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ABSTRACT 

Parametrization of the bonded part of molecular mechanics (MM) force fields (FFs) is typically done by fitting 

reference quantum mechanical (QM) energies or forces of representative structures. FFs for small molecules are 

constructed in incremental parametrization procedures, where parameters developed previously are retained for 

novel molecules, followed by optimization of missing, not previously optimized parameters. Equilibrium QM and 

MM geometries of molecules can deviate due to parameters transferred from existing molecules in the FF. In this 

work, we demonstrate that conventional parametrization methods based on fitting QM energies and/or forces to 

derive parameters for bond and angle terms produce largely suboptimal force constants when MM and QM 

equilibrium structures deviate. We further developed and tested a new method to derive CHARMM FF parameters 

based on the potential energy surface scans where a structural deviation between QM and MM optimized 

geometries is explicitly allowed during parametrization. The test of the new method was performed on a diverse 

set of 32 molecules. The results show that without any need for additional restraints the new method produces 

robust and largely transferable parameters for bond and angle terms. The new method also improves the agreement 

for the normal modes for all molecules in the test set, reducing the average error in the reproduction of QM normal 

mode frequencies from 9.5% computed with CGenFF parameters, to 6.8% computed with the new parameters. 

The new method will allow parametrization of molecules under structural deviations, common for force fields for 

small molecules, producing robust and transferable parameters.
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INTRODUCTION 

Molecular modeling techniques based on molecular mechanics (MM) are widely used in computer-aided drug 

design (CADD) and in studies of biological processes. The accuracy of MM based simulations in predicting the 

properties of chemical and biological systems strongly depends on the quality of the underlying force-field (FF) 

parameters. The MM model with associated FF parameters should be able to describe molecular equilibrium 

structures, conformational energies, and intermolecular interactions. The widely used Class I additive force fields 

for biological systems such proteins, nucleic acids and lipids include CHARMM1–3, AMBER4–8, GROMOS9, and 

OPLS10,11. For CADD applications, force fields were extended for small molecules, such as OPLS12, the 

CHARMM General force field (CGenFF) force field13–15, the General AMBER Force Field (GAFF)16, GROMOS17 

and Open Force Field.18 The coverage of the vast chemical universe required for the field of CADD in these force 

fields is still limited. The main limitation is the complexity of developing force field parameters for novel chemical 

molecules, such as modified amino acids and nucleic acids.19,20  

Force fields for biomolecules can be derived for molecules of interest from scratch21 or more typically 

constructed in the incremental parametrization procedure.22 Following this strategy, at each incremental step 

parameters developed previously are retained for novel molecules, followed by optimization of missing, not 

previously optimized, parameters.23 However, such force fields critically rely on the transferability of parameters. 

Thus, the quality of FF parameters, in addition to the ability of the MM model to reproduce QM energies and 

structures for the molecule in which these parameters were derived, includes the ability to work equally well in all 

range of molecules, which share atom types and terms. To allow the rapid extension of the existing force field to 

novel molecules automated tools have been created to allow automatic atom typing and generating initial 

parameters for molecules, such as the CHARMM General Force Field program13 for CGenFF, LigParGen for the 

OPLS-AA FF24, and Antechamber for the Amber FF.25 To further optimize the initial parameters, a number of 

tools have been proposed with the idea of automation.26–33  

In this work, we mainly focus on bond and angle terms of the bonded part of the total FF energy. In widely 

used Class I additive force fields these terms are modeled by harmonic functions to describe deformations along 

bonds and angles around their equilibrium values. Parameters for these terms can be obtained by reproducing the 

experimental or/and QM vibrational spectrum, Hessian matrix34,35, and deformation energies and forces.36 In the 

later methods, also known as the Force Matching methods, MM parameters are fitted to reproduce the forces in 

non-equilibrium structures, which can be generated, for example, by classical MD simulations.33,36–39 For the 

CHARMM General force field for small molecules, to parametrize stiff degrees of freedom a symbolic potential 

energy distribution (PED) analysis was performed in the internal coordinate space.40 This allows estimating 

relative contributions of the valence coordinates to frequencies. These contributions are computed using the MM 

Hessian calculated using the trial parameters, and compared with the corresponding QM PED; parameters are 

iteratively varied until satisfactory agreement is reached. In practice, the fitting is difficult since QM and MM 

frequencies of a normal mode as well as QM and MM contributions of internal coordinates to the same normal 
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mode are different. With this, the quality of the fit is difficult to quantify and in addition, one needs to define a 

non-unique mapping between internal coordinates and normal modes, which is difficult to automate.  

Apart from PED analysis, a method to determine force constants by three-point PES scans was used for 

CGenFF when the assignment of the internal coordinate contributions to the vibrations was ambiguous.41 This 

method is also implemented in the Force Field Toolkit (ffTk), a VMD plugin42 that can be used to parametrize the 

CHARMM force field for small molecules.43 In this method, a small distortion in two opposing directions is 

generated and the corresponding increase in potential energy relative to the undistorted conformation is computed. 

The QM Hessian is used to compute QM energy for the small distortions about the minimized geometry. The 

energies are scaled to improve the agreement with experimental vibrational frequencies.41 Since no optimization 

is done for the deformed structures, in principle different sets of parameters can reproduce QM energies equally 

well. Thus, the parameter optimization problem is ill-defined in this case, and requires a restraining strategy. 

Different such restraint strategies have been proposed.41,43–45 However, introducing such artificial restraints may 

result in a poor transferability of parameters for molecules that were not used for the optimization. In particular, 

bond and angle parameters are developed typically only in one molecule and used for all other molecules in the 

chemical universe sharing the same term defined by atom types.  

Equilibrium QM and MM geometries of molecules can deviate due to parameters transferred from existing 

molecules in the force field, even with FF parameters for new terms optimized against QM reference data. For 

example, in the previous work on the parametrization of the large set of nonstandard amino acids we found that 

bonds and angles deviate on average by 0.02 Å and 2º, respectively, for a large set of 189 compounds after 

optimization of new parameters not existing in CGenFF.20 In this work, we demonstrate that, while these MM 

structural inconsistences relative to QM optimized structures can be negligible for applications, they strongly 

impact the quality of new parameters optimized in novel molecules. We further show that the conventional 

methods to derive parameters for bond and angle terms produce largely suboptimal force constants when MM and 

QM equilibrium structures deviate even slightly. This problem arises if the same structures (for example, QM 

optimized structures) are used during parametrization for QM and MM calculations, or QM and MM structures 

have the same value of the deformed bond or angle. We further developed and tested a new method to derive force 

field parameters based on the PES scans where a structural deviation between QM and MM structures is explicitly 

allowed and show that the new method produces stable and transferable parameters for bond and angle terms 

without any need for additional restraints.  

METHODS AND MATERIALS 

CHARMM potential energy function 

For specifics, we will demonstrate the development and application of the new method using the non-polarizable 

all-atom CHARMM force field.46 The potential energy function, used for the CHARMM36 and CGenFF force 

fields has two contributions:  

𝑈 = 𝑈𝑖𝑛𝑡𝑒𝑟 + 𝑈𝑖𝑛𝑡𝑟𝑎 [1] 
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The intermolecular or non-bonded energy is due to electrostatic and van der Waals (vdW) interactions and its form 

can be found in previous works.46 The electrostatic and vdW energy are not computed for directly linked atoms as 

well as for atoms forming covalence angles; for 1-4 atoms, in the CHARMM force field, it is computed without 

scaling.46 In this work, we are interested in the bonded or intramolecular part of the potential energy function in 

Equation 1, which is contributed by terms for the bonds, valence angles, dihedral angles, improper dihedral angles, 

and selected Urey-Bradley terms. The bonded contribution is given by: 

𝑈𝑖𝑛𝑡𝑟𝑎 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝑎(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝑈𝐵(𝑟1−3 − 𝑟1−3;0)2 + ∑ ∑ 𝐾𝑛 (1 + cos (𝑛𝜑 − 𝛿𝑛))

𝑁

𝑛=1𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ 𝐾𝜑(𝜑 − 𝜑0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

 

, [2] 

where b0, 𝜃0, 𝑟1−3;0, and 𝜑0 are the bond, angle, Urey-Bradley, and improper angle equilibrium values, 

respectively; K’s are the force constants; and n and 𝛿𝑛 are the dihedral multiplicity and phase. A dihedral term is 

represented as a truncated Fourier series with N number of multiplicities. In addition, the bonded energy function 

includes the CMAP cross-term in the current version C36 of the CHARMM force field only for the peptide 

backbone.2 The Urey-Bradley contribution, a cross-term accounting for angle bending and bond stretching was 

introduced to improve the agreement with the QM vibrational spectrum. However, we will not consider this term 

as in the current CGenFF force field it is not widely used.  

QM potential energy surface scans 

The reference QM data were generated using adiabatic PES scans for each selected degree of freedom. The same 

method was also used in CGenFF to determine force constants by three-point PES scans and in our previous work 

to parametrize a set of non-standard amino acids.41,47 During the PES scans performed by varying one stiff degree 

of freedom, all rotatable dihedrals were constrained to the values corresponding to the minimum energy geometry 

of the molecule. We use the following method to ensure that only relevant regions of PES are used for 

parametrization and limit the maximum energy.19 Initial values for distortions are used to estimate the ranges of 

deformations according to:  

∆𝑥′ = √2 ∆𝐸𝑚𝑎𝑥 𝑘⁄ , [3] 

where 𝑘 = 2 (𝐸(∆𝑥) − 𝐸0)/∆𝑥 2. ∆𝑥 and ∆𝑥′ are the initial and adjusted maximum distortions, respectively; 𝐸0 

and 𝐸(∆𝑥) are the minimum energy and energy of the deformed structure. ∆𝐸𝑚𝑎𝑥 defines the highest energy of 

points on PES. The structure deformed along the scanned degree of freedom by ∆𝑥 is minimized to obtain 𝐸(∆𝑥), 

which is used in Equation 3 to get the new range of points ∆𝑥′. PES scans are performed for a series of points 

equally spaced in the range of 𝑥 ∈ [𝑥0 − ∆𝑥′,  𝑥0 + ∆𝑥′], including the minimum energy structure at 𝑥 =  𝑥0. 2.0 
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kcal·mol-1 was used for ∆𝐸𝑚𝑎𝑥 in Equation 3. All PES scans were performed at the MP2/6-31G(d) model 

chemistry and MP2/6-311G(d) for anions. 

The optimization of parameters is done using the Powell minimization algorithms from Numerical 

Recipes.48 Each conformation for the MM calculation was extracted from the QM scan and minimized with a large 

restraint force constant of 5·104 kcal·mol-1·Å-2 or 5·104 kcal·mol-1·radian-2 on the target bond and valance angle, 

respectively. PES adiabatic scans were performed with CHARMM using a new set of MM parameters at each 

optimization iteration of bonded parameters. The MM parameters were adjusted until the target function could not 

be reduced further. The CHARMM program49 was used for the MM calculations.  

Optimization and cost function  

Typically, to optimize bonded parameters a cost function is constructed using energy differences between QM and 

MM structures, for example from PES scans, which is further minimized to give an optimal set of bonded 

parameters. In the simplest form, the RMS deviation between QM and MM energies for a set of structures can be 

used for the cost function:  

𝐹𝑒𝑛𝑒𝑟 = √
1

𝑁
∑ (𝐸𝑄𝑀(𝒙𝑖) − 𝐸𝑀𝑀(𝒙𝑖))2

𝑖 , [4] 

where the sum is over a set of N structures; 𝐸𝑄𝑀 and 𝐸𝑀𝑀 are QM and MM energies relative to the QM or MM 

minimum energy, respectively, computed using the same set of coordinates, 𝒙𝑖. The structures can be generated 

in different ways, however, in this work, we will focus on potential energy surface scans, described above. For 

calculations with the force field model, structures can correspond to QM optimized structures, or typically, they 

can be re-optimized with the force field model. Thus, QM and MM structures can be different, however, the 

scanned valence coordinate (for example a dihedral angle) has the same value in the QM and MM structures. In 

this case, the RMS deviation is given by: 

𝐹𝑒𝑛𝑒𝑟 = √
1

𝑁
∑ (𝐸𝑄𝑀(𝒙𝑖

𝑄𝑀) − 𝐸𝑀𝑀(𝒙𝑖
𝑀𝑀))2

𝑖 , [5] 

where the two sets of coordinates, 𝒙𝑖
𝑄𝑀

 and 𝒙𝑖
𝑀𝑀 have the same value along the scanned internal degree of freedom, 

k: 𝑥𝑖,𝑘
𝑄𝑀 = 𝑥𝑖,𝑘

𝑀𝑀, but can be different along other degrees of freedom in contrast to Equation 4.  

Modification of the cost function 

To remove the strong dependence of parameters on equilibrium parameters and to improve force constants 

optimization, we adjusted the optimization method.We allow structural deviations along the scanned degree of 

freedom, where energy differences are computed between different structures used for QM and MM calculations. 

These QM and MM structures are now different, in principle, in all coordinates. One of the requirements for such 

MM structures is that QM and MM structures, which energies are compared in Formula 5 are close to each other 

in the configurational space, in another words the MM and QM PES approximately match. We use a similar 

method described above where the MM structures are optimized with one internal coordinate constrained, 
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however, in the new method the value 𝑥𝑘
𝑀𝑀 of the constrained coordinate, k, is allowed to deviate from 𝑥𝑘

𝑄𝑀
 and 

is given by: 

𝑥𝑘
𝑀𝑀 = 𝑥0,𝑘

𝑀𝑀 + (𝑥𝑘
𝑄𝑀

− 𝑥0,𝑘
𝑄𝑀

), [6] 

where 𝑥0,𝑘
𝑀𝑀 and 𝑥0,𝑘

𝑄𝑀
 are values in the MM and QM structures optimized structures without any constraints; 𝑥𝑘

𝑄𝑀
is 

the value in the corresponding QM structure. The terms in the later formula can be regrouped:  

𝑥𝑘
𝑀𝑀 = 𝑥𝑘

𝑄𝑀 + ∆𝑥0,𝑘
𝑄𝑀−𝑀𝑀

, [7] 

where ∆𝑥0,𝑘
𝑄𝑀−𝑀𝑀

= 𝑥0,𝑘
𝑀𝑀−𝑥0,𝑘

𝑄𝑀
 is the deviation in the optimal values in the QM and MM optimized structures, 

which can be considered as a correction term. As mentioned before, one of requirements is that the QM and MM 

structures should be close on in the configurational space, which can be achieved by introducing an additional 

term, also needed to provide a bias in optimization of equilibrium parameters. In particular, we introduced an 

additional simple term given by: 

𝐹𝑒𝑞 = √
1

𝑁
∑ (𝑥𝑘,𝑖

𝑀𝑀 − 𝑥𝑘,𝑖
𝑄𝑀)2

𝑖 , [8] 

where 𝑥𝑘,𝑖
𝑀𝑀 and 𝑥𝑘,𝑖

𝑄𝑀
 is the scanned internal coordinate in the i MM and QM optimized structure, respectively. 

Additional term for angle terms 

For an atomic center, which has angle terms to parametrize, the following deformation-based term is 

included to the cost function in addition to the restraints on the scanned degree of freedom given by Formula 8:  

𝐹𝑑𝑒𝑓 = √∑ ∑ ((𝜃𝑗,𝑖
𝑀𝑀−𝜃𝑗,𝑖+1

𝑀𝑀 ) − (𝜃𝑗,𝑖
𝑄𝑀 − 𝜃𝑗,𝑖+1

𝑄𝑀 ))2
𝑖𝑗 , [9] 

where the summing is done over all structures, i, and all angles, j, involving this atomic center with adjustable 

parameters in the FF model. In this formula, angles in the MM and QM structures, are subtracted between 

subsequent structures on PES similar to Equation 6 to remove strong dependences on the equilibrium values. The 

total cost function is a sum of different contributions given by Formulae 5, 8 and 9:  

𝐹𝑐𝑜𝑠𝑡 = 𝜔𝑒𝑛𝑒𝑟 · 𝐹𝑒𝑛𝑒𝑟 + 𝜔𝑒𝑞 · 𝐹𝑒𝑞 + 𝜔𝑑𝑒𝑓 · 𝐹𝑑𝑒𝑓, [10] 

where 𝜔𝑒𝑛𝑒𝑟 , 𝜔𝑑𝑒𝑓, and 𝜔𝑒𝑞, are corresponding weights. These weights were defined based on our previous 

experience with parametrizing a large set of molecules to reproduce average agreement for different energetic and 

structural properties. In particular, the weights were defined in such a way that the terms in Formula 10 give equal 

contributions (of a unity by definition) with the RMS deviations for energies and structural parameters obtained 

in the previous work.20 The values for the weights are given in Table S2. All results presented in next sections 

were obtained with Equation 10, unless otherwise stated.  

The flowchart of optimization with the new method is shown in Scheme 1. To produce QM reference data, 
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the geometry is first optimized without any constraints with QM to estimate equilibrium values, 𝑥0,𝑘
𝑄𝑀

, for scanned 

degrees of freedom; another QM optimization is performed to estimate the range of distortions, ∆𝑥′, in accord with 

Equation 3, for the subsequent QM PES scan. CHARMM iterations also start with the geometry optimization 

without constraints to estimate equilibrium values, 𝑥0,𝑘
𝑀𝑀, which are used to correct points for the subsequent 

CHARMM PES scan in accord with Equation 6. Structures and energies are compared with the cost function 10, 

which is minimized in the space of CHARMM force field parameters. 

  

Scheme 1. Flow chart of optimization of force field parameters with the new method. QM reference data are 

calculated in the left panel, while optimization of CHARMM parameters is performed in the CHARMM panel. 

The structural deviation allowed in the new method is shown schematically on the right.    

 

Normal Mode Analysis 

The quality of the optimized parameters was tested using normal mode analysis (NMA). QM NMA was performed 

for the molecules in the data set using the optimized structures at the MP2/6-31G(d) level of theory. The structures 

were fully optimized with quadratically convergent SCF procedure50 and there were no normal modes with 

negative frequencies. The correspondence between QM and MM normalized normal modes was determined based 

on the dot product before further comparison. For this purpose, normal modes were considered as collinear if their 
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absolute dot product is >0.5. If a QM normal mode is contributed by several CHARMM normal modes, the MM 

mode with the largest dot product was considered.  

To characterize the fit between QM and MM frequencies, Mean Percentage Absolute Error (MPAE) was 

calculated using: 

MPAE= 
100%

𝑛
∑𝑖

𝑛|
𝛼𝜈𝑖

𝑄𝑀
 − 𝜈𝑗

𝑀𝑀

𝛼𝜈𝑖
𝑄𝑀 |, [11] 

where 𝑛 is number of colinear NM; 𝜈𝑖
𝑄𝑀

and 𝜈𝑗
𝑀𝑀 are the frequency of QM NM and the frequency of corresponding 

collinear CHARMM and QM NM; α = 0.9432  is the vibrational scaling factor.51 MPAE was adapted from a 

previous work.52 The bonded parameters were optimized with the scaling factor of α2  applied to QM energies to 

obtain scaling factor of α for QM frequencies. The comparison was also done with the QM frequencies scaled by 

this factor in Equation 11. Bonded parameters were derived starting from initial CHARMM parameters for force 

constants and equilibrium values obtained from ab initio optimized geometry of the molecule.  

Test molecules and atom types  

To test different parametrization methods, 32 molecules were selected with available CHARMM parameters. The 

set of molecules comprises molecules with diverse chemical structures and includes three, four, five and six-atom 

ring structures. In total, the set contains 62 CHARMM types that define 74 unique bond terms and 127 unique 

angle terms with an average of 4 and 6 terms per molecule respectively. Chemical structures of these molecules 

are shown in Figure 1 and their chemical names and formulae are given in Table S1 in Supporting Information. 
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Figure 1. Chemical structures of 32 molecules used in this work. 2D representations were prepared with 

MarvinSketch.53 

The force field parameters for the molecules in the test set were taken from CGenFF.14 For simplicity, 

these parameters will be further referred as initial CHARMM parameters. The geometry of molecules was 

generated from the existing tables of internal coordinates in the CGenFF force field files. The geometries were 

further optimized at the MP2/6-31G(d) model chemistry, or MP2/6-311G(d) model chemistry for anionic 

molecules, the same theory level used to parametrize the CGenFF force field.14 Adiabatic potential energy surface 

(PES) scans with QM were performed along selected degrees of freedom as described above. MM calculations 

were performed with CHARMM program and QM calculation were performed with Gaussian16.54 

RESULTS  

Deviation between QM and MM relaxed structures leads to suboptimal force constants 

In this section, the arguments will be illustrated on selected molecules. Figure 2A shows the PE surface for C-C 

bond stretching in ethylene computed with QM and optimal CHARMM parameters. The Root Mean Square (RMS) 

deviation between QM and MM energies computed with Formula 5 is shown in Figure 2 (panels B and C) 

computed with different force field equilibrium bond distance values, 𝑏0; and with different force constant values, 
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𝐾𝑏. For these calculations, the optimal values for the term were used for 𝑏0 and 𝐾𝑏, respectively; the other terms 

optimized in PES scans were also treated with the optimal parameters. The MM structures were optimized using 

the same value for the valence coordinate (bond or angle), which was used for the QM optimizations, i.e. 𝑥𝑖,𝑘
𝑄𝑀

=

𝑥𝑖,𝑘
𝑀𝑀. As it can be seen, even relatively small deviations in 𝑏0 lead to large deviations between QM and MM 

energies, and thus the RMS deviation. For example, a deviation of just 0.05 Å from the optimal value for 𝑏0 leads 

to a value of 2.6 kcal·mol-1 for the RMS deviation (a deviation of 0.1 Å leads to ~8 kcal·mol-1). In contrast, 

relatively large deviations in 𝐾𝑏 produce only a small increase in the RMS deviation. For example, in ethylene, 

reducing the force constant by 300 kcal·mol-1·Å-2 would increase the RMS deviation only by 0.35 kcal·mol-1. 

Thus, if the RMS deviation is used for the cost function, the optimization would be largely balanced toward a 

better equilibrium distance 𝑏0 to improve the RMS deviation, while the quality of the force constants could be 

sacrificed. In practice, this is strongly undesirable since force constants are important to reproduce the molecular 

flexibility. This can be further demonstrated on the heatmap of the RMS deviation between QM and MM energies 

computed with different 𝑏0 and 𝐾𝑏 on Figure 3A. In the previous work on the parametrization of a large and 

diverse set of molecules[Ref], a typical value observed for the deviation in equilibrium bond distances was 0.02 

Å. With this deviation, as shown in Figure 3A, the optimized value for the force constant is on order of 300 

kcal·mol-1·Å-2, which is ~300 kcal·mol-1·Å-2 off from the optimal force constant needed to reproduce the C-C bond 

stretching in ethylene. 

 We shall consider another example of the valence angle in acetaldehyde. Figure 2 panel A shows the PE 

surface for O-C-C valence angle bending in acetaldehyde computed with QM and optimal CHARMM parameters; 

while the RMS deviation between QM energies and MM energies calculated at different equilibrium angle values, 

𝜃0 and force constants, 𝐾𝑎 is shown in panels B and C of the same figure. The Figure 3B shows the heatmap of 

the RMS deviation between QM and MM energies at different 𝜃0 and 𝐾𝑎. It can be seen that similar to the bond 

term relatively small deviations in 𝜃0 increase significantly the difference in QM and MM energies and hence the 

RMS deviation. For example, the RMS deviation of 0.6 kcal·mol-1 corresponds to just less than 3º deviation from 

the optimal equilibrium valence angle and the same RMSD corresponds to 38 kcal·mol-1·rad-2 deviation for the 

force constant 𝐾𝑎 (over 100%).  
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Figure 2. Potential energy surfaces and energy RMS deviations as a function of the force field parameters. (A) 

Left, the PE surface for the C-C bond stretching in ethylene, and right, for the O-C-C angle bending for 

acetaldehyde. (B) The RMS deviation between QM and CHARMM energies of structures from the PES scans as 

a function of the equilibrium bond distance, b0, and valence angle, θ0, for ethylene (Left) and acetaldehyde (Right), 

respectively. (C) RMS deviation between QM and CHARMM energies as a function of the force constant for the 

bond term in ethylene (left) and the force constant of the angle term in acetaldehyde, right, respectively. The 

optimal values for the equilibrium bond distance, valence angle and force constants are colored in orange. 

The above reasoning was illustrated for PES energies, however, they can be generalized to force matching 

methods. The average RMS deviation between QM and MM atomic forces in structures from the PES scans, shown 

in Figure 2A, is shown in Figure 3. Overall, the behavior of the force RMS deviation is very similar to the energy 

RMS deviation, i.e. small deviations from the optimal equilibrium value for the bond in ethylene and the valence 

angle in acetaldehyde lead to significantly suboptimal force constants relative to the QM model. We find that 

deviations in equilibrium values for the bond and angle lead to the same force constants, similar to what was 

demonstrated using the energy RMS deviation in the previous paragraph: with a deviation of 0.02 Å in the 

equilibrium value, the optimized value for the force constant is on order of 300 kcal·mol-1·Å-2, which is ~300 

kcal·mol-1·Å-2 off from the optimal force constant needed to reproduce the C-C bond stretching in ethylene. For 

the valence angle in acetaldehyde 3º deviation from the optimal equilibrium valence angle results in ~40 kcal·mol-

1·rad-2 deviation for the force constant 𝐾𝑎.  

In both considered cases for the bond and angle terms, structural deviations between the QM and MM 
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optimized structures along the corresponding bond and angle lead to force constants that are smaller compared to 

the values optimized in the absence of these deviations. In general, the resulting MM model under a structural 

inconsistency as demonstrated in Figure 3, is softer than the QM model, and in other words, it allows larger 

amplitudes of deformations at the same energy values compared to the QM model.  

 
Figure 3. The RMS deviation between QM and CHARMM energies and forces of structures from PES scans as a 

function of FF parameters. (A) The energy RMS deviation and (B) the force RMS deviation as a function of the 

equilibrium bond distance, b0, and force constant, Kb, of the C–C bond term in ethylene. (C) The energy RMS 

deviation and (D) the force RMS deviation as a function of the equilibrium angle, θ0, and force constant, Kθ, of the 

O–C–C angle term in acetaldehyde. The optimal values for the force field parameters are shown in a white dotted 

square. 

To remove the strong dependence on equilibrium parameters, demonstrated above, we allow structural 

deviations along the scanned degree of freedom, where energy differences are computed between different 

structures used for QM and MM calculations.  
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Force constants for angle terms sharing an atomic center 

Let's consider deformations along the valence angles involving the ortho hydrogen atom of pyridine shown in 

Figure 4. In a previous work the conclusion was drawn that defining force constants for the valence angles for this 

atom is an ill-defined problem.41 To derive this conclusion the ring structure was assumed to be rigid with all 

reference angles having 120°. In this case, indeed, the in-plane hydrogen bending can be described by only one 

valence angle, and energy in Eq. 2 can be expressed as one harmonic term with the force constant given by the 

sum of the force constants of the two angle terms involving the hydrogen atom (𝐾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐾1 + 𝐾2). However, 

this is not the case if minimization is done as the pyridine ring is not rigid. The angles with the atomic center are 

defined as shown in Figure 4. In practice, with the angle 𝜃1 between N-C-H bent out of its equilibrium value, the 

other two angles 𝜃2 (C-C-N) and 𝜃3 (C-C-H) would also assume values different from their values in the 

minimized structures. In particular, the valence angle 𝜃3 would be different than 120º with in-plane hydrogen 

bending. Figure 4A shows the dependence of 𝜃2 and 𝜃3 on 𝜃1. For example, with 𝜃1 bending of 5º, the structure 

is bent along 𝜃2 and 𝜃3 by around 1º and 4º, respectively.  

 

Figure 4. Angle bending involving ortho-hydrogen in pyridine. (A) Angles involving ortho-hydrogen in pyridine 

in the PES scan along θ1 angle between N–C–H. Values corresponding to the minimum energy structure are in 

orange. (B) RMS deviation between QM and CHARMM energies from the PES scan as a function of the force 

constants of the two angle terms defined for ortho-hydrogen in pyridine (θ1 and θ3) (C) The cost function that 

includes the new term proposed in this work as a function of the two force constants K1 and K3. The optimal values 

for the force constants are marked by dotted line squares. 

At a particular bending along 𝜃1 in the MM optimized structure, the other two angles depend on the force 

constants of the corresponding angle terms 𝐾𝜃2
 and 𝐾𝜃3

, which should be sufficient to define these force constants. 

This conjecture we will test numerically in the next section. To improve further the distribution of force constants 

of angle terms, we tested an additional term to the cost function. We note that at a particular value of the angle, 

𝜃1, the position of the atom N, and thus angles 𝜃2 and 𝜃3 depend on the corresponding force constants in the MM 

model. Thus, including the deformations along the adjacent angles, in principle, is expected to improve the 

distribution of the force constant. Figure 4B shows the RMS deviation between QM and MM energies as a function 

of the force constants of the two angle terms defined for ortho-hydrogen in pyridine (θ1 and θ3). As expected, the 

RMS deviation has the minimum very shallow along the sum of the two force constants, 𝐾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐾1 + 𝐾2 

(diagonal on Figure 4B), making it difficult to define 𝐾1 and 𝐾2. By contrast, the cost function that includes the 
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RMS deviation as well as the new deformation based term, given by Eq. 10, shown in Figure 4C demonstrates a 

better defined minimum, which allows to resolve the force constants 𝐾1 and 𝐾2.  

Stability relative to the initial parameters 

Since we employ optimization as a method to derive force field parameters, in principle, different sets of bonded 

parameters can be obtained starting from different initial values. To characterize the stability of optimized 

parameters with the new method we performed a numerical test where optimization was initiated from different 

initial force constants. Force constants, 𝐾𝑏 for bond terms were assigned randomly from a wide range of values 

between 100 and 800 kcal·mol-1·Å-2; for angle terms, force constants, 𝐾𝑎 were randomly assigned in the range of 

10 to 100 kcal·mol-1·rad-2. The optimization was repeated five times starting from different random force 

constants; initial equilibrium bond lengths and angles were taken from QM structures. Relative and absolute 

standard deviation (SD) for bond and angle terms averaged over terms in individual molecules from the data set 

are shown in Figure 5 and SD averaged over all molecules in the data set, is given in Table 1. 

Table 1. Standard deviation for bonded term parameters averaged over 32 molecules in the data set. 

 Force constants, 𝐾𝑎 or 𝐾𝑏 Equilibrium parameters, 𝑏0 or 𝜃0 

Optimized terms Average RSD SD Average RSD SD 

Bonds 0.2 (0.5)% 0.86 (1.94)  0.004 (0.01)% 0.00001 (0.00018) 

Angles without the new terma 1.20 (2.8)% 0.69 (1.91) 0.06 (0.14)% 0.07 (0.17) 

Angles with the new termb 0.58 (1.4)% 0.36 (0.88) 0.02 (0.31)% 0.02 (0.36) 

a,bFor angles, force field parametrization was done without and with the additional deformation-based term given 

by Equation 9 included to the cost function, respectively; the standard deviations for the computed values are 

shown in parenthesis. 𝐾𝑏 and 𝐾𝑎 are in kcal·mol-1·Å-2 and kcal·mol-1·rad-2, respectively; the equilibrium 

parameters, 𝑏0 or 𝜃0, are in Å and º, respectively.  

The results demonstrate that the new method produces practically the same force constants starting from 

very different initial parameters. The relative SD for the force constants for bond terms, 𝐾𝑏 averaged over all bond 

terms (74 total) in 32 molecules is just 0.2%. For angle terms, the relative SD for 𝐾𝑎 averaged over a total of 127 

angle terms in 32 molecules is also very small, 1.2%. The later value can be further improved to 0.58% by 

introducing the deformation-based term given by Formula 9 to the cost function. Though, this improvement is 

small on average, for some angle terms it can present a significant improvement, for example for oxetane and 1,3-

dibutene it improves the relative SD from 14% to 7%, and 7% to ~0.5%, respectively. Since PES energies are 

approximately proportional to force constants, the maximum deviation of 2.5% and 7% observed for bond and 

angle terms, respectively, corresponds to the energy deviation of just 0.05 and 0.14 kcal·mol-1 at the maximum 

energy deformation considered in this work (2 kcal·mol-1), respectively. The equilibrium parameters deviate only 

insignificantly in five optimization tests. The relative SD is 0.004% and 0.02% for the equilibrium bond length 

and angle, respectively. Overall, bond and angle parameters derived by the new method are very stable with respect 

to the initial values used for the optimization.  
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Figure 5. Robustness of optimized FF force constants relative to the initial parameters. The relative standard 

deviation of force constants for (A) bond and (B) angle terms is shown. Five optimizations started with random 

force constants were performed to compute the relative SD, which was averaged over bonded terms in individual 

molecules. The relative SD averaged over all molecules is shown as a horizontal line. 

Transferability of optimized parameters 

In the previous section we showed that the optimized parameters are robust and do not depend on initial 

parameters. In this section we will demonstrate that the optimized bonded parameters for bond and angle terms 

using the new method are transferable. For this, the comparison of the same bonded terms optimized in different 

molecules is performed. Indeed, 23 bond parameters and 24 angle parameters are shared by 2 to 17 molecules in 

the data set. For example, the bond term defined between atom types CG331-HGA3, i.e. between methyl hydrogen 

and carbon, is shared by 17 molecules, while the angle term, CG2R61- CG2R61-CG2R61, i.e. defined for the 

angle between carbon atoms in an aromatic ring is shared by 6 molecules. For this test, bond and angle terms were 

optimized using the new method; for angles, the optimization was done with and without the deformation-based 

term given by Equation 9. Bonds or angles in two or more molecules were identified and the SD and relative SD 

for the same bonded parameters optimized in different molecules were computed. The SD for bond and angle 

terms are shown in Figure 6 and given in Table S3 for individual terms. The following analysis does not include 
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the angle term in two molecules having the three atom ring (1box and 1eox molecules), since by contrast to other 

molecules, a bending along the angle and stretching along the opposite bond in the three atom ring have two 

contributions: from the opposite bond and the contribution from the angle, and the bond term can be considered 

as an Urey-Bradley term for the angle.  

Figure 6. Transferability of optimized FF force constants relative to the initial parameters. The relative standard 

deviation is shown for bond (A) and angle (B) force constants optimized in different molecules. On panel (B) 

black and gray bars correspond to the results with and without the new angle term given by Equation 9, 

respectively. The horizontal lines show the average relative SD. The number of molecules sharing the term is given 

in parenthesis.  

The SD averaged over all bond terms for the force constant, 𝐾𝑏 is just 4.3 kcal·mol-1·Å-2, with the 

maximum relative value of 4.5% for the bond term defined for atom types CG2O1-OG2D1. This bond term is 

found in two molecules, formamide and dimethylacetamide, where a hydrogen atom on the oxygen-adjacent 

carbon in the former molecule is replaced with a methyl group, suggesting that this bond may require different 

force constants in the two molecules, which can be provided by introducing additional atom types. All bond terms 

except this bond have the relative SD less than 3%. The energy difference due to these deviations (at the maximum 

energy deformation of 2.0 kcal·mol-1) is lower than 0.1 kcal·mol-1. The SD for the equilibrium bond length 

averaged over all bond terms is just 0.0016 Å. For angle terms, the SD for force constants 𝐾𝑎 optimized in different 

molecules is again very small 0.6 kcal·mol-1·rad-2 (the relative SD is 2%). The largest relative standard deviation 
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of 4% for 𝐾𝑎 was observed for the valence angle H-C-H in the methyl group (atom types HGA3-CG331-HGA3). 

However, the optimized force constant for the valence angle term involving hydrogens of the methyl group is 

37.4±2.0 kcal·mol-1·rad-2, very small in comparison to other angle terms, and other energy terms (interactions with 

other parts of the molecule) can have comparable contributions to bending along H-C-H, making it difficult to fit 

𝐾𝑎. After optimization in different molecules, the equilibrium angles 𝜃0 are practically identical with SD of 0.8º. 

Since the force constants and equilibrium parameters deviate insignificantly, the force field parameters optimized 

by the new method are largely transferable, i.e. can be optimized in one molecule and used for the other molecules, 

at least as demonstrated for the molecules in the data set.  

Normal modes 

We further tested the quality of the optimized parameters using normal mode analysis. We note that, typically, for 

comparison, QM and MM normal modes are sorted based on the magnitude of frequencies.18,52 However, as shown 

in table S4, around ~50% of normal modes do not match , i.e. pairs of QM and MM normal modes with the absolute 

dot product (d) between normalized NMs lower than 𝑑 < 0.5, if they are sorted based on the magnitude of 

frequencies. Figure S1 shows dot product between QM and MM normalized normal modes sorted based on the 

frequency magnitude for benzene, ethylene, dimethylsulfoxide and butanol. As it can be seen, many corresponding 

MM normal modes are not in the same order as QM normal modes, and also QM normal modes may have several 

contributions from MM normal modes. Thus, if QM and MM modes are sorted only based on their frequencies, 

one may compare QM and MM normal modes which can be even orthogonal. To solve this problem, in this work 

we establish the correspondence between QM and MM normalized normal modes based on the dot product before 

the comparison as described in the methods section. With matching normal modes based on the dot product, 100% 

of QM and MM normal modes have 𝑑 > 0.5, and ~90% have 𝑑 > 0.75 as indicated in table S4. However, if 

normal modes are sorted based on their frequencies, only ~51% of pairs of QM and MM normal modes have 𝑑 >

0.5, and ~45% have 𝑑 > 0.75.  

To characterize the fit between QM and MM frequencies, Mean Percentage Absolute Error was calculated, 

after matching QM and MM normal modes based on the dot product. Figure 7 demonstrates the improvement of 

normal modes relative to QM NM for each individual molecule. Table 2 gives the mean MPAE for the 32-molecule 

set. We note that the initial CHARMM parameters were derived to reproduce normal modes and thus are expected 

to give very good results relative to the QM normal modes. A mean MPAE is 9.5% with the initial CHARMM 

parameters, while with the bond term parameters optimized using the term given by Equation 9, the mean error is 

lower 8.3%. With both bond and angle terms optimized the MPAE is getting even lower to 6.8%. It should be 

noted that without matching normal modes based on the dot product, the MPAE is consistently lower with an 

average of 6.9% with initial CHARMM parameters and with 5.4% for optimized bond and angle terms. However, 

the optimized parameters still give better results than with the initial parameters. 
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Figure 7. Mean Percentage Absolute Error between QM and MM normal modes computed with initial and 

optimized bonded term parameters. QM and MM normal modes were matched based on the dot product. Average 

values are represented as horizontal lines. The data are shown for all molecules in the data set, except acetamide 

(acem) due to its large value, 26.19% and 25.73% with the initial and optimized parameters, respectively. 

The largest MPA error of 22.2% was computed for chlorobenzene with the initial parameters, which was 

improved to 11.5% with the optimized parameters. The high MPAE between QM and MM normal modes for 

chlorobenzene with the initial CHARMM parameters is mainly due to two bond terms, as demonstrated by PES 

scans. The RMS deviation for the PES scan along the C-C bond is 0.28 kcal·mol-1 and 0.10 kcal·mol-1 with the 

initial and optimized force constants, respectively. The RMS deviation for the PES scan along the C-Cl bond is 

0.43 kcal·mol-1 and 0.13 kcal·mol-1 with the initial and optimized force constants, respectively. Thus, in in the 

initial parameters, the C-C bond term in chlorobenzene has the force constant 30% smaller than needed to 

reproduce the corresponding PE surface, and the C-Cl bond term has a force constant 40% stiffer compared to the 

optimized value.  

Table 2. Mean Percentage Absolute Error between QM and MM normal mode frequencies averaged over 32 

molecules in the test set. The pairs of QM and MM NMs were matched based on the dot product between 

normalized QM and MM NMs.  

 ainitial bbond terms cangle terms dboth bond/angle terms 

MPAEa % 9.46 8.30 8.04 6.84 

aMM NMs were obtained with the initial parameters, bwith the bond term parameters optimized, cwith the angle 
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term parameters optimized, and with both the bond and angle parameters optimized;  

 

Figure 8 compares initial and optimized force constants. For bond terms, as expected, the optimized 

parameters are in good agreement with the standard CHARMM force constants with the linear correlation 

coefficient of 90% and RMS deviation of 68.4 kcal·mol-1·Å-2 (18%). This is due to the fact that contributions of 

bond terms to normal modes are typically well separated from contributions from other degrees of freedom and 

normally account for high-frequency vibrations. By contrast, for angles the correlation is smaller 69% and the 

RMS deviation is 14.7 kcal·mol-1·rad-2 (31%), which is agreement with the conclusion that angle term parameters 

may lack robustness as discussed above as well as in ref. 40. 

 

Figure 8. Initial versus optimized force constants for (A) bond and (B) angle terms. Force constants are shown for 

a total of 72 bond terms and 115 angle terms. The linear fit is shown by a dashed line. 
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Conclusion 

In the present study we demonstrate that optimization of force field parameters based on comparing QM and MM 

energies and/or forces of structures leads to suboptimal force constants for bond and angle terms, if structural 

deviations between QM and MM equilibrium structures are present. The presented results show that conventional 

parametrization methods based on fitting QM energies and forces are largely balanced toward accuracies in force 

field equilibrium bond lengths and angles, while the accuracy in force constants is sacrificed. With the structural 

deviation present, the optimized force constants cannot adequately describe the QM flexibility of the molecule, as 

exemplified on several test molecules. Structural deviations always lead to force constants smaller in comparison 

to those in the absence of such structural deviations, and to a softer MM model relative to the QM model.  

To solve this problem, we developed and implemented a new method to derive force field parameters for 

bond and angle terms. The new method derives force field parameters based on PES scans where a structural 

deviation between QM and MM structures is allowed. We tested the method on a set of 32 molecules, and the 

results show that the optimized force field parameters are robust relative to random initial force constants. Starting 

from five sets of random force constants, we obtained relative SDs of just 0.3% and 1.2% for the bond and angle 

force constants, respectively. FF parameters derived by the new method are largely transferable, as demonstrated 

by the low relative SD (< 2%) for equilibrium bond and angle values and force constants for the same terms 

optimized in different molecules. We further tested the method to reproduce QM normal modes. The results 

indicate that there is only 45% correspondence between MM and QM normal modes, if they are sorted based on 

the frequency magnitude for the comparison, underlying the importance of establishing the correct correspondence 

based on the dot product. Furthermore, without correctly matching QM and MM normal modes, the agreement for 

normal modes defined by MPAE may appear better (6.9%) than after matching normal modes based on the dot 

product (9.5%).  

Overall, the new method will allow to parametrize molecules with structural deviations present between 

QM and MM equilibrium structures, common for force fields for small molecules, producing robust and 

transferable parameters. In future, the method will be extended to derive parameters for dihedral angle terms.  
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Data and Software Availability 

The data for the transferability and stability tests, and the normal modes computed with QM and CHARMM force 

field are freely accessible and available for download from: https://github.com/Alexey-AleksandrovCNRS/FF-

Terms-under-Structural-Inconsistency.  
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Figures comparing QM and MM normal modes; tables with molecules in the test data set; weights for the cost 

function; average values and standard deviations for bond and angle term parameters optimized in different 

molecules. 
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