thus ν � 2 and accordingly should have in
2D, two acoustic and two optic phonon branches. However we will be considering graphene as a monolayer of
graphite oscillating in 3D (Z i.e. out of plane modes), consequently it has three acoustic and three optic phonon modes.

a

b β

α

Z

X

Fig. 6: Structure of 2D graphene (left) displaying a unit cell containing two Carbon atoms and 3D Graphite (right)
with sublattices α and β.

There exist many approaches dedicated to the evaluation of graphene vibrations. One of the earliest approaches is
by Woods and Mahan15. It is based on the existence of two energies:

� Central bond stretching (see Appendix A):

Vs �
1
2
α0Q

i,j

��uj �ui� � rijSrij S 	
2

(34)

� Bond bending based on three-body16 interactions (see Appendix A):

Vb �
1
2
β0 Q

i,j,k

�cos θi,j,k � cos θ0�2 (35)

where θi,j,k is the angle between i � j and i � k bonds and θ0 is the equilibrium angle of the crystal. It is, for
instance, 120X in the case of graphite and graphene.

The angle θi,j,k is evaluated by:

cos θi,j,k � �
1
2
� �1

2
Ãrij � Ãrik� � �ui �uj� � �12 Ãrik � Ãrij� � �ui �uk� (36)



11

Woods and Mahan15 succeeded in capturing the essential features of graphene phonon dispersion displaying at the
zone center (Γ point), two lower modes starting at zero frequency with higher modes starting from the same finite
value. In addition, two modes, the longitudinal optic and acoustic, at the K point, are degenerate.

Woods and Mahan15 derived the graphene phonon dispersion curves with only two constants namely α0 � 58.98
N/m2, β0 � 50.4 N/m2.

Another approach was made by Oshima et al.17 who divided the vibration energy into five terms: nearest neighbor
stretching, next nearest neighbor stretching, in-plane bending, out of plane bending (yielding Z acoustic and optic
modes, see fig. 2) and finally twisting (see fig. 7).

β

β

γ

1 2

2
1

1

3α
α

3

2

3

4

5

6

4

0

1

0
0

1

Fig. 7: (Color on-line) Vibration energy terms in graphene nearest neighbor stretching (α0), next nearest neighbor
stretching (α1), in-plane bending (β0), out of plane bending (β1) and finally twisting (γ0). Note the site numbering

involved in every energy term.

The different energies (see fig. 7) are written as:

1. Nearest neighbor stretching:

1
2
α0 ��u2 �u1� � r12Sr12S 	

2

(37)

2. Next nearest neighbor stretching:

1
2
α1 ��u3 �u1� � r12Sr13S 	

2

(38)

3. In-plane bending:

β0

2
���u2 �u1� � r12Sr12S2 	z

� ��u3 �u1� � r13Sr13S2 	z

¡2

(39)

Notation Sz means out-of-plane component z of the mathematical quantity.

4. Out of plane bending:

β1

2
�u2z � u3z � u4z � 3u1zSrS ¡2

(40)

where SrS � a0

º
3 with a0 the hexagon side length.
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5. Twisting:

γ0

2
��u5z � u6z� � �u3z � u4z�

a
	2 (41)

Tewary et al.18 employed a more sophisticated approach using Tersoff-Brenner method to rederive the phonon
dispersion curves and compare their results to experimental measurements19,20. They considered up to fourth neighbor
interactions and their results when compared with experimental results fared quite well.

More precisely, the Tersoff-Brenner21 potential they considered has 14 parameters that are obtained from exper-
imentally measured cohesive energy, lattice constant, elastic constants C11 and C66, flexural rigidity (or bending
stiffness) Y I (Y is Young modulus and I is moment of inertia) and phonon frequencies in three symmetry directions
Γ �K, Γ �M and K �M . Agreement between theory and experiment is shown in fig .8.

Regarding elastic constants C11 and C66, the values obtained with the TB potential are respectively 846 GPa and
248 GPa. The values obtained by Tewary et al.18 are C11= 1060 GPa and C66= 440 GPa, which are the measured
values for graphite. Tewary et al.evaluated the mass normalized 1 flexural rigidity to be 2.13 eV whereas it is 0.797
eV when calculated using a second-neighbor TB model21. This means actually that the third and fourth neighbors
make a substantial contribution to the flexural rigidity.

The 14 parameters intervene as elements into five generic force constant matrices that once are Fourier transformed
yield the dynamical matrix whose eigenvalues yield the vibration eigenmodes. The force constant matrices are 3�3
since they account for the local three neighbor configuration typical of the hexagonal structure of graphene.

The success of this method is due to the fact the Tersoff-Brenner21 potential is considered as one of the most
accurate and faithful representation of Carbon-Carbon (Single, Double and Triple bonds) interactions in the case of
both Diamond and Graphite. Moreover the TB potential showed it was able of describing faithfully sp3 hybridized
(like Diamond) and sp2 hybridized systems22 (like Graphite and Graphene).
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Fig. 8: (Color on-line) Brillouin zones (at left) of Graphite and Graphene, namely the hexagon at middle height
which lies in the plane containing high-symmetry points Γ,K and M with relative distances Γ �K � 4π~3a,

Γ �M � 2π~º3a, and K �M � 2π~3a. Lattice parameter a = 2.463 Å. Graphene phonon dispersion (at right) with
out-of-plane modes along Z axis ZA and ZO. The comparison of theoretical and experimental results19,23,24 is
adapted from Tewary et al.18 paper based on a parametric interaction potential of the Tersoff-Brenner21 type.

Michel et al.20 went even further to a fifth-nearest-neighbor force-constant model using Born method (see Appendix
A) to calculate the stretching and bending coefficients of graphite in order to obtain the elastic constants, bulk modulus
and sound velocities as displayed in Table I:

1 The mass normalized flexural rigidity unit is eV whereas the real unit of Y I is (dyn/cm).g.cm2= dyn.g.cm= erg.g or eV.g. Note that
in 2D the unit of Young modulus is dyn/cm (see Table II)
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Elastic parameters C11 C12 C66 C33 C44 C13 B vl vt

Born 1211.3 275.5 468.0 36.79 4.18 0.59 35.1 22.99 14.29

Ultrasonics and Static tests 1060 180 440 36.5 4.0 15

Inelastic X rays 1109 139 485 38.7 5.0 0 36.4

TABLE I: Table adapted from Michel et al.20 showing elastic constants of graphite in GPa units (1 GPa=1010

dyn/cm2) and sound velocities in km/s. As a rule of thumb, a 3D elastic constant Cij is roughly25

(Binding Energy) / (Bonding Volume). Taking Binding Energy � 1eV and Bonding Volume � `3 with ` � 1 Å we
get Cij � 1 Gpa. Theoretical results are given by the fifth-nearest-neighbor Born model whereas the experimental

measurements are given either by Ultrasonics and Static tests or Inelastic X rays20. B is the bulk modulus20

whereas vl and vt are longitudinal and transverse sound velocities.

The adiabatic/isothermal bulk modulus is given by: BS,T � �V � ∂P
∂V

�
S,T

and using the Jacobian method (see

Appendix B) we have BS � BT � B, that is B �
C33�C11�C12��2C2

13
�C11�C12��2C33�4C13

whereas vl and vt are longitudinal and transverse

sound velocities given by vl �

¼
C11
ρ

, vt �

¼
C66
ρ

where ρ is the graphite density.

In the graphite case, the agreement between Born theory and experiment is good and paves the way towards the
experimentally difficult graphene case for which we have some theoretical results collected in Table II.

Elastic parameters C11 C66 vl vt

Michel et al.20 40.5 15.66 23.08 14.34

First principles26 38.5 (a), 51.5 (b) 19.5 (c) 26.0 16.0

In-plane graphite27 37.37 (d) 16.35 (d) 22.16 14.66

TABLE II: Table adapted from Michel et al.20 showing 2D elastic constants C11 and C66 of graphene in 104

dyn/cm units and longitudinal vl (resp. transverse vt) sound velocities in km/s. As a rule of thumb a 2D elastic
constant Cij is roughly25 (Binding Energy)/(Bonding Surface). Taking Binding Energy � 1eV and Bonding Surface
� `2 with ` � 1 Å we get Cij � 104 dyn/cm. Additional notes: a: Elastic stiffness value is 63 eV/atom. b: Obtained

from vl = 26 km/s. c: Obtained from vt = 16 km/s. d: Evaluated with vl = 22.16 km/s and vt = 14.66 km/s.

The 2D bulk modulus and Young modulus evaluated for graphene are respectively B2D � 24.89 � 104 dyn/cm and
Y2D � 38.46� 104 dyn/cm. On the experimental side, mechanical measurements of graphene elastic constants are not
trivial because of the nature of the material, nevertheless some progress is being observed28.

APPENDIX A: ARBITRARY 3D SPRING DEFORMATION ENERGIES

There are many approaches13 to the description of crystal vibration energies. They range from classical to a hybrid
semi-classical mixture between classical and finally to full quantum.

There exist varieties of stretching, bending, twisting, breathing, rocking... energies ranging from 1D to full 3D and
the spatial interaction extent varies from nearest neighbors to remote ones at larger distances such as second, third
order neighbors...

Vibrations depend generally on force constants that are measured experimentally from thermodynamic quantities
such as specific heat and thermal conductivity. Mechanical measurements yield elastic constants, compressibility and
flexural rigidity (bending stiffness or ability to resist bending) given by Y I where Y is Young modulus and I the
moment of inertia. Structural measurements with X-Ray diffraction help in the determination of cohesion energy,
equilibrium lattice parameters and angles. Neutron scattering helps also in the determination of elastic constants5

and is extremely valuable since it allows a direct comparison between actual phonon dispersion curves and predicted
ones from modeling.

Some of the approaches13 are based on introducing descriptions pertaining to ionic displacements only with their
stretching, bending... (valence, shell models) or introducing polarization effects (dipole models)... Some crystals
like molecular or Van Der Waals behave like individual molecules and require radial deformations, whereas covalent
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semiconductors behave like large molecules implying the use of valence models with radial and angular deformations...
Other crystals like metals require inclusion of interaction with electrons in the surrounding Fermi sea, magnetic
crystals require a distinction between spin up and spin down electrons...

Microscopic models based on many-body approaches (Green functions and inverse dielectric function) and ab-initio
treatments based on full quantum calculations like DFT (Density Functional Theory) have also been performed
successfully13.

1. Stretching deformation energy

Arbitrary deformation of a spring (cf Fig. 9) in 3D is dealt through writing the potential energy as:

V �
1
2
κ�∆`�2 (A1)

z

y

O

1

A

B

0

0

A

B

u

x

u
2

Fig. 9: Deformation of a spring with an arbitrary 3D spatial orientation.

where ∆` � SABS � SA0B0S � SA0B0 �u2 �u1S � SA0B0S and κ the spring constant.
Calling u � u2 �u1 we get: ∆` � SA0B0 �uS � SA0B0S.
This is rewritten as: ∆` �

»�A0B0 �u� � �A0B0 �u� � SA0B0S.
Neglecting second order terms we get: ∆` �

¼���A0B0���2 � 2u �A0B0 � SA0B0S.
Factoring SA0B0S we get: ∆` � SA0B0S¼1 � 2u�A0B0

SA0B0S2 � SA0B0S that is: ∆` � u�A0B0

SA0B0S .
This can be written compactly as: ∆` � u �

r12

Sr12S � u � Ãr12 where Ãr12 �
r12

Sr12S �
A0B0

SA0B0S .
As a result, the potential energy takes the form:

V �
1
2
κ�∆`�2 � 1

2
κ ��u2 �u1� � r12Sr12S 	

2

(A2)

For a set of 3D springs, we generalize this formula as a pairwise ij sum:

V �
1
2
Q
i,j

κij ��uj �ui� � rijSrij S 	
2

(A3)

In the case of a set of 1D aligned springs having different constants, the potential energy is written as:

V �
1
2
Q
i,j

κij ��uj �ui��2 (A4)

where κij is the spring constant between sites i, j.
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2. Bending deformation energy

In order to evaluate the bending energy, the angular distortion must be handled and then an expansion ought to
be performed in the small distortion case as we did in the stretching case. Thus the simplest stretching and bending
energy are given by the Born13 model:

V �
1
2
Q
i,j

αij ��uj �ui� � rijSrij S 	
2

�
1
2
Q
i,j

βij�uj �ui�2 (A5)

where βij are bending constants akin to the stretching constants αij .
The Keating13 model contains a more elaborate stretching and bending energies:

V �
3
4
αK Q

i,j

��uj �ui� � rijSrij S 	
2

�
3
16

βK Q
i,�j,k�

��uj �ui� � rikSrikS � �ui �uk� � rijSrij S 	
2

(A6)

where the indexed sum i, �j, k� means it is performed over triplets of neighboring atoms and αK , βK are stretching
and bending parameters.

In the case of graphene, another form of bending energy between a triplet (1,2,3) of neighboring atoms is given by:

β

2
���u2 �u1� � r12Sr12S2 	z

� ��u3 �u1� � r13Sr13S2 	z

¡2

(A7)

In fact, it originates from the equilibrium angular constraint of 120X .
Notation Sz means out-of-plane component z of the mathematical quantity and β is the main bending parameter.

In the case of Silicon and similar semiconductors, the most representative bending energy is related to the distor-
tion of the tetrahedron structure and the most popular approach was done by Stillinger and Weber16 through the
introduction of a combinatorial function of a three-body angle θi,j,k with a permuted index:

f3�ri,rj ,rk� � h�rij ,rik, θj,i,k� � h�rji,rjk, θi,j,k� � h�rki,rkj , θi,k,j� (A8)

based on a three-body potential function limited by a cutoff length a:

h�rij ,rik, θj,i,k� � λ exp�γ�rij � a��1
� γ�rik � a��1� �cos θj,i,k �

1
3
�2

(A9)

λ, γ are parameters. The factor �cos θj,i,k �
1
3
�2 favors the perfect tetrahedral structure with angle θ0 such that

cos θ0 � �
1
3
. Thus θ0 value is given by cos�1��1~3� � 109.47X in the case of diamond and tetrahedral structure

semiconductors like Si, Ge, GaAs...

Finally, note that the bending energy can be written in a more appealing way15 as:

β

2
Q
ijk

�cos θijk � cos θ0�2 (A10)

leading immediately to the hexagonal value θ0 � 120X for graphite and graphene and the tetrahedral angle θ0 �

cos�1��1~3� � 109.47X in the case of Diamond and diamond-like semiconductors such as Si, Ge, GaAs...

APPENDIX B: NOTE ON THE BULK MODULUS

If we want to find the expression of BS , we start by writing: BS � �V � ∂P
∂V

�
S

using two mathematical tools:

1. The Jacobians29,30 with the following properties:

�

∂�u,v�
∂�x,y� �

RRRRRRRRRRRR
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

RRRRRRRRRRRR
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�

∂�u,v�
∂�x,y� � �

∂�v,u�
∂�x,y�

�

∂�u,y�
∂�x,y� � �∂u

∂x
�
y

�

∂�u,v�
∂�x,y� �

∂�u,v�
∂�s,t�

∂�s,t�
∂�x,y�

�

∂�u,v�
∂�x,y� � 1~∂�x,y�

∂�u,v�

2. Maxwell identities which are given by the mnemonic matrix WPS

TV
W yielding: �∂P

∂T
�
V
� � ∂S

∂V
�
T

and each time we

exchange variables diagonally we pick up a sign change as in the case P � V :

WV S

TP
W equivalent to: �∂V

∂T
�
P
� � � ∂S

∂P
�
T
.

Any term such as ∂�x, y� behaves as if it were an algebraic coefficient simplifying enormously the mathematical
manipulations.

However there is a limit to express any physical quantity: It should depend on three measurable quantities29:

1. Dilation coefficient αP �
1
V
�∂V

∂T
�
P

2. Compressibility κT � �
1
V
�∂V

∂P
�
T

3. Heat capacity CV � T � ∂S
∂T
�
V

or CP � T � ∂S
∂T
�
P

If we want to find the expression of BS . We start by writing: BS � �V � ∂P
∂V

�
S

which gives:

BS � �V ∂�P,S�
∂�V,S� � �V ∂�P,S�

∂�V,T �
∂�V,T �
∂�V,S� � �V

RRRRRRRRRRR
� ∂P

∂V
�
T
�∂P

∂T
�
V� ∂S

∂V
�
T
� ∂S

∂T
�
V

RRRRRRRRRRR �∂T
∂S
�
V

.

This is transformed into: BS � �V
RRRRRRRRRRR
�

1
V κT

�∂P
∂T
�
V� ∂S

∂V
�
T

CV

T

RRRRRRRRRRR T
CV

.

Developing the determinant we get: BS � �
V T
CV

�� CV

V TκT
� �∂P

∂T
�
V
� ∂S

∂V
�
T
�

Maxwell relations yield: � ∂S
∂V

�
T
� �∂P

∂T
�
V

and the Jacobian method gives: �∂P
∂T
�
V
� � �∂V

∂T
�
P
� ∂P

∂V
�
T
� αP V 1

V TκT
�

αP

κT
.

Thus BS �
V T
CV

� CV

V TκT
� �∂P

∂T
�2
V
�. and finally BS � BT �

V T
CV

α2
P B2

T .

Since for a solid the dilation coefficient is relatively small, consequently: BS � BT .
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