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Despite being a well-established operational approach to quantify entanglement, Rényi entropy calculations
have been plagued by their computational complexity. We introduce here a theoretical framework based on an op-
timal thermodynamic integration scheme, where the Rényi entropy can be efficiently evaluated using regularizing
paths. This approach avoids slowly convergent fluctuating contributions and leads to low-variance estimates. In
this way, large system sizes and high levels of entanglement in model or first-principles Hamiltonians are within
our reach. We demonstrate this approach in the one-dimensional quantum Ising model and perform an evaluation
of entanglement entropy in the formic acid dimer, by discovering that its two shared protons are entangled even
above room temperature.

DOI: 10.1103/PhysRevResearch.4.L032002

Introduction. Measuring the entanglement of a quantum
state or the entropy of a quantum system at thermal equilib-
rium has always been a challenge. With the aim of achieving
this goal, several methods have been proposed so far [1–9].
One of the most promising approaches is based on the eval-
uation of the quantum Rényi entropy. For subsystem A of a
quantum system, it is defined as [1,10–12]

Sα
A = 1

1 − α
ln

Trρα
A

[Trρ]α
, (1)

where ρ and ρA are density matrices of the full system and
of its subsystem A, respectively, with α ∈ R>0 \ {1}. When
ρA equals the full density matrix ρ, Sα

A serves as a very gen-
eral signature of thermodynamic phase transitions. Moreover,
when a smaller subsystem is considered, it can detect quantum
phase transitions [2,3,13–20] occurring at zero temperature
and quantifies the entanglement of the ground state. Together
with its derivatives, such as mutual information [15], topolog-
ical entropy [21], or simply entropic inequalities [1,12,22], it
can be used to classify different ground states and topological
phases, extract critical exponents, and study thermalization
under unitary time evolution [23–25].

Despite being a fundamental proxy to understand the
thermodynamics of quantum systems, the Rényi entropy
is not measurable in experimental setups, apart from rare
successes [22,26]. The same holds for the Rényi entropy
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evaluation via analytical treatments or numerical methods,
such as the density matrix renormalization group (DMRG)
and stochastic sampling frameworks [2–5,9,18,27,28]. In the
former case, Rényi entropy evaluation is limited mostly
to integrable models [14,29–32], while in the latter, it is
limited to low-dimensional systems with sufficiently low en-
tanglement [33–35]. Quantifying the Rényi entropy in more
general complex systems has remained so far an unattainable
task, hampered by the exponentially high energy barriers in
stochastic sampling frameworks.

Of particular interest are hydrogen-rich materials, such as
liquid water [36], where quantum effects arise due to the light
mass of hydrogen. It has been shown that nuclear quantum
effects pilot phase transitions in these systems, leading, for
instance, to phase VIII of water ice and to the superconducting
phases of hydrides, such as LaH10 [37], YHn [38], and H3S
[39]. For the same reasons, entanglement is supposed to play
a role also in biochemical systems, such as the formic acid
dimer [40–43] and base pairs in DNA [44–46].

In this Research Letter, we present an alternative approach
that overcomes previous limitations and allows one to com-
pute the Rényi entropy Sα

A for complex quantum systems,
described by either model or ab initio Hamiltonians. The latter
is demonstrated by producing evidence of entanglement in the
formic acid dimer. Our approach is based on the combination
of the path integral (PI) formalism and thermodynamic inte-
gration along appropriately defined paths.

Rényi entropy with path integrals. In the PI formulations
of statistical mechanics, the quantum density matrix ρ at
time t is mapped to a classical counterpart by Wick-rotating
(t → −iβ) the quantum action and discretizing it into a clas-
sical Hamiltonian H [47,48]. In practical implementations,
the imaginary time interval [0, β = 1/(kBT )], T being the
temperature, is divided into a finite number of time steps,
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FIG. 1. Z∅ and ZA for a quantum particle with α = 2 are shown
in the upper boxes. S2 can then be computed by averaging the “SWAP”
operator or by introducing intermediate steps (gray arrows) and av-
eraging the spring interactions highlighted in colors (red, blue) over
an appropriately defined path. The springs’ strength is proportional
to color intensity.

which are individual snapshots (or beads) that interact in
a particlewise manner in the imaginary time direction. One
can then use importance sampling algorithms to evaluate the
Rényi entropy of α ∈ N \ {1} by calculating the free-energy
difference between two statistical ensembles, namely, Sα

A =
ln(ZA/Z∅)/(1 − α) [14]. Z∅ = [Trρ]α is the partition func-
tion of the ∅ ensemble, consisting of α independent copies of
the system, and ZA = Trρα

A is the one for the joint ensemble,
where each particle belonging to subsystem A is replaced by
one particle living in all the α copies. Thus Rényi entropy
depends only on the free-energy cost of changing the bound-
ary conditions through the “SWAP” operator (see Fig. 1) in the
imaginary time direction.

This free-energy cost can be estimated by running a PI
Monte Carlo simulation in one ensemble, say, Z∅, and aver-
aging the exponent of the energy difference between the two
boundary conditions at given β [2,8,49], in order to evaluate

ln

(ZA

Z∅

)
= ln〈exp[−β(HA − H∅)]〉Z∅ . (2)

HA,∅ are classical Hamiltonians arising from the discretization
of their corresponding quantum actions ZA,∅. Though Eq. (2)
is in principle exact, it implies that for increasing energy
differences one has to wait exponentially longer times to
sample high-energy configurations. A possible remedy for this
slowing down is to split the calculation into shorter increments
of smaller free-energy differences [2] and to sample the
ratio of the Metropolis-Hastings transition probabilities
〈min(1, exp(−β�H ))〉Z∅/〈min(1, exp(β�H ))〉ZA [50,51],
rather than Eq. (2). Following these procedures, reliable
and groundbreaking entanglement entropy estimations were
obtained in one-dimensional (1D) and two-dimensional (2D)
spin chains [3,9], and cold atoms [27]. Nevertheless, in larger
or more strongly entangled systems, the consequently higher
energy barriers can cause the aforementioned approach to
fail.

Thermodynamic integration. An alternative scheme is the
thermodynamic integration based on a new partition function

Z[λ], a differentiable function of the parameter λ ∈ [0, 1],
that connects the two ensembles [5,8]. Then, by using the
relation

ln

(ZA

Z∅

)
= −β

∫ 1

0
〈∂λH (λ)〉Z[λ]dλ (3)

and setting Z[0] = Z∅ and Z[1] = ZA, one evaluates
the entropy by sampling the derivative of the H (λ)
Hamiltonian appearing in Z[λ] and avoiding the exponential
function present in Eq. (2). Usually, the line integral in Eq. (3)
is performed numerically on a finite mesh. A common choice,
previously used in the literature [52], is taking an integration
path that leads to H (λ) = H∅ + λ(HA − H∅). According to
Eq. (3), then one has to average the energy difference HA − H∅
over the Z[λ] ensemble. A representation of the λ-dependent
part of H (λ) is highlighted in color in Fig. 1. However, it
was observed [52] that the final value for the entropy is the
result of an almost perfect cancellation between two possibly
large contributions of opposite sign coming from λ < 1/2 and
λ > 1/2, respectively. Moreover, at high temperature the inte-
grand 〈HA − H∅〉Z[λ] diverges at the edges of the integration
path [see Fig. 2(c)]. Thus, to get reliable results, high preci-
sion and a large number of integration steps are needed. The
thermodynamic integration based on the simplest integration
path is therefore also doomed to failure when faced with large
systems [3].

In order to understand the origin of these drawbacks, we fo-
cus on the harmonic oscillator and its Rényi entropy of second
order (i.e., with α = 2), the exactly solvable minimal model,
where the behavior is reproduced. In the PI formulation of
Z∅, each copy of the quantum harmonic oscillator of mass m
and frequency ω is described by a ring polymer with beads
{xk}k=1,...,P connected by harmonic springs [48], such that

H = m

2

P∑
k=1

[
1

ζ 2h̄2P
(xk+1 − xk )2 + ω2

P
x2

k

]∣∣∣∣∣
xP+1=x1

. (4)

In the following, we will solve this model for m = 1 and
ω = 1. In Eq. (4), ζ = β/P is the imaginary time step which
controls the discretization error and represents the inverse
temperature of the classical analog. Switching from the split
ensemble to the joint one amounts to neglecting the harmonic
interaction in H∅ between the beads xP and x1 in both copies,
and adding the interaction between xP of the first copy and x1

of the second one, and its crossed term, in HA (see Fig. 1).
The average energy of the joint interaction computed over Z∅
is greater than the split one, because copies do not interact
with each other in Z∅ and thus they can be at relatively
large distances. This contribution grows with the square of the
interbead distance and with the phase-space size. Moreover,
as the temperature increases, the interaction energy grows as
1/β and the de Broglie wavelength shrinks. Copies collapse
to almost pointlike particles, and this further contributes to
the diverging cost of joining them. This shows up in the large
value of the integrand at λ = 0 in the simplest integration
scheme. Similarly, the variance of this contribution is large,
since Z∅ minimizes the action without HA − H∅. An anal-
ogous contribution but of opposite sign appears at λ = 1,
further increasing the overall uncertainty of the integral. Nev-
ertheless, we found that if a more general path is considered,
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(a) (b)

(c) (d) (e)

FIG. 2. (a) Stream plot of the gradient field (〈K∅〉Z[λ], 〈KA〉Z[λ] ) for the single-particle 1D harmonic oscillator at β = 10 as a function
of (g, h). Colors indicate the magnitude of the gradient, according to the palette above the frame. (b) Stream plot of the variance field
(var[K∅], var[KA]). The black (blue) line in (a) represents the path in Eq. (7) with l = 2 (l = 3). The red line in (a) is the linear path (l = 1).
Changing the path from linear to black or to blue regularizes the integrand by cutting off its spikes at the edges, shown at different temperatures
for l = 1, 2, 3 in (c), (d), and (e), respectively.

the pathological behavior of the integrand at the edges and its
large variance can be avoided altogether.

Path regularization. In search of enhanced paths, we focus
on the 2D parameter space (g, h) of Hamiltonians H (g, h) =
H∅ + (g − 1)K∅ + hKA. The K∅,A operators correspond to the
interactions that enforce the boundary conditions: K∅ (KA)
drives the intracopy (intercopy) closure of the particle rings.
These terms are depicted in red (blue) in Fig. 1. Different
paths connecting (1,0) (H = H∅) to (0,1) (H = HA) can be
compared by inspecting the gradient field of the energy K ≡
(∂H/∂g, ∂H/∂h) = (〈K∅〉Z[λ], 〈KA〉Z[λ] ), and the correspond-
ing variance field var[K] ≡ (var[K∅], var[KA]) in the (g, h)
plane, shown in Figs. 2(a) and 2(b), respectively. At each
(g, h) point, the direction of the field indicates the path p ≡
(g(λ), h(λ)) that would yield the largest possible increment or
the largest possible uncertainty to the line integral in Eq. (3),
with magnitude represented by the color of the stream plot.
For the 1D harmonic oscillator [Fig. 2(c)], we can clearly see
that the path connecting linearly the two endpoints, i.e., the
one that has commonly been employed so far, produces two
spikes in 〈∂λH (λ)〉Z[λ] at (1,0) and (0,1), exactly where the
scalar product of the path direction (p′ ≡ ∂λ p) with the gradi-
ent field is the largest. This is understood once the integral in
Eq. (3) is recast in −β

∫ 1
0 p′ · Kdλ. The origin of spikes can

be traced down to the KA growth along (g, 0) and K∅ growth
along (0, h), as the temperature increases. These drawbacks
are present in any system where intrabead interaction is large.
In order to remove the spikes, one should therefore avoid
moving towards directions where previously nonexisting in-
teractions are switched on in H (g, h).

This analysis suggests that the optimal integration path is
the one which minimizes

FAbs[p] = 1∫ |p′|dλ

∫ 1

0
|p′ · K|dλ (5)

over the entire path. Another criterion can be derived by
minimizing the full variance [53], which implies the line min-

imization of

FVariance[p] =
∫ 1

0
((∂λg)2, (∂λh)2) · var[K]dλ. (6)

Either choice makes the integrand flat as a function of λ. This
scheme acts therefore as a path regularization. Not only are
the spikes at the endpoints cut off, but also the line integral
can be computed on a much coarser grid, speeding up the
calculation and reducing both deterministic and stochastic
errors.

It is clear that the full path optimization would not be
affordable in the most general case. However, the simple 1D
quantum oscillator, where the path search can be carried out
systematically, provides a shape that is transferable to com-
plex quantum many-body systems. p can then be parametrized
as a differentiable curve:

(g(λ), h(λ)) = ((1 − λ)l , λl ) with λ ∈ [0, 1]. (7)

If rescaled by the proton mass, the reported behavior of the
1D harmonic oscillator spans a physically relevant range of
parameters with temperatures going from 4.3 K (β = 40)
to 344 K (β = 0.5) and with a vibrational frequency of
5122 cm−1. In this realistic regime, it turns out that l = 2 opti-
mizes the path based on |p′ · K| [Fig. 3(a)], while l = 3 is the
optimal power law based on var[K] [Fig. 3(b)]. Nevertheless,
the latter is the best choice in ab initio systems over a large
range of temperatures [53]. Indeed, these systems have an
intrabead interaction similar to that of the harmonic oscillator
studied above, provided by the quantum kinetic term of the ab
initio action.

1D Ising model in a transverse magnetic field. The har-
monic oscillator is, however, a too simple model to possess
any entanglement. In a system with a larger number of inter-
acting particles, the coefficients (g, h) change the boundary
condition of the full subsystem. To explicitly check the gen-
erality of the path regularization approach, we now study the
1D Ising model in a transverse magnetic field with periodic
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(a)

(b)

FIG. 3. Cost functionals [53] estimating the (a) excess area under
the integrand [FAbs from Eq. (5)] and (b) variance of the integral
[FVariance from Eq. (6)] for different regularizing paths defined by the
parameter l . Three values of the temperature are shown.

boundary conditions. Its Hamiltonian reads

H = ∑
i σ

z
i σ z

i+1 + rσ x
i , (8)

where σ x,z
i are Pauli matrices acting on the ith site and r is

the strength of the magnetic field in the x direction. Due to
its integrability (it can be analytically solved using Jordan-
Wigner transformation [54]), it represents an ideal benchmark
for our path regularization in an extended system. It undergoes
a quantum phase transition at r = 1.

Within the PI framework, Eq. (8) is mapped into the 2D
classical anisotropic Ising model [53]. The interaction in the
imaginary time direction of the classical counterpart diverges
as r → 0, causing effects analogous to the temperature in-
crease in the harmonic oscillator. At small r, the path in
Eq. (7) successfully kills large fluctuations appearing at the
endpoints if l = 3 is used. In this case, there is still room
for improving the thermodynamic integration path. Indeed, in
this model system, the magnitude of the endpoints still grows
with the interaction strength. This can be cured by rescaling
the λ parameter [53], which provides an additional freedom
to optimize the path. Rescaling λ leaves the shape of the
path unchanged, but it varies the “speed” (i.e., the integration
points’ density) along the thermodynamic trajectory. To com-
pare our method with sampling algorithms based on the SWAP

operator [Eq. (2)], such as the one in Ref. [3], we computed
the Rényi entropy of second order S2

full with the whole system
as a subsystem. This quantity is the hardest to evaluate. The
full entropies obtained with the SWAP scheme and the path
regularization both agree well with analytical results over a
wide range of magnetic field strengths (Fig. 4). S2

full nicely
captures the quantum phase transition at r = 1, by showing
a clear peak. In order to estimate the maximum system size
that the path regularization procedure can afford, we pushed
the entropy calculation to very long spin chains, where the
thermodynamic limit is reached. In the limit of large L, the
full entropy scales as L. From the inset of Fig. 4, it can be
seen that this limit is reached at relatively small system sizes.
It is also seen that our procedure outperforms the SWAP-based
one, since the former can still be applied to systems larger
than 600 sites where S2

full exceeds the value of 50, while the
latter is broken already before 400 sites [3]. Indeed, one of the
strengths of the path regularization method is that the number

FIG. 4. Ising model. r dependence of the full Rényi entropy of
second order [S2

full/ ln(2)] computed with thermodynamic integra-
tion via path regularization (red crosses) and transition probability
sampling based on the SWAP operator (blue crosses) compared with
analytical results (dashed black line) for L = 64 and β = 3. Inset:
Comparison of the system-size scaling for the two methods at differ-
ent r.

of integration steps remains constant with the subsystem size.
By increasing the level of entanglement, the time cost grows
linearly, while in methods based on Eq. (2), it grows exponen-
tially.

A realistic system: The formic acid dimer. By means of the
path regularization scheme, the calculation of the Rényi en-
tropy for realistic systems becomes feasible. As an illustrative
example, we take here the formic acid dimer, a minimal model
of biochemical physics. This is a system of two molecules
that form a dimer via a double hydrogen bond [Fig. 5(c)].
Due to the 180◦ rotation symmetry around the axis connecting
the carbon atoms, the potential energy surface (PES) has two
minima, which correspond to the two hydrogen configurations
shown in Fig. 5. They are separated by a barrier that grows
with the interdimer distance d between the oxygen atoms (d =
2.7 Å in equilibrium [41,55]), which determines also the hy-
drogen bond stretch. During the double proton transfer the two
molecules get closer, as close as d = 2.4 Å, and the barrier
dwindles. Due to the light hydrogen mass, at intermediate dis-
tances the quantum effect become prominent [40–43], and the
barrier is low enough that the two configurations are expected
to be entangled, leading to a concerted motion of the protons.

In our simulations, we restricted the protons to move along
the hydrogen bond, and we evaluated the PES as a function
of d by means of the coupled-cluster method with single,
double, and perturbative triple excitations [CCSD(T)] [53].
At each distance, we ran a PI Monte Carlo simulation of
the two protons in a projected PES with our thermodynamic
integration scheme [61]. As the potential is simple enough, the
outcome of these simulations can be compared against results
obtained with the exact diagonalization in a discretized space.
This comparison further assesses the robustness of the path
regularization in Eq. (7), with the optimal power of l = 3 for
ab initio systems. Since the Rényi entropy of the two-proton
subspace (“full” entropy) is nonzero at distances where the
system is in a mixed state, we can extract a lower bound
for quantum correlations [56] by computing the difference
between the full entropy and the Rényi entropy of the single-
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(a) (c)

(b)

FIG. 5. (a) Full (black solid line) entropy and the entropy of a single-proton subspace [S2
A/ ln(2)] (black dashed line) as a function of

the distance d between the formic acid molecules at 300 K. The difference between the two (“relative entropy”)—the lower bound of
entanglement—is also shown (purple solid line). (b) Temperature dependence of the relative entropy. (c) 2D PES spanned by the position
of the hydrogen atoms along the hydrogen bonds at d = 2.87 Å. Rel., relative.

proton subspace (entanglement entropy if in a pure state). The
results show that the entanglement is present along the full
range of distances, explored during the double proton transfer
(d = 2.4–2.7 Å [41]). However, the temperature plays a major
role. At room temperature the entanglement is considerably
lower compared with the one at 100 K. Remarkably, it persists
up to temperatures as large as 500 K for some intermolecular
distance. We note that at high temperatures the thermal motion
of the full molecular complex must be taken into account.
Nevertheless, the effect is so strong that the entanglement
should still be relevant well above room temperature even in
this case.

Conclusions. In this Research Letter, we introduced a path
regularization scheme that allows an efficient and stable cal-
culation of the quantum Rényi entropy via a thermodynamic
integration performed within the path integral framework. The
proposed regularization defines an optimal thermodynamic
path that smoothly changes the imaginary time boundary con-
ditions of the quantum partition function, by avoiding slowly
convergent contributions and by yielding a low-variance
estimate of the Rényi entropy. The method has been shown to

be efficient in the 1D Ising model with a transverse magnetic
field, where we reached very large subsystem sizes. It also
allowed us to perform an ab initio evaluation of the Rényi
entropy for the concerted hydrogen motion in the formic acid
dimer. The path regularization makes the evaluation of the
Rényi entropy feasible for model and real systems, comprising
large sizes and/or complex interactions, for which the Rényi
entropy analysis was previously inaccessible.

The code used in this Research Letter may be accessed
[61].
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