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ABSTRACT

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade
rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade
according to the parallel and perpendicular directions with respect to magnetic guide field.
Aims. Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are
investigated. The variance and normalized fluctuation ratios, the kinetic and magnetic energies, and the normalized cross-helicity and
residual energy are studied. The connection between the heliocentric distance, the local temperature of the plasma, and the energy
cascade components is made.
Methods. Using exact relations for fully developed incompressible magnetohydrodynamic (MHD) turbulence, the incompressible en-
ergy cascade rate is computed. In particular, using the isotropy and 2D and slab assumptions, the isotropic, perpendicular, and parallel
energy cascade rate components are estimated.
Results. The variance anisotropy ratios, for both velocity and magnetic fields, do not exhibit a dependence with respect to the helio-
centric distance r between 0.2 and 0.8 au. While the velocity normalized fluctuation ratio shows a dependence with r, the magnetic
normalized fluctuation ratio does not. A strong correlation between the isotropic and anisotropic energy cascade rates and the temper-
ature is found. A clear dominance of the perpendicular cascades over the parallel cascades as PSP approaches the Sun is observed. A
dominant 2D cascade and/or geometry over the slab component in slow solar wind turbulence in the largest MHD scales is observed.

Key words. turbulence – magnetohydrodynamics (MHD) – plasmas

1. Introduction

The solar wind expansion from the Sun is highly non-
adiabatic, partly noticed by proton temperatures falling off
much more slowly than is expected for a freely expanding
ideal gas (e.g., Parker 1958; Richardson et al. 1995). Through-
out its radial expansion, the solar wind develops a strongly
turbulent regime (Bruno & Carbone 2005) that can be char-
acterized by proton density, velocity, temperature, and mag-
netic field fluctuations (Matthaeus & Velli 2011). Furthermore,
large-scale magnetohydrodynamic (MHD) turbulence serves
as a reservoir of energy that cascades down to the small-
est scales (e.g., Politano & Pouquet 1998a,b) where it can be
dissipated by kinetic effects while it heats the plasma (e.g.,
Leamon et al. 1998; Sahraoui et al. 2009; Alexandrova et al.
2009; Huang et al. 2020). In the MHD inertial range, where
the energy is transferred without dissipation through differ-
ent spatial and temporal scales (e.g., Frisch 1995), the solar
wind exhibits a constant energy cascade rate as a function
of such scales (Sorriso-Valvo et al. 2007; Coburn et al. 2015;
Hadid et al. 2017; Bandyopadhyay et al. 2020; Andrés et al.
2021), in which the magnetic spectrum presents a −5/3
slope (e.g., Matthaeus & Goldstein 1982; Leamon et al. 1998;
Matthaeus 2021; Huang et al. 2021).

The presence of a magnetic guide field B0 induces sev-
eral types of anisotropy in solar wind turbulence on MHD and
kinetic dissipation scales (see Horbury et al. 2012). In particu-
lar, the energy transfer between scales depends strongly on the
direction of the magnetic guide field, splitting the energy cas-
cade according to the parallel and the perpendicular directions
with respect to B0. Several observational results have shown
that the solar wind fluctuations at 1 astronomical unit (au)
at the largest MHD spatial scales are a combination of field-
aligned (or slab) and perpendicular (or 2D) wavevectors (see
Matthaeus et al. 1990; Dasso et al. 2005). Dasso et al. (2005)
used five years of ACE data from near-Earth orbit to investi-
gate the correlation anisotropy of solar wind MHD scale fluctu-
ations and showed that the nature of the anisotropy differs in fast
and slow solar winds. In particular, fast winds are more dom-
inated by fluctuations with wavevectors almost parallel to the
local magnetic field, while slow solar winds, which appear to be
more fully evolved turbulence, are more dominated by quasi-
perpendicular fluctuation wavevectors. Adhikari et al. (2021)
studied anisotropic turbulence in the slow and fast solar wind
as a function of the angle between the mean solar wind speed
and the mean magnetic field and as a function of the heliocentric
distance. Using Solar Orbiter measurements, the authors com-
pared the observed results with the solar wind and with nearly
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incompressible (NI) MHD turbulence transport model equations
(Zank & Matthaeus 1993), and found agreement between the
theoretical and observed results in the slow and fast winds as
a function of the heliocentric distance.

Typically, there are two types of fluctuation anisotropy that
are recurrently observed in the solar wind, spectral and variance
anisotropy (see Oughton et al. 2015). On the one hand, if the
components of the fluctuating magnetic (or velocity) field have
unequal average energies, then the field is said to exhibit variance
or component anisotropy (Matthaeus et al. 2005; Weygand et al.
2011). On the other hand, when the energy distribution at a given
spatial (`) or temporal (τ) scale is not isotropic, the field exhibits
spectral or wavevector anisotropy (Montgomery & Turner 1981;
Shebalin et al. 1983; Goldreich & Sridhar 1995; Oughton et al.
2015). In the present paper we focus our attention on two partic-
ular features of anisotropic turbulence, the variance anisotropy
ratio and the ratio of fluctuation to mean field for the velocity
and the magnetic fields, respectively. The investigation of these
anisotropy ratios, the energy cascade rate in the MHD scales,
the isotropic and anisotropic models, and their connection with
the solar wind temperature are the main objectives of the present
paper.

Using exact relations in fully developed turbulence, it
is possible to obtain expressions for the energy cascade
rate. Assuming spatial homogeneity and full isotropy, an
exact relation for incompressible MHD turbulence can be
derived (Politano & Pouquet 1998a,b). This exact relation
provides a precise computation of the amount of energy
per unit time and volume εI (or heating rate) as a func-
tion of the velocity and magnetic correlation functions. The
MHD exact relation and its connection with the nonlinear
energy cascade rate has been numerically and observa-
tionally validated for both incompressible and compress-
ible MHD turbulence (Weygand et al. 2007; Matthaeus et al.
1999; Grossmann et al. 1997; Carbone et al. 2009; Stawarz et al.
2009, 2010; Banerjee et al. 2016; Hadid et al. 2017, 2018;
Andrés et al. 2018b; Andrés & Banerjee 2019), has been gen-
eralized to include sub-ion scale effects (Andrés et al. 2018a,
2019; Hellinger et al. 2018; Ferrand et al. 2019, 2021a), and
has been extended to include constant velocity shear effects
(Wan et al. 2009, 2010). Estimations of the isotropic energy
cascade rate in the inertial range of solar wind turbulence
have been previously computed at 1 au (see Marino et al. 2008;
Coburn et al. 2015; Banerjee et al. 2016; Hadid et al. 2017) and
more recently at small and large heliocentric distances (see
Bandyopadhyay et al. 2020; Andrés et al. 2021).

Assuming a 2D and slab cylindrical symmetric geometry,
where the perpendicular cascade rate is considered to depend
only on the perpendicular scale and the parallel cascade depends
on the parallel direction, MacBride et al. (2008) derived a rela-
tion for homogeneous incompressible anisotropic MHD turbu-
lence. In particular, they derived expressions for the correlation
functions that are applicable to both parallel and perpendic-
ular cascades. Using seven years of solar wind observations
from the ACE spacecraft at 1 au, MacBride et al. (2008) found
a region with linear scaling of the energy flux, as is expected
for the MHD inertial range. In addition, they found that both
fast and slow solar winds exhibit an active energy cascade over
an inertial range, with an energy cascade rate in the parallel
direction consistently lower than in the perpendicular direction.
Stawarz et al. (2009) investigated the convergence of third-order
structure functions to compute cascade rates in the solar wind
using ACE observation at 1 au covering the years from 1998 to
2007. The authors found that a minimum of one year of data is

normally required to get good convergence and statistically sig-
nificant results. They also compared the computed energy cas-
cade rates with previously determined rates of proton heating at
1 au, as determined from the radial gradient of the proton tem-
perature. Stawarz et al. (2010) investigated ACE observations of
large cross-helicity states using isotropic and anisotropic expres-
sion for the energy cascade rate. In contrast to intervals with
small helicity values, large helicity states demonstrate a signifi-
cant back-transfer of energy from small to large scales.

In the present paper, using a large Parker Solar Probe (PSP)
data set (more than 5000 h in the solar wind), we extend the cur-
rent state of knowledge of solar wind turbulence in the inner
heliosphere by computing the energy cascade rate using both
the anisotropic and isotropic relations for fully developed tur-
bulence. Using magnetic field and plasma moment observations
between ∼0.2 au and ∼0.8 au, we investigate how the energy cas-
cade rate is affected not only by the heliocentric distance, but
also by the presence of a guide magnetic guide and the conse-
quence anisotropy.

The study is structured as follows. In Sects. 2 and 3 we
present the theoretical incompressible MHD model and a brief
description of the anisotropic and isotropic exact relations,
respectively. In Sect. 4 we briefly describe the PSP observation
data set and the conditions that each turbulent event must fulfill.
In Sect. 5 we present the main results of our analysis. Finally,
the discussion and conclusions are developed in Sect. 6.

2. The incompressible MHD model

The three-dimensional (3D) incompressible MHD equations are
the momentum equation for the velocity field u (in which the
Lorentz force is included), the induction equation for the mag-
netic field B, and the solenoid condition for both fields. These
equations can be written as

∂u
∂t

= −u · ∇u + B · ∇B −
1
ρ0
∇(P + PM) + f k + dk, (1)

∂B
∂t

= −u · ∇B + B · ∇u + f m + dm, (2)

∇ · u = 0, (3)
∇ · B = 0, (4)

where the magnetic field is in Alfvén velocity units (i.e., the real
magnetic field is B

√
4πρ0, where ρ0 is the mean mass density

and µ is the magnetic permeability of the plasma) and PM is the
magnetic pressure. Finally, f k,m are respectively a mechanical
and the curl of the electromotive large-scale forcings, and dk,m
are respectively the small-scale kinetic and magnetic dissipation
terms (Andrés et al. 2016; Ferrand et al. 2021b).

3. The exact relation in MHD turbulence

Using Eqs. (1)–(4) and following the usual assumptions for fully
developed homogeneous turbulence (i.e., infinite kinetic and
magnetic Reynolds numbers and a steady state with a balance
between forcing and dissipation) (see, e.g., Andrés & Sahraoui
2017), an exact relation for incompressible anisotropic MHD
turbulence can be obtained as (e.g., Galtier 2018)

−4ε = ρ0∇` · F, (5)

where F is the incompressible energy flux

F = ρ0〈(δu · δu + δB · δB)δu − (δu · δB + δB · δu)δB〉, (6)
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and ε is the total energy cascade rate per unit volume. Fields
are evaluated at position x or x′ = x + `; in the latter case
a prime is added to the field. The angular bracket 〈·〉 denotes
an ensemble average (Batchelor 1953), which is taken here as
a time average assuming ergodicity. Finally, we introduced the
usual increment definition: δα ≡ α′ − α. It is worth noting
that we do not have access to multi-spacecraft measurements,
and therefore it is necessary to assume some sort of symme-
try to integrate Eq. (5) and be able to compute the energy cas-
cade rate ε (see Stawarz et al. 2011). In particular, we work with
two models for the energy cascade rate, an isotropic form for εI
(Politano & Pouquet 1998a,b), and the anisotropic expressions
ε⊥ and ε‖ respectively for the perpendicular and parallel cascade
rates (MacBride et al. 2008).

3.1. The isotropic energy cascade rate

Assuming the Taylor hypothesis (i.e., ` ≡ τU0, where U0 is the
mean plasma flow speed and ` = |`| is the longitudinal distance)
and full isotropy, Eq. (5) can be integrated and expressed as a
function of time lags τ. While Eq. (5) includes increments in all
the spatial directions, the isotropic cascade only includes incre-
ments in the longitudinal direction ` (for single-spacecraft mea-
surements, in the plasma velocity direction Û0). Therefore, the
isotropic energy cascade rate (Politano & Pouquet 1998a,b) can
be evaluated using only increments in the longitudinal direction as

εI = ρ0〈[(δu ·δu+δB ·δB)δu` − (δu ·δB+δB ·δu)δB`]/(−4τU0/3)〉, (7)

where u` = u·Û0 and B` = B·Û0. In particular, the total isotropic
energy cascade rate εI can be expressed as a function of two
components: ε1 proportional to δu`, and ε2 proportional to δB`.

3.2. The 2D and slab energy cascade rates (MacBride et al.
2008)

As we discuss in the Introduction, observational results have
shown that an important part of the energy power can be con-
fined to the parallel and perpendicular directions with respect to
the magnetic guide field (e.g., Shebalin et al. 1983; Milano et al.
2004; Dasso et al. 2005; Oughton et al. 2013). Therefore, here
we present the hybrid formulation (i.e., 1D plus 2D) that can
address the parallel and perpendicular fluctuations, temporal
increments, and energy cascade rates (see MacBride et al. 2008;
Stawarz et al. 2009). To find expressions for the perpendicular
and parallel cascade rates, we use the magnetic field aligned
basis (e.g., Bieber et al. 1996), where the velocity and magnetic
field observations are properly rotated to leave parallel magnetic
fluctuations in one direction. Then, in this particular basis, the
ê3 versor is along the magnetic guide field direction and the unit
vectors are

ê3 ≡ êB, (8)
ê2 ≡ ê3 × ê1, (9)

ê1 ≡
êU × êB

|êU × êB|
, (10)

where êB = 〈B〉/〈|B|〉 and êU = 〈u〉/〈|u|〉. Assuming that we
have cylindrical symmetry and that the energy flux Eq. (6) is
perpendicular to the mean magnetic field (and depends only on
`⊥), an expression for the perpendicular energy cascade rate can
be found as

ε⊥ = ρ0〈[(δu ·δu +δB ·δB)δu2 − (δu ·δB +δB ·δu)δB2]/(−2τU0 sin θBV )〉, (11)

where u2 = u · ê2, B2 = B · ê2 and θBV is the angle between êB
and êU . On the other hand, still assuming that we have cylindrical
symmetry but that the energy flux Eq. (6) is parallel to the mean
magnetic field and depends only on the parallel direction `‖, an
expression for the parallel cascade rate can be found as

ε‖ = ρ0〈[(δu ·δu +δB ·δB)δu3 − (δu ·δB +δB ·δu)δB3]/(−4τU0 cos θBV )〉, (12)

where u3 = u · ê3 and B3 = B · ê3. Finally, the total hybrid energy
cascade rate in this model is εH = ε⊥/2 + ε‖/4. In the present
paper we are interested in computing εI, ε⊥, and ε‖, which are
fully defined by velocity and magnetic field increments that can
be estimated from single in situ measurements.

4. Observations and selection criteria

We used a data set of PSP observations (Fox et al. 2016;
Kasper et al. 2016, 2019; Bale et al. 2016, 2019; Case et al.
2020) covering the period between October 10, 2018, and
December 31, 2020. This large data set includes the first six PSP
perihelia. We used the magnetic field and the proton moments
from the FIELDS and SPC experiments, respectively. The spu-
rious data (i.e., high artificial peaks) in the SPC moments (see
Kasper et al. 2016) were removed using a linear interpolation
(see Bandyopadhyay et al. 2020; Parashar et al. 2020) and the
data set was re-sampled to 0.873 s time resolution. In order to
analyze the solar wind turbulence on MHD scales, the data set
was divided into a series of samples of equal duration of 60 min.
This time duration ensures several correlation times of the tur-
bulent fluctuations at heliocentric distances of less than 1 au (see
Parashar et al. 2020; Hadid et al. 2017). As in previous stud-
ies (e.g., Andrés et al. 2020, 2021), we avoided intervals that
contained significant disturbances or large-scale gradients (e.g.,
coronal mass ejection or interplanetary shocks) or rapid flips in
the Sun’s magnetic field that reversed direction (i.e., magnetic
switchbacks). We further considered only intervals that did not
show large fluctuations of the energy cascade rate over the MHD
scales; typically, we retained events with std(εI)/mean(|εI|) < 1
(where std is the standard deviation).

5. Results

5.1. Occurrence rates

Figure 1 shows the occurrence rates for the number density,
velocity, and magnetic field absolute mean and fluctuation values
for all the events in our data set. In particular, we separated the
velocity and magnetic fields in terms of its mean and fluctuation
values as

u(x, t) = U0 + u(x, t), (13)
B(x, t) = B0 + b(x, t), (14)

where U0 = 〈u(x, t)〉, B0 = 〈B(x, t)〉 and 〈· · · 〉 denotes a time
averaging operator, which in the present paper is the global mean
(i.e., a one hour average). It is worth noting that most of the cases
studied in the present paper correspond to slow solar wind (i.e.,
|U0| . 500 km s−1). Since we want to estimate the incompress-
ible energy cascade rates to ensure the incompressibility approx-
imation, we keep only the cases where 〈|∆n|/n〉 < 15% (where
∆n ≡ n − 〈n〉). In other words, we use the full velocity fields in
the incompressible MHD exact relation in those events where the
velocity fluctuations have only weak compressible effects. How-
ever, we are estimating the incompressible energy cascade rate
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Fig. 1. Occurrence rates for the proton density, and the proton and Alfvén velocity absolute mean values (top) and fluctuations (bottom).

Fig. 2. Bivariant KDE for the mean (a and b) and fluctuating (c and d)
velocity and magnetic field absolute values as a function of the helio-
centric distance.

since velocity fluctuations may still contain a small compress-
ible component. This leaves us with a data set of ∼5200 events
of one-hour duration each.

Figure 2 shows the bivariant kernel density estimation (KDE)
for the mean and fluctuating velocity and the magnetic fields as a
function of the heliocentric distance. A bivariant KDE produces
a continuous probability density surface in two dimensions (see
Waskom 2021), where brighter regions correspond to regions
with more analyzed events. It is worth noting that while the
mean velocity field values do not present a statistical dependence
with the heliocentric distance, the magnetic guide field and both

magnetic and velocity fluctuation values strongly decrease as we
move away from the Sun. In particular, as we approach the Sun,
the magnetic and kinetic fluctuation levels increase to the same
order (∼50–70 km s−1). We return to this point in Sect. 5.3 when
we analyze the isotropic cascade rate.

5.2. Variance anisotropy and normalized fluctuation ratios

As we discussed in the Introduction, there are two types of fluc-
tuation anisotropy that are typically observed in the solar wind:
spectral anisotropy and variance anisotropy. To quantify them we
consider the velocity and magnetic fields in terms of mean values
plus fluctuations around these means (see Eqs. (13) and (14)).
On the one hand, if the components of the field have unequal
energies (e.g., in Cartesian coordinates, departures from 〈b2

x〉 =
〈b2

y〉 = 〈b2
z 〉 for the magnetic field), the field exhibit variance

anisotropy (e.g., Belcher & Davis 1971; TenBarge et al. 2012).
To quantify this variance anisotropy, we consider the velocity
and magnetic anisotropy ratios (see Oughton et al. 2015) as

Av =
v2
⊥

v2
‖

, (15)

Ab =
b2
⊥

b2
‖

, (16)

where we employ the magnetic field coordinate system
(see Bieber et al. 1996). Variance anisotropy is scale
(e.g., Matthaeus et al. 2012) and plasma β dependent (e.g.,
Oughton et al. 2016); however, in the present paper we focus
our attention on their values for the largest MHD scales (i.e., one
hour mean values). On the other hand, generally speaking, when
the energy distribution at a given time scale τ is not isotropic, we
speak of spectral anisotropy. In particular, spectral anisotropy is
usually associated with energy cascades that are also anisotropic
(Oughton et al. 2015; Horbury et al. 2012). Moreover, for
incompressible MHD turbulence, numerical and observational
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Fig. 3. Bivariant KDE for the normalized fluctuation (a and b) and vari-
ance anisotropy (c and d) ratios respectively for the velocity and mag-
netic fields as a function of the heliocentric distance. The dotted lines in
panels c and d correspond to the isotropic (kinetic or magnetic) energy
distribution.

evidence shows that strong (or even moderate) mean magnetic
fields give rise to a suppression of the energy cascade in the
parallel direction, and the perpendicular energy cascade is
thus much stronger than the parallel cascade (Shebalin et al.
1983; Oughton et al. 1994, 2011, 2013; Cho & Vishniac 2000;
Milano et al. 2001; MacBride et al. 2008; Stawarz et al. 2009;
Matthaeus et al. 2012; Andrés et al. 2018b). Therefore, in the
present paper we consider the ratio of the fluctuation fields
and the mean as indicative of spectral anisotropy at MHD
scales for both u and B; in other words, the ratios 〈|v|〉/|U0| and
〈|b|〉/|B0| are the normalized fluctuation ratios for the velocity
and magnetic fields, respectively.

Figure 3 show the bivariant KDE for the normalized fluctu-
ation ratios and variance anisotropy ratios respectively for the
velocity and magnetic fields as a function of the heliocentric
distance. The dotted lines in Figs. 3c and d correspond to the
isotropic (velocity or magnetic) energy distribution. While the
normalized velocity fluctuation ratios show a dependence on
the heliocentric distance r (with a very low amplitude), the mag-
netic fluctuation ratios do not show a clear dependence. How-
ever, the magnetic fluctuations are much larger than their means,
while the velocity fluctuations are small when they are compared
with their means. The variance anisotropy ratios, both velocity
and magnetic, do not exhibit a dependence with respect to the
heliocentric distance. Moreover, for the velocity field most of
the cases remain around 2, suggesting that the kinetic energy
distribution is approximately isotropic on MHD scales, and for
the magnetic field most of the events reported here show high
anisotropy ratios (i.e., 2 ≤ Ab).

5.3. The incompressible energy cascade rate

To compute the right-hand side of Eqs. (7), (11), and (12), we
constructed temporal correlation functions of the different turbu-
lent fields at different time lags τ in the interval [1,3600] s, which
covers the MHD inertial range (Hadid et al. 2017) at heliocentric

Fig. 4. Cascade rate component 〈|ε2|〉 as a function of the component
〈|ε1|〉. In panel a the color bar is the total cascade 〈|εI|〉, and in panel b
it is the heliocentric distance 〈r〉.

Fig. 5. Cascade rate component 〈|ε⊥|〉 as a function of the component
〈|ε‖|〉. In panel a the color bar is the total cascade 〈|εH|〉 (where εH =
ε⊥/2 + ε‖/4 is the total hybrid cascade rate), and in panel b it is the
heliocentric distance 〈r〉.

distances between ∼0.2 and ∼0.8 au. Once we have the energy
cascade rates as a function of the time increments, we average
them on the large timescales (i.e., for τ ∈ [1000, 3000] s) to
obtain representative values for the cascades in the largest MHD
scales.

As we discuss in Sect. 3.1, the total isotropic energy cascade
rate can be written as a function of two components,

εI = ε1 + ε2, (17)
ε1 = ρ0〈(δu · δu + δB · δB)δu`/(−4τU0/3)〉, (18)
ε2 = −ρ0〈(δu · δB + δB · δu)δB`/(−4τU0/3)〉, (19)

where we can relate the first component ε1 to the total energy
(kinetic plus magnetic) and the second component ε2 to the
cross-helicity (i.e., u·B) in the plasma. This interpretation comes
directly from Eqs. (18) and (19).

Figure 4 shows the mean absolute value 〈|ε2|〉 as a function
of 〈|ε1|〉. The color bar corresponds in panel a to the mean total
energy cascade rate absolute value 〈|εI|〉 and in panel b to the
heliocentric distance r. As a reference, we plot a gray dashed
line with slope equal to 1. As we expected, there is a strong
correlation between the cascade rate amplitude and the helio-
centric distance to the Sun: the closer PSP is to the Sun, the
stronger the isotropic energy cascade rate is. In particular, the
strongest cases correspond to approximately equal cross-helicity
and energy components (i.e., 〈|ε1|〉 ≈ 〈|ε2|〉).

Figure 5 shows the mean absolute value 〈|ε⊥|〉 as a function
of 〈|ε‖|〉 in the same format as in Fig. 4. As in Fig. 4, as we move
far away from the Sun, both components decrease their ampli-
tudes. Moreover, we observe a clear trend of obtaining more per-
pendicular than parallel energy cascade values as we approach
the Sun (slope larger than one in Fig. 5b).
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Fig. 6. Cascade rate component 〈ε2〉 as a function of the component
〈ε1〉, and the perpendicular component 〈ε⊥〉 as a function of the parallel
component 〈ε‖〉. In panels a and b the color bar is the temperature.

Fig. 7. For a given temperature bin the following averages are shown:
(a) Components and total isotropic energy cascades rates; (b) com-
ponents and total anisotropic energy cascades rates; (c) fluctuation in
kinetic and magnetic energies; and (d) normalized cross-helicity and
normalized residual energy as a function of the temperature.

5.4. The isotropic, perpendicular, and parallel cascade rates
and their relation with the temperature

Figure 6 shows the mean absolute value 〈|ε2|〉 as a function of
〈|ε1|〉 and the mean absolute value 〈|ε⊥|〉 as a function of 〈|ε‖|〉.
In both panels, the color bar corresponds to the proton temper-
ature, and as a reference a gray dashed line indicates a slope
equal to one. In comparison with Figs. 4 and 5, we note the clear
(and expected) correlation between the heliocentric distance and
the temperature: as r increases, the temperature decreases. In the
case of the anisotropic cascade rates, we also observed that the
hottest events mainly correspond to those where the perpendic-
ular cascade is dominant with respect to the parallel cascade in
the MHD range.

Typically, in MHD it defines the normalized cross-helicity
σc = 〈u · b〉/(Ek + Em) and the normalized residual energy
σr = (〈u2〉 − 〈b2

〉)/(〈u2〉+ 〈b2
〉), where Ek ≡ 〈u

2〉/2 is the incom-
pressible kinetic energy and Em ≡ 〈b2

〉/2 is the magnetic energy.
While the cross-helicity measures the level of Alfvénicity of a
particular event, the residual energy quantifies the relative energy
in kinetic and magnetic fluctuations. By definition, the parame-
ters σc and σr range between −1 and 1. For simplicity we drop
the “normalized” prefix, assuming the understanding that these
imply the normalized versions σc and σr. Figure 7 shows the
average of different variables as a function of the temperature. In
particular, we group events according to the temperature values
and then bin average them. The error bars correspond to the stan-
dard deviation divided by the square root of the number of sam-
ples in each group. Then, for a given temperature, we averaged
a the isotropy and b anisotropy energy cascade rates (total and

components), c the incompressible kinetic and magnetic fluctu-
ation energies, and d the cross-helicity and residual energy.

Figures 7a and b show in a compact form the results ana-
lyzed in Fig. 6: as the isotropic (or anisotropic) energy cascade
rate increases, the temperature increases in the plasma. In par-
ticular, for the isotropic cascade the events with the highest tem-
peratures correspond to 〈|ε1|〉 ≈ 〈|ε2|〉, while for the anisotropic
cascade these events correspond to 〈|ε⊥|〉 > 〈|ε‖|〉. Interestingly,
in these hottest events the kinetic and magnetic fluctuation ener-
gies become approximately equal. Moreover, these events seems
to be Alfvénic events since σc → 1.

6. Discussion and conclusions

In this paper we analyzed a large PSP solar wind data set
of ∼5200 events, covering observations from October 2018 to
December 2020. Our statistical results show a clear correlation
between the incompressible energy cascade rate, heliocentric
distance, and plasma temperature in the inner heliosphere.
In particular, for both isotropic and anisotropic rates, as we
decrease the heliocentric distance, the energy cascade rates
increase by several orders of magnitude. We covered heliocen-
tric distance from ∼0.8 au to ∼0.1 au, obtaining energy cascade
rates from ∼1×10−19 J m−2 s−1 to ∼1×10−12 J m−2 s−1. Recently,
Bandyopadhyay et al. (2020) estimated the isotropic energy cas-
cade rate for the first PSP perihelion. The authors found that εI
at ∼0.17 au is about 100 times higher than the average value
at 1 au. In agreement with this finding and previous statistical
results (see MacBride et al. 2008; Andrés et al. 2021), we found
an amplification of εI and εH as we approach the Sun. This
amplification as we decrease the heliocentric distance is due to
the increase in the velocity and magnetic fluctuation amplitudes
(see Fig. 2) and the mean solar wind density value.

In contrast with previous results (Oughton et al. 2015), we
do not observe a clear dependence of the spectral and vari-
ance anisotropy ratios on the heliocentric distance in the inner
heliosphere. Oughton et al. (2015) reported a review of solar
wind anisotropy with different anisotropy ratios Av and Ab from
slow and fast solar wind at different heliocentric distances.
Bruno et al. (1999) computed Av and Ab for three events at
0.3, 0.7, and 0.9. The authors found that the magnetic fluctua-
tion variance ratio slightly increases with heliocentric distance,
while the velocity ratio remains constant. On the other hand,
using Helios 1 observations from 0.3 au to 1 au, MacBride et al.
(2010) showed that the magnetic variance anisotropy scales with
both proton beta and the amplitude of fluctuation power spec-
trum with no dependence on the heliocentric distance. In agree-
ment with MacBride et al. (2010), our statistical results do not
show any apparent increase in Ab (or Av) with respect to the
heliocentric distance. Moreover, we observe that most of the
cases exhibit Ab > Av (see Bruno et al. 1999) in agreement
with previous observational (Oughton et al. 2015) and numeri-
cal (Oughton et al. 2016) results.

Using the isotropic assumption (Politano & Pouquet
1998a,b) and the slab and 2D assumption (MacBride et al.
2008), we computed the incompressible energy cascade rate
components from both models using PSP solar wind obser-
vations. For the isotropic model, in the cases near the Sun
(i.e., the largest cascade values or hottest events) the energy
and cross-helicity components (see Eqs. (1) and (2)) are
approximately equal. On the contrary, for the anisotropic
model, in the same events the dominant component is the
perpendicular one. At 1 au, using ACE solar wind observations
from 1998 to 2005, MacBride et al. (2008) reported different
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cascade values for different types of solar wind. The authors
found that fast and slow solar winds both exhibit an active
cascade rate over the inertial range, and that the energy flux
in the parallel cascade is consistently smaller than in the
perpendicular cascade. Beyond the fact that we are exploring
different heliocentric distances at different correlation times (an
independent event lasts two days or tens of correlation lengths
at 1 au for MacBride et al. (2008) while we consider an event
to last one hour or approximately four correlation lengths), we
observed the same trend: for a large majority of the cases the
perpendicular cascade is much larger than the parallel one. This
statistical result is totally consistent with a dominant 2D cascade
and/or geometry in slow solar wind turbulence on MHD scales
(e.g., Shebalin et al. 1983; Matthaeus et al. 1996; Dasso et al.
2005; Wan et al. 2012; Oughton et al. 2013; Andrés et al.
2017; Bandyopadhyay & McComas 2021; Zank et al. 2021).
Moreover, the NI MHD model (e.g., Zank & Matthaeus 1993;
Zank et al. 2021) predicts that the energy-containing range in
the slow solar wind is a superposition of a majority quasi-2D
component and a minority slab component. Using the NI model,
PSP observations, and Solar Orbiter observations, Zank et al.
(2021) and Adhikari et al. (2021) show that both the slow and
fast solar winds are not typically aligned with the large-scale
magnetic field, and therefore the quasi-2D fluctuations are
visible to the PSP spacecraft, in agreement with our findings
here.

We found a robust correlation between the temperature, the
heliocentric distance, and the isotropic and anisotropic energy
cascade rates: as we approach the Sun, the temperature and cas-
cade rates both increase. The temperature rise is clearly related
to the most Alfvénic events (σc → 1) in an imbalanced and
magnetic fluctuation dominant regime (Em > Ek or σr < 0).
Using a NI MHD model, Zank et al. (2021) predicted arbitrary
values of the (normalized) residual energy with a tendency to
evolve toward negative values in magnetic energy dominated
regimes. The authors also analyze PSP slow solar wind obser-
vations showing that the normalized residual energy becomes
increasingly negative with increasing heliocentric distance (i.e.,
it becomes magnetic energy-dominated with distance). In the
present paper we confirm these predictions, exploring not only
the heliocentric distance dependence, but also the amplifica-
tion of the cascade and the local temperature. While we do
not observe that σr becomes increasingly negative with increas-
ing heliocentric distance, we do observe a constant and neg-
ative value for σr as we approach the Sun. In addition, these
observations of σc and σr are consistent with the dominant 2D
structures over the minority slab component (Bigot et al. 2008;
Bigot & Galtier 2011; Oughton et al. 2016).

Finally, some aspects of this work require improvement.
On the one hand, we did not take into account possible com-
pressibility under various closures (Simon & Sahraoui 2021a,b),
which may be relevant even in the usual incompressible solar
wind (Banerjee et al. 2016; Hadid et al. 2017; Andrés et al.
2017, 2021). On the other hand, we did not include the sub-
ion scales energy cascade physics (Andrés et al. 2018a, 2019;
Hellinger et al. 2018; Ferrand et al. 2021a), which are closely
related to the solar wind heating problem (e.g., Matthaeus et al.
2020; Matthaeus 2021). These issues are planned for upcoming
works.

Acknowledgements. N.A. acknowledges financial support from
CNRS/CONICET Laboratoire International Associé (LIA) MAGNETO.
N.A. acknowledges financial support from the following grants: PICT 2018
1095 and UBACyT 20020190200035BA. We thank the NASA Parker Solar

Probe SWEAP team led by J. Kasper and FIELDS team led by S. D. Bale for
use of data. N.A. thanks M. Brodiano for fruitful discussions about the data set.

References
Adhikari, L., Zank, G., Zhao, L., et al. 2021, A&A, 656, A6
Alexandrova, O., Saur, J., Lacombe, C., et al. 2009, Phys. Rev. Lett., 103, 165003
Andrés, N., & Banerjee, S. 2019, Phys. Rev. Fluids, 4, 024603
Andrés, N., & Sahraoui, F. 2017, Phys. Rev. E, 96, 053205
Andrés, N., Mininni, P. D., Dmitruk, P., & Gomez, D. O. 2016, Phys. Rev. E, 93,

063202
Andrés, N., Clark di Leoni, P., Mininni, P. D., et al. 2017, Phys. Plasmas, 24,

102314
Andrés, N., Galtier, S., & Sahraoui, F. 2018a, Phys. Rev. E, 97, 013204
Andrés, N., Sahraoui, F., Galtier, S., et al. 2018b, J. Plasma Phys., 84, 905840404
Andrés, N., Sahraoui, F., Galtier, S., et al. 2019, Phys. Rev. Lett., 123, 245101
Andrés, N., Romanelli, N., Hadid, L. Z., et al. 2020, ApJ, 902, 134
Andrés, N., Sahraoui, F., Hadid, L. Z., et al. 2021, ApJ, 919, 19
Bale, S., Goetz, K., Harvey, P., et al. 2016, Space Sci. Rev., 204, 49
Bale, S., Badman, S., Bonnell, J., et al. 2019, Nature, 576, 237
Bandyopadhyay, R., & McComas, D. 2021, ApJ, 923, 193
Bandyopadhyay, R., Goldstein, M., Maruca, B., et al. 2020, ApJS, 246, 48
Banerjee, S., Hadid, L. Z., Sahraoui, F., & Galtier, S. 2016, ApJ, 829, L27
Batchelor, G. K. 1953, The Theory of Homogeneus Turbulence (Cambridge:

Cambridge Univ. Press)
Belcher, J., & Davis, L., Jr 1971, J. Geophys. Res., 76, 3534
Bieber, J. W., Wanner, W., & Matthaeus, W. H. 1996, J. Geophys. Res.: Space

Phys., 101, 2511
Bigot, B., & Galtier, S. 2011, Phys. Rev. E, 83, 026405
Bigot, B., Galtier, S., & Politano, H. 2008, Phys. Rev. E, 78, 066301
Bruno, R., & Carbone, V. 2005, Liv. Rev. Sol. Phys., 2, 4
Bruno, R., Bavassano, B., Pietropaolo, E., Carbone, V., & Veltri, P. 1999,

Geophys. Res. Lett., 26, 3185
Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A., & Bruno, R. 2009, Phys.

Rev. Lett., 103, 061102
Case, A. W., Kasper, J. C., Stevens, M. L., et al. 2020, ApJS, 246, 43
Cho, J., & Vishniac, E. T. 2000, ApJ, 539, 273
Coburn, J. T., Forman, M. A., Smith, C. W., Vasquez, B. J., & Stawarz, J. E.

2015, Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 373, 20140150
Dasso, S., Milano, L., Matthaeus, W. H., & Smith, C. 2005, ApJ, 635, L181
Ferrand, R., Galtier, S., Sahraoui, F., et al. 2019, ApJ, 881, 50
Ferrand, R., Galtier, S., & Sahraoui, F. 2021a, J. Plasma Phys., 87
Ferrand, R., Galtier, S., Sahraoui, F., et al. 2021b, ApJ, submitted
Fox, N., Velli, M., Bale, S., et al. 2016, Space Sci. Rev., 204, 7
Frisch, U. 1995, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge:

Cambridge University Press)
Galtier, S. 2018, J. Phys. A: Math. Theor., 51, 293001
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Grossmann, S., Lohse, D., & Reeh, A. 1997, Phys. Rev. E, 56, 5473
Hadid, L., Sahraoui, F., & Galtier, S. 2017, ApJ, 838, 9
Hadid, L., Sahraoui, F., Galtier, S., & Huang, S. 2018, Phys. Rev. Lett., 120,

055102
Hellinger, P., Verdini, A., Landi, S., Franci, L., & Matteini, L. 2018, ApJ, 857,

L19
Horbury, T., Wicks, R., & Chen, C. 2012, Space Sci. Rev., 172, 325
Huang, S., Zhang, J., Sahraoui, F., et al. 2020, ApJ, 897, L3
Huang, S., Sahraoui, F., Andrés, N., et al. 2021, ApJ, 909, L7
Kasper, J. C., Abiad, R., Austin, G., et al. 2016, Space Sci. Rev., 204, 131
Kasper, J. C., Bale, S. D., Belcher, J. W., et al. 2019, Nature, 576, 228
Leamon, R. J., Matthaeus, W. H., Smith, C. W., & Wong, H. K. 1998, ApJ, 507,

L181
MacBride, B. T., Smith, C. W., & Forman, M. A. 2008, ApJ, 679, 1644
MacBride, B. T., Smith, C. W., & Vasquez, B. J. 2010, J. Geophys. Res.: Space

Phys., 115
Marino, R., Sorriso-Valvo, L., Carbone, V., et al. 2008, ApJ, 677, L71
Matthaeus, W. H. 2021, Phys. Plasmas, 28, 032306
Matthaeus, W. H., & Goldstein, M. L. 1982, J. Geophys. Res., 87, 6011
Matthaeus, W. H., & Velli, M. 2011, Space Sci. Rev., 160, 145
Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. 1990, J. Geophys. Res.:

Space Phys., 95, 20673
Matthaeus, W. H., Ghosh, S., Oughton, S., & Roberts, D. A. 1996, J. Geophys.

Res.: Space Phys., 101, 7619
Matthaeus, W. H., Zank, G. P., Smith, C. W., & Oughton, S. 1999, Phys. Rev.

Lett., 82, 3444
Matthaeus, W. H., Dasso, S., Weygand, J., et al. 2005, Phys. Rev. Lett., 95,

231101
Matthaeus, W. H., Servidio, S., Dmitruk, P., et al. 2012, ApJ, 750, 103

A116, page 7 of 8

http://linker.aanda.org/10.1051/0004-6361/202142994/1
http://linker.aanda.org/10.1051/0004-6361/202142994/2
http://linker.aanda.org/10.1051/0004-6361/202142994/3
http://linker.aanda.org/10.1051/0004-6361/202142994/4
http://linker.aanda.org/10.1051/0004-6361/202142994/5
http://linker.aanda.org/10.1051/0004-6361/202142994/5
http://linker.aanda.org/10.1051/0004-6361/202142994/6
http://linker.aanda.org/10.1051/0004-6361/202142994/6
http://linker.aanda.org/10.1051/0004-6361/202142994/7
http://linker.aanda.org/10.1051/0004-6361/202142994/8
http://linker.aanda.org/10.1051/0004-6361/202142994/9
http://linker.aanda.org/10.1051/0004-6361/202142994/10
http://linker.aanda.org/10.1051/0004-6361/202142994/11
http://linker.aanda.org/10.1051/0004-6361/202142994/12
http://linker.aanda.org/10.1051/0004-6361/202142994/13
http://linker.aanda.org/10.1051/0004-6361/202142994/14
http://linker.aanda.org/10.1051/0004-6361/202142994/15
http://linker.aanda.org/10.1051/0004-6361/202142994/16
http://linker.aanda.org/10.1051/0004-6361/202142994/17
http://linker.aanda.org/10.1051/0004-6361/202142994/18
http://linker.aanda.org/10.1051/0004-6361/202142994/19
http://linker.aanda.org/10.1051/0004-6361/202142994/19
http://linker.aanda.org/10.1051/0004-6361/202142994/20
http://linker.aanda.org/10.1051/0004-6361/202142994/21
http://linker.aanda.org/10.1051/0004-6361/202142994/22
http://linker.aanda.org/10.1051/0004-6361/202142994/23
http://linker.aanda.org/10.1051/0004-6361/202142994/24
http://linker.aanda.org/10.1051/0004-6361/202142994/24
http://linker.aanda.org/10.1051/0004-6361/202142994/25
http://linker.aanda.org/10.1051/0004-6361/202142994/26
http://linker.aanda.org/10.1051/0004-6361/202142994/27
http://linker.aanda.org/10.1051/0004-6361/202142994/28
http://linker.aanda.org/10.1051/0004-6361/202142994/29
http://linker.aanda.org/10.1051/0004-6361/202142994/30
http://linker.aanda.org/10.1051/0004-6361/202142994/32
http://linker.aanda.org/10.1051/0004-6361/202142994/33
http://linker.aanda.org/10.1051/0004-6361/202142994/34
http://linker.aanda.org/10.1051/0004-6361/202142994/35
http://linker.aanda.org/10.1051/0004-6361/202142994/36
http://linker.aanda.org/10.1051/0004-6361/202142994/37
http://linker.aanda.org/10.1051/0004-6361/202142994/38
http://linker.aanda.org/10.1051/0004-6361/202142994/38
http://linker.aanda.org/10.1051/0004-6361/202142994/39
http://linker.aanda.org/10.1051/0004-6361/202142994/39
http://linker.aanda.org/10.1051/0004-6361/202142994/40
http://linker.aanda.org/10.1051/0004-6361/202142994/41
http://linker.aanda.org/10.1051/0004-6361/202142994/42
http://linker.aanda.org/10.1051/0004-6361/202142994/43
http://linker.aanda.org/10.1051/0004-6361/202142994/44
http://linker.aanda.org/10.1051/0004-6361/202142994/45
http://linker.aanda.org/10.1051/0004-6361/202142994/45
http://linker.aanda.org/10.1051/0004-6361/202142994/46
http://linker.aanda.org/10.1051/0004-6361/202142994/47
http://linker.aanda.org/10.1051/0004-6361/202142994/47
http://linker.aanda.org/10.1051/0004-6361/202142994/48
http://linker.aanda.org/10.1051/0004-6361/202142994/49
http://linker.aanda.org/10.1051/0004-6361/202142994/50
http://linker.aanda.org/10.1051/0004-6361/202142994/51
http://linker.aanda.org/10.1051/0004-6361/202142994/52
http://linker.aanda.org/10.1051/0004-6361/202142994/52
http://linker.aanda.org/10.1051/0004-6361/202142994/53
http://linker.aanda.org/10.1051/0004-6361/202142994/53
http://linker.aanda.org/10.1051/0004-6361/202142994/54
http://linker.aanda.org/10.1051/0004-6361/202142994/54
http://linker.aanda.org/10.1051/0004-6361/202142994/55
http://linker.aanda.org/10.1051/0004-6361/202142994/55
http://linker.aanda.org/10.1051/0004-6361/202142994/56


A&A 661, A116 (2022)

Matthaeus, W. H., Yang, Y., Wan, M., et al. 2020, ApJ, 891, 101
Milano, L., Matthaeus, W. H., Dmitruk, P., & Montgomery, D. 2001, Phys.

Plasmas, 8, 2673
Milano, L., Dasso, S., Matthaeus, W. H., & Smith, C. 2004, Phys. Rev. Lett., 93,

155005
Montgomery, D., & Turner, L. 1981, Phys. Fluids, 24, 825
Oughton, S., Priest, E. R., & Matthaeus, W. H. 1994, J. Fluid Mech., 280, 95
Oughton, S., Matthaeus, W. H., Smith, C. W., Breech, B., & Isenberg, P. 2011,

J. Geophys. Res.: Space Phys., 116
Oughton, S., Wan, M., Servidio, S., & Matthaeus, W. H. 2013, ApJ, 768, 10
Oughton, S., Matthaeus, W. H., Wan, M., & Osman, K. 2015, Phil. Trans. R. Soc.

A: Math. Phys. Eng. Sci., 373, 20140152
Oughton, S., Matthaeus, W. H., Wan, M., & Parashar, T. 2016, J. Geophys. Res.,

121, 5041
Parashar, T., Goldstein, M., Maruca, B., et al. 2020, ApJS, 246, 58
Parker, E. N. 1958, ApJ, 128, 664
Politano, H., & Pouquet, A. 1998a, Phys. Rev. E, 57, R21
Politano, H., & Pouquet, A. 1998b, Geophys. Res. Lett., 25, 273
Richardson, J. D., Paularena, K. I., Lazarus, A. J., & Belcher, J. W. 1995,

Geophys. Res. Lett., 22, 325
Sahraoui, F., Goldstein, M., Robert, P., & Khotyaintsev, Y. V. 2009, Phys. Rev.

Lett., 102, 231102
Shebalin, J. V., Matthaeus, W. H., & Montgomery, D. 1983, J. Plasma Phys., 29,

525

Simon, P., & Sahraoui, F. 2021a, ArXiv e-prints [arXiv:2112.03601]
Simon, P., & Sahraoui, F. 2021b, ApJ, 916, 49
Sorriso-Valvo, L., Marino, R., Carbone, V., et al. 2007, Phys. Rev. Lett., 99,

115001
Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., & MacBride, B. T.

2009, ApJ, 697, 1119
Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., & MacBride, B. T.

2010, ApJ, 713, 920
Stawarz, J. E., Vasquez, B. J., Smith, C. W., Forman, M. A., & Klewicki, J. 2011,

ApJ, 736, 44
TenBarge, J., Podesta, J., Klein, K., & Howes, G. 2012, ApJ, 753, 107
Wan, M., Servidio, S., Oughton, S., & Matthaeus, W. H. 2009, Phys. Plasmas,

16, 090703
Wan, M., Servidio, S., Oughton, S., & Matthaeus, W. H. 2010, Phys. Plasmas,

17, 052307
Wan, M., Oughton, S., Servidio, S., & Matthaeus, W. H. 2012, J. Fluid Mech.,

697, 296
Waskom, M. L. 2021, J. Open Source Softw., 6, 3021
Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G., & Walker, R. J.

2007, J. Geophys. Res.: Space Phys., 112, A10
Weygand, J. M., Matthaeus, W. H., Dasso, S., & Kivelson, M. 2011, J. Geophys.

Res.: Space Phys., 116
Zank, G. P., & Matthaeus, W. H. 1993, Phys. Fluids A: Fluid Dyn., 5, 257
Zank, G. P., Zhao, L.-L., Adhikari, L., et al. 2021, Phys. Plasmas, 28, 080501

A116, page 8 of 8

http://linker.aanda.org/10.1051/0004-6361/202142994/57
http://linker.aanda.org/10.1051/0004-6361/202142994/58
http://linker.aanda.org/10.1051/0004-6361/202142994/58
http://linker.aanda.org/10.1051/0004-6361/202142994/59
http://linker.aanda.org/10.1051/0004-6361/202142994/59
http://linker.aanda.org/10.1051/0004-6361/202142994/60
http://linker.aanda.org/10.1051/0004-6361/202142994/61
http://linker.aanda.org/10.1051/0004-6361/202142994/62
http://linker.aanda.org/10.1051/0004-6361/202142994/63
http://linker.aanda.org/10.1051/0004-6361/202142994/64
http://linker.aanda.org/10.1051/0004-6361/202142994/64
http://linker.aanda.org/10.1051/0004-6361/202142994/65
http://linker.aanda.org/10.1051/0004-6361/202142994/65
http://linker.aanda.org/10.1051/0004-6361/202142994/66
http://linker.aanda.org/10.1051/0004-6361/202142994/67
http://linker.aanda.org/10.1051/0004-6361/202142994/68
http://linker.aanda.org/10.1051/0004-6361/202142994/69
http://linker.aanda.org/10.1051/0004-6361/202142994/70
http://linker.aanda.org/10.1051/0004-6361/202142994/71
http://linker.aanda.org/10.1051/0004-6361/202142994/71
http://linker.aanda.org/10.1051/0004-6361/202142994/72
http://linker.aanda.org/10.1051/0004-6361/202142994/72
https://arxiv.org/abs/2112.03601
http://linker.aanda.org/10.1051/0004-6361/202142994/74
http://linker.aanda.org/10.1051/0004-6361/202142994/75
http://linker.aanda.org/10.1051/0004-6361/202142994/75
http://linker.aanda.org/10.1051/0004-6361/202142994/76
http://linker.aanda.org/10.1051/0004-6361/202142994/77
http://linker.aanda.org/10.1051/0004-6361/202142994/78
http://linker.aanda.org/10.1051/0004-6361/202142994/79
http://linker.aanda.org/10.1051/0004-6361/202142994/80
http://linker.aanda.org/10.1051/0004-6361/202142994/80
http://linker.aanda.org/10.1051/0004-6361/202142994/81
http://linker.aanda.org/10.1051/0004-6361/202142994/81
http://linker.aanda.org/10.1051/0004-6361/202142994/82
http://linker.aanda.org/10.1051/0004-6361/202142994/82
http://linker.aanda.org/10.1051/0004-6361/202142994/83
http://linker.aanda.org/10.1051/0004-6361/202142994/84
http://linker.aanda.org/10.1051/0004-6361/202142994/85
http://linker.aanda.org/10.1051/0004-6361/202142994/85
http://linker.aanda.org/10.1051/0004-6361/202142994/86
http://linker.aanda.org/10.1051/0004-6361/202142994/87

	Introduction
	The incompressible MHD model
	The exact relation in MHD turbulence
	The isotropic energy cascade rate
	The 2D and slab energy cascade rates Mac2008

	Observations and selection criteria
	Results
	Occurrence rates
	Variance anisotropy and normalized fluctuation ratios
	The incompressible energy cascade rate
	The isotropic, perpendicular, and parallel cascade rates and their relation with the temperature

	Discussion and conclusions
	References

