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Abstract

This article deals with fast transient dynamics of compressible flows in which local flow details
matter. An overlapping grid Chimera method is proposed in a finite volume framework. Euler’s
equations are considered, as well as explicit time integration with a second order discretization
in time and space. The method is intended to improve the accuracy of a large scale calculation
by adding a local grid containing important flow details that alter the flow within the global
grid. This paper evaluates the impact of the Chimera exchange on flow dynamics crossing the
overlapping grid interface. The proposed Chimera method is assessed using five well-known
test cases from the literature. With a second order interpolated solution inside the receiving
cells, the method does not alter the order of convergence of the global model. It is able to
deal with complex compressible flow structures as well as multi-component flows, and produces
numerical solutions with better quality when using a finer local model compared to a single grid
computation, providing significant gains in terms of CPU time and memory usage.

Keywords: Chimera method, Overlapping grids, Fast transient dynamics, Finite volume,
Compressible flow, Two-phase flow

1. Introduction

Studying accidental situations involving highly pressurized systems or explosive transients in
large and complex geometries is of importance for safety issues in industrial environments. For
instance, such accidental situations can be found in the nuclear framework when Loss of Pri-
mary Coolant Accidents [1] or H2 explosions [2] occur. The brutal accidental context implies
compressible flow features such as discontinuities (shock waves, rarefaction fans or contact dis-
continuities) or acoustic waves travelling and interacting at high speeds. Moreover, interactions
between these waves possibly produce vortical structures through baroclinic effect, mainly if
multi-phasic or multi-component mixtures are at play. Fast transient energetic flows may also fi-
nally interfere with deformable structures inducing coupled phenomena at very small time scales
(10−6 − 10−3s [3]). Due to the risks and the general difficulty to perform tests with fully rep-
resentative geometry and initial conditions in the range described above, numerical simulation
appears as a powerful and convenient way to characterize the response of the systems during such
transients. Producing accurate and reliable results in these configurations however represents a
challenging task since the computational domain must account simulaneously for the largest
Preprint submitted to International Journal of Computational Fluid Dynamics September 24, 2021



scale of the geometry and for small geometrical details inducing local flow patterns with signif-
icant influence on the global solution. Dealing with all the scales within one mesh classically
yields huge numbers of grid points and complex meshing procedures. One elegant alternative is
then to associate, within one composite simulation independent numerical models, in terms of
both geometry and mesh, each adapted to the physical phenomena of interest at different time
and space scales.

The present work intends to provide a numerical strategy which consists in introducing some
localized geometrical alterations or details in a large scale global numerical model involving mul-
ticomponent flows. As a particular attention is paid to the conservativity of the numerical scheme,
the proposed approach falls within the framework of the finite volume method. In addition, in
readiness for an industrial usage, this strategy should offer a high flexibility and user-friendliness.
In particular, the large scale grid should be kept unmodified. To this end, the proposed approach
relies on the introduction of the considered alteration in a local grid which is overlaid with the
global one. To ease the generation of this local model, it is meshed independently from the mesh
of the global model. Also, it can be meshed finer than the global grid to increase the accuracy of
the solution near the introduced alteration.

Such a localized increase of accuracy can be achieved using a patch based Adaptive Mesh Re-
finement (AMR) approach [4]. However, the AMR approach is not straightforward to introduce
a localized alteration of the geometry in the large scale numerical model and does not provide
the flexibility of using non-matching grids. Then the proposed approach does not involves AMR,
whereas it could certainly be used in a complementary way. The first overlapping grid method
that we are interested in is the so-called Arlequin method that has been introduced by H. Ben
Dhia [5]. It has been applied to a large panel of problems, mainly structural [6, 7, 8, 9], but also
to some compressible fluid mechanics problems [10, 11, 12]. The present work also benefits
from the previous work carried out by Fernier et al. [13], in which the relevance of the Arlequin
method for structural fast transient dynamic simulation with explicit-explicit time integration is
demonstrated. However, the Arlequin method shows some limitations with fluid fast transient
dynamics in [14] with the appearance of ghost forces, numerical artifacts that require a filtering
procedure. Also, it has been designed for a finite element framework and thus would require a
conversion to our framework as, to the best of our knowledge, the Arlequin method has not been
used in a finite volume context.

The second method considered is the Chimera method developed by Steger and Benek [15]
and further extended in [16] and [17]. The main idea of the Chimera method is to allow indepen-
dent and non-matching grids to transfer information using existing cells or nodes as a receiving
container. Like the Arlequin method, the Chimera method requires an overlapping zone for the
information to be transferred. It also presents the same flexibility but has been designed for a
finite difference framework and has been translated to a finite volume framework. The Chimera
method has been extensively reviewed with a finite difference framework for compressible tur-
bulent flows [18, 19, 20, 21, 22] mostly for aircraft applications [23, 24, 25, 26] but also wave
propagation [27], incompressible flows [28, 29] and inviscid compressible flows [30, 31]. In
each case, the Chimera method provides with a good solution for overlapping grids apart from
introducing an interpolation error which can be compensated by using a higher order interpo-
lation for the exchange procedure than the order of the numerical scheme. More recently, the
Chimera method has been transposed to a finite volume framework and has been tested for vari-
ous aircraft applications with compressible turbulent flows and implicit time integration [32, 33].
The Chimera method has also been used with inviscid compressible flows in [34] where the time
integration is implicit as they are not dealing with fast transient dynamic and in [35, 36], where
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the Chimera method is combined with AMR for reactive flows. The Chimera method has also
been tested with remeshing techniques like in [37, 38] but this type of method is out of scope as
we do not want to alter the global grid. Several references can be found on the use of a Chimera
method combined with moving Cartesian grids [34], [39] for rotor computations or complex
aircraft geometries [40]. In this paper, we are not interested in moving grids as we want to as-
sess the impact of an overlapping grid technique on the numerical solution of the flow. In other
words, we are focusing on applications in which a geometrical detail contained inside a local grid
generates flow structures that cross the overlapping grid interface and improve the global grid so-
lution. Recently, high-order Chimera methods have been developed in [41] with global to local
frame transformations and in [42, 43] with a Moving Least Square reconstruction technique. The
method has also been coupled with Arbitrary Lagrangian Eulerian (ALE) formulations in a finite
element context in [44] which show its compatibility with FSI.

In most of the previously cited applications, the Chimera method is used to patch a geometrical
detail that drives the dynamics of the flow [39, 36]. In this paper, the flow dynamics is initially
generated outside the patched grid, in a large domain. The patch is used to take into account
a geometrical detail that significantly alters the flow dynamics over a large scale domain. The
patch is attached to a geometrical detail that is stationary. Therefore, the flow dynamics must go
through the overlapping grid interface without distortion. A Chimera method is used to transfert
information between overlapping grids. The first novelty of this paper is that the interpolation
of the transferred information is based on a local conservation hypothesis with a second order
reconstruction instead of a polynomial reconstruction [34, 43]. The reconstructed solution is
limited using a modified finite volume limiter. The second novelty of this paper is that a par-
ticular attention is paid to the impact of the Chimera method on the flow dynamics crossing the
overlapping grid interface. We specifically focus on the impact of the Chimera method combined
with variable cell ratios between the global grid and the finer local grids. The developed method
is fully compatible with multi-phase/multi-component flows. Considering fast transient flows al-
lows us to neglect viscous effects in relation to acoustic and wave propagation phenomena [45].
Euler’s equations will be considered, as well as explicit time integration.

The paper is organized as follows. First, a description of the governing equations used in
our context is given section § 2. After briefly introducing the numerical methods, we present our
finite volume Chimera method, detailing the reasons for the approach and then the improvements
needed to fulfil the requirements in section § 3. Section § 4 is dedicated to the assessment and
the validation of the developed method on five well-known test cases in the literature, each one
chosen to stress the method on one specific aspect, thus providing an overview of the method’s
capabilities and limitations. The last section gathers the main conclusions and prospects for
future improvements of the method.
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2. Governing Equations

The present study relates on fast transient dynamics phenomena. Therefore, we assume that
the viscous effect could be neglected in favor of convection and acoustic transports [45], and
we here consider the Euler system of equations. In the context of multi-component flows, the
governing equations are based on the compressible version of the reduced five-equation two-
phase flow model proposed by Allaire et al. [46], specially designed for interface problems.
The five-equation model is applied to the Euler equations. The governing equations written in
a vectorial form, express the conservation of mass, momentum and total energy for a two-fluid
medium as follows:

∂

∂t
(U) + ∇ · F(U) = B(U)∇ · u, (1)

with the vector of independent variables (U), the Euler fluxes (F(U)), and the source terms (B(U))
are the following:

U =


ρ1α1
ρ2α2
ρu
ρE
α1

 , F(U) =


ρ1α1u
ρ2α2u

ρu ⊗ u + pId
(ρE + p)u

α1u

 and, B(U) =


0
0
0
0
α1

 , (2)

where Id stand for d × d identity matrix, where d is the space dimension. We also note Q =

(ρ, u, v,w, p)t the vector of primitive variables. In these equations, ρ is the density, p the pressure,
u = (u, v,w)t the velocity vector, and E the total energy per unit of mass of the two-fluid mixture.
αk is the volume fraction of the phase k. Thus for a two-component fluid, the following constraint
has to be considered α1 = 1 − α2. ρk is the density of the phase k, and the density of the mixture
(ρ) is defined as: ρ = ρ1α1 + ρ2α2. The two-component fluid is supposed to have the same
velocity u. An isobaric closure is chosen so that p = p1 = p2.

The pressure (p) is related to the conservative quantities through the perfect gas equation of
state (EOS). In this context, each fluid k is characterized by its equation of state:

p = (γk − 1)ρkek, (3)

where γk is the heat capacity ratio , and ek is the internal energy relative to phase k. The speed of
sound in the phase k is ck =

√
γk p
ρk

.

Regarding the mixture, the specific internal energy (e = E−‖u‖2/2) is defined as ρe = ρ1α1e1+

ρ2α2e2. The speed of sound (c) associated to the mixture is defined in [46] by:

ρξc2 = ρ1α1ξ1c2
1 + ρ2α2ξ2c2

2, (4)

with ξk = ρk(∂ek/∂pk) and ξ = ξ1α1 + ξ2α2. In the following, this model is referred as to
two-component model.
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3. Numerical Methods

The integration of the system of equations 1 is based on an explicit finite volume method.
Meshes are made of 2D polygonal control volumes (Ki) ∈ U extruded in the third direction,
whereU, is the ensemble of control volumes belonging to the computational domain.

3.1. The second order TVD MUSCL scheme
We denote by ΩU the number of cells within the domain U. We denote by γ(i) the index set

of cells neighboring Ki. For all cells j ∈ γ(i), we define si j the common surface that separates
Ki from K j and ni j the normal of si j directed from Ki to K j. We write |Ki| the volume of Ki and
|si j| the surface of the face si j. We introduce the discrete times: ∀ n ≥ 0, tn+1 = tn + ∆tn where
∆tn is the variable time step at the n-th time-step, which is subjected to a CFL condition. In the

followings, we note Un
i =

1
|Ki|

∫
Ki

U(x, tn) dx the numerical approximation at the cell Ki and at

the time tn, of the vector of conservative variables solution of equations 1. Let us notice that Qn
i

stands for the numerical approximation of the vector of primitive variables and un
i denotes the

velocity vector of the cell Ki at the time tn.
To obtain an approximate solution at a discrete time tn+1, equation 1 is dicretized using a 2nd

order (in time and space) Godunov type method based on the MUSCL reconstruction [47, 48, 49].
Regarding the non-conservative product, the term B(U) is approximated at the first order in time
which leads to:

Un+1
i = Un

i −
∆tn
|Ki|

∑
j∈γ(i)

∫
si j

F(U?) · ni j ds +
∆tn
|Ki|

B(Un
i )

∑
j∈γ(i)

∫
si j

u · ni j ds, (5)

where U? is a solution of the Riemann problem depending on multiple cells. We introduce the
numerical flux functions,

F̂
(
U?n

i j(U
n
i j,U

n
ji),ni j

)
≈

1
|si j|

∫
si j

F(U?) · ni j ds, (6)

and
ûi j

(
U?n

i j(U
n
i j,U

n
ji),ni j

)
≈

1
|si j|

∫
si j

un
i · ni j ds, (7)

whose purposes are to approximate the flux integral and the normal velocity, respectively, over
the interface si j. The solution U?n

i j(Un
i j,U

n
ji) is the approximated solution resulting from the

Riemann problem at the interface si j [50], where the left and right states of the Riemann problem
are given respectively by the interface states U

n
i j and U

n
ji. Equation 5 can then be expressed using

the Riemann interface state (U?n
i j) as follows:

Un+1
i = Un

i −
∆tn
|Ki|

∑
j∈γ(i)

|si j|F̂(U?n
i j,ni j) +

∆tn
|Ki|

B(Un
i )

∑
j∈γ(i)

|si j| ûi j(U?n
i j,ni j). (8)

In the context of a 2nd order Godunov approach based on a MUSCL scheme [50], the interface
states are reconstructed using a piecewise linear function of the primitive variables:

Q
n
i j = Qn

i + Φi∇(Qn
i )(xi j − xi), Q

n
ji = Qn

j + Φ j∇(Qn
j )(x ji − x j), (9)
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where xi j is the position of the interface center between two consecutive cells Ki and K j, ∇(Qn
i ) is

the gradient of the solution Qn
i expressed using primitive variables and Φi is the limiting function

evaluated in the cell Ki also called limiter. The limiter employed in this work is the K-limiter
of Dubois [51]. The gradient is constant in the cell and is approximated using a Least squares
method [52]. The interface Riemann problem is solved using an approximate HLLC Riemann
Solver presented in [50] and the normal velocity of the non-conservative term is computed using
the HLLC solver for the advection equation detailed in [53]. The time integration scheme is a
second order MUSCL-Hancock method which is combined with a second order TVD MUSCL
scheme to give a second-order accurate method in both time and space [50].

3.2. The Chimera interpolation method

3.2.1. Method principle
The multi-model method that we have developed falls within the framework of the Chimera

method [15, 16, 17]: It is a multi-model approach that allows overlapping grids to exchange
information through a volumic exchange zone. These exchange zones are defined using cells
that receive information, designated as ghost cells in the followings (see figure 1).

W

V

w̃
n

0
w̃

n

1
w

n

2
w

n

3
w

n

4

ṽ
n

0
ṽ
n

1
v
n

3
v
n

4
v
n

5
v
n

6

Ghost cells :

Sending cells :
ΓV

Figure 1: Sketch of the transfer procedure in the Chimera method.

We consider a baseline gridW = {Ki}i∈ΩW that is referred as substrate and a secondary grid
V = {K

′

i }i∈ΩV that is referred as patch. What we call the substrate refers to the global model
while what we call the patch is a local model superimposed onto a part of the substrate. We note
{wi}i∈ΩW , the conservative variables resolved on the substrate, {vi}i∈ΩV the conservative variables
resolved on the patch.

Our finite-volume Chimera method relies on the injection inside ghost cells of conservative
variables interpolated using the corresponding neighbor cells on the other mesh, at every time
step. The set of ghost cells are denoted Ṽ ⊂ V and W̃ ⊂ W. The interpolated solutions are
written {w̃i}i∈Ω

W̃
for the substrate and {ṽi}i∈Ω

Ṽ
for the patch as represented in the figure 1. The

sending cells are denotedWs ⊂ W andVs ⊂ V and are intersected by the ghost cell sets Ṽ and
W̃ respectively. Let us emphasize that the integration of the solution is performed everywhere
except on the ghost cells that are only used for computing the numerical fluxes at sending cell
interfaces. In other words, solution on ghost cells is only updated through the Chimera procedure
at every time step. Let us also underline that the procedure is built as symmetrical, meaning
that the way to transfer information from the patch to the substrate is identical as to transfer
information from substrate to the patch.

Using the notation introduced in figure 1, we note hVi and hWj , respectively, measures of the

cells K
′

i ∈ Ṽ and K j ∈ W̃. For each ghost cell from the patch K
′

i , i ∈ Ω
Ṽ

, we define the local
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cell ratio between the patch and the substrate as :

χVi = max j∈Ω
K
′

i ∩W
s

(hWj
hVi

)
. (10)

The equivalent definition can be made for a local cell ratio between the substrate and the patch
and is the reciprocal of the previous definition. However, in our multi-model approach, we are
interested in adding local models to the baseline model, thus the local cell ratio between the
patch and the substrate is more adapted to our approach. We define the cell ratio χ as a global
grid parameter for both models using the definition:

χ = maxi∈Ω
Ṽ

(χVi ). (11)

The global definition makes sense in the case of regular grid spacing inside each model. Con-
sidering that the time integration of the numerical scheme is explicit, we have also chosen an
explicit coupling between grids for the Chimera procedure [18, 35] as its implementation in an
explicit time-integration context is straightforward.

3.2.2. Ghost cell detection and marking

Compared to the original and previous Chimera methods described in [18, 19, 54, 35, 36], we
modified the ghost cell detection since we do not want to deactivate any cell nor modify grids.
The proposed Chimera procedure is designed to be as flexible and independent as possible from
the baseline simulation. The detection of ghost cells happens only once because the patch is
considered fixed during calculation. We first prescribe a number of ghost cell layers (noted kGC)
required to calculate the numerical fluxes at interfaces of sending cells. We will see hereafter
how to chose kGC. Then, given the boundary ΓV of the patch domain, the procedure identifies
cells from the patch that will be marked as ghost cells Ṽ, as displayed in figure 2.

Once ghost cells Ṽ are identified, the geometrical intersection Ṽ ∩W is calculated to mark
the corresponding sending cells Ws. Symetrically, W̃ is defined by searching the closest kGC
ghost cell layers to Ṽ that respects the following condition for an explicit Chimera interpolation
[18]:

W̃ ∩ Ṽ = ∅ and W̃ ∩V , ∅. (12)

Similarly to the patch, once substrate ghost cells W̃ are identified, the intersection W̃ ∩ V, is
computed to mark the corresponding sending cellsVs.
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SubstratePatch

Geometrical Detail

Patch Ghost cell

Substrate Ghost cell

δGC

WV

Ṽ

W̃

ΓV

Figure 2: Ghost cell detection procedure for a 2nd order reconstruction (N = 2) with χ = 4

As we are interested in the effect of χ within the framework of the Chimera exchange, we need
to define the exchange zone gap as:

δGC = mini∈Ω
W̃

(
min j∈Ω

Ṽ
(|x j − xi|)

)
. (13)

The final step of our ghost cell detection procedure consists in minimizing δGC, by potentially
marking additional cells as ghost cells if they geometrically lie in between the ghost cell layers
of the patch and the ghost cell layers of the substrate without breaking the condition 12. As a
result, the ghost cell layers of the patch are extended to fit the ghost cell layers of the substrate.
This step eventually improves the stability of the Chimera exchange when dealing with high cell
ratio χ and complex flow structures.

3.2.3. Number of ghost cell layers
As we mentioned above, we need to prescribe a number of ghost layers (kGC) before labeling

the ghost cells. As mentioned in [55], a 2nd order accurate evaluation of the numerical flux
at an interface between two consecutive cells needs a stencil over a neighborhood of two cells
consecutive from each side of the interface. When a sending cell (eitherWs orVs) is close to the
boundary of the domain (ΓW or ΓV, respectively), the number of ghost cells must be large enough
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to ensure that the numerical flux evaluation does not intercept the boundary Γ. The situation is
illustrated in a 1D sketch in figure 3. Regarding the interface si i−1, the numerical solution in
cell Ki obtained through a second order finite-volume reconstruction imposes to keep a layer
of two ghost cells to be independent of any boundary ΓV, as confirmed by [56] for an explicit
interpolation. As values inside ghost cells are updated at each time step from the opposite model,
the boundary condition at ΓV has no impact on the solution in the sending cells. Reciprocally,
cells that are not ghost cells that belong to the substrate portion covered by the patch has no
impact on the solution inside the patch. In the followings, kGC will always set to kGC = 2.

V

ṽ
n

i−2
ṽ
n

i−1
v
n

i

Ghost cell : ΓV

v
n

i i−1
v
n

i−1 i

si i−1

Figure 3: Chimera boundary condition.

3.2.4. A second order Chimera interpolation
As we are using a conservative finite-volume approach, the present Chimera method is based

on local conservation hypothesis when transfer occurs between opposite grids. Indeed as it is
shown in figure 4, the method relies on the intersection of ghost cells with the opposite grid.

v0 v1

v2 v3

V =
{

K
′
i

}

i∈ΩV

W = {Ki}i∈ΩW

Figure 4: Example of a ghost cell intersection K̃0 withV.

From a finite-volume framework, considering the ghost cell K̃i inW, we suppose that:∫
K̃i

w̃ dV =

∫
K̃i∩V

v dV. (14)

Considering that the finite-volume numerical scheme is second order accurate in time and space,
a piecewise linear reconstruction of the transferred solution is adequate to achieve the suitable
accuracy order compared to a constant piecewise approximation of the solution.
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Defining the barycenter position of the intersection K̃i ∩ K
′

j inside the ghost cell K̃i, noted x̃i j,
we can discretize equation 14 with a piecewise linear reconstruction: ∀ i ∈ Ω

W̃
,

w̃n
i =

∑
j∈ΩV

|K̃i ∩ K
′

j|

|K̃i|
vn

j (̃xi j) =
∑
j∈ΩV

|K̃i ∩ K
′

j|

|K̃i|

(
vn

j + Φ j∇(vn
j )(̃xi j − x j)

)
, (15)

where ∇(vn
j ) is the gradient of the solution vn

j based on conservative variables. The gradient is
calculated for each sending cell set (Ws and Vs) using a Least squares method [52]. Φ j is the
limiter also used for the gradient reconstruction 9 to evaluate the numerical flux. A slope limiter
is employed to avoid spurious oscillation and so keeps the TVD property of the solution when
transfer on the opposite model is performed. The present formulation ensures a spatial 2nd-order
accurate interpolation in ghost cells without any constraint on meshes; i.e. meshes can either be
structured or unstructured. Equation 15, can reciprocally be written for i ∈ Ω

Ṽ
.

Even though this formulation results from a conservative assumption, the resulting procedure
is not fully conservative as it has been demonstrated that the only conservative Chimera approach
is based on flux interpolation [30, 31, 56], rather than conservative variable interpolation as
employed here. Nonetheless, using an integral formulation for transferring solution is consistent
with the finite volume approach.

3.2.5. Modified K-Dubois limiter for Chimera interpolation
As mentioned previously, reconstructions, on the one hand, of the solution for solving the

Riemann problem at cell interfaces 9 and, on the other hand, of the ghost cell solution through
the 2nd order Chimera method 15 require a limiting procedure to satisfy TVD constraint and
avoid occurence of local extrema. To avoid a possible limitation on mesh constructions and to
make the method suitable for both structured and unstructured meshes, we have privileged the
K-Dubois limiter [51] that acts on the primitive variables. Let us underline that a more commonly
used limiter, namely the Jespersen & Barth limiter [57], would also be suitable for the present
method.

In the standard finite-volume implementation of the K-Dubois limiter [51], values wmin
i =

min
(
wi, (w j) j∈γ(i)

)
and wmax

i = max
(
wi, (w j) j∈γ(i)

)
need to be computed. Then the solution wi

should obviously verify:
wmin

i ≤ w(x, y, z)i ≤ wmax
i . (16)

The K-Dubois limiter [51] is expressed as:

Φi = min
(
1,K ·

min
(
wmax

i − wi,wi − wmin
i

)
max j∈γ(i)

(
∇wi · (x( f ace)i j − xi)

) ). (17)

As indicated by [51], the parameter K allows the limiter to be more flexible than the Barth
and Jespersen limiter [57] as it can modify the behavior of the limiter to make it more or less
compressive 1. In this paper, we set the parameter K to 0.75 as recommended in [51] and used
in [58, 59]. The quantity (x( f ace)i j − xi) represents the distance between the center of the cell face
si j and the cell center xi. Taking the maximum value of (x( f ace)i j − xi) among all faces of the
considered cell ensures that the solution is limited in the sense of equation 16. This implies that

1By more compressive, we mean that the limiter is capable to capture more accurately a contact discontinuity or a
shock by reducing the numerical diffusion of the numerical scheme.

10



the limited reconstructed solution can be searched inside a neighborhood (i.e. . . a circle in 2D,
and a sphere in 3D) with a typical radius of R = max j∈γ(i)

(
x( f ace)i j − xi

)
(see figure 6).

Ki

Kj

Kl

Km

Kn

x(face)il

x(face)im

x(face)in

x(face)ij

: unqueryable zone

: new queryable zone

xi

Figure 5: Search area for the K-Dubois limiter in a single model approach. The searchable area is identical for the Barth
and Jespersen limiter [57].

Nevertheless when several overlapping grids are at play, the previous constraint applied to the
solution is not restrictive enough to enforce non-oscillatory property, and the search zone must
be enlarged to recover TVD property as it is shown in figure 6. In fact, when refining the patch
V = {K

′

k}k∈ΩV , ghost cells can be intersected by a cell portion that can be outside of the search
region, Ki in this example. The reconstruction then gives:

ṽn
k =
|K̃k ∩ K

′

i |

|K̃k |

(
wn

i + Φi∇(wn
i )(̃xki − xi)

)
+

∑
p∈ΩW\{i}

|K̃k ∩ K
′

p|

|K̃k |

(
wn

p + Φp∇(wn
p)(̃xkp − xp)

)
. (18)

Here, we can see that |̃xik−xi| can be greater than |x( f ace)i j−xi)
∣∣∣ depending on the location of cells.

This is also emphasized by increasing χ. In those particular cases, the limiter is not adapted as
the solution will be searched outside the search zone described in figure 5. Thus, the transfer can
generate local extrema.
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Figure 6: Evolution of the positions between the center of the intersection with the sending cell and the center of the
sending cell.

We propose to recast the previous limiter 17 to make it work with the present Chimera method.
The limiter is then recast as follows:

Φi = min
(
1,K ·

min
(
wmax

i − wi,wi − wmin
i

)
maxl∈η(i)

(
∇wi · (x(node)l − xi)

) ). (19)

The new version of the K-Dubois limiter adapted to the present Chimera method is based on the
radius calculated from the cell corners instead of centers of cell faces. The radius of the search
region is now enlarged with an extended radius R = maxl∈η(i)

(
x(node)l − xi

)
, where x(nnode)l is the

cell corner coordinates, and η(i) is the corner set of the cell Ki (see figure 5). This extents the
search zone of the limited solution so as to be valid whatever the location of the ghost cell and
the cell ratio are.
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4. Numerical results

To assess the present approach, we select five well-known test cases from the literature. Each
test case is chosen to stress the method on one particular aspect in order to highlight capabilities
and limitations of the present Chimera method. Every case involves flow structures crossing the
Chimera interface. A 1D advection of a density profile is first used to check the order of accuracy
of both the numerical scheme and the proposed Chimera method. A stationary shock coinciding
with the patch interface helps assessing conservation properties. The supersonic flow around
a 2D cylinder is then undertaken with an overlapping grid in the vicinity of the cylinder. The
fourth test case concerns the interaction of a shock wave in Air with a bubble initially cylindrical
and filled with Helium. This allows us to stress the good behavior of the present method to deal
with fast transient dynamics of multi-component flows. At last, the well known test case of the
double Mach reflexion is undertaken with overlapping grids. We can thus check the ability of the
method to account for multiple interactions between discontinuities even if they move across the
overlap grid boundaries.

4.1. 1D - Sinus Advection

In order to assess the order of accuracy of the numerical scheme, and the impact of the interpo-
lation used in the Chimera exchange on the global order of convergence, the linear advection of
a smooth analytical solution is considered similarly as in [60, 58, 59]. We superimpose a regular
fluctuation on the density field that is convected with a constant velocity:

ρ = ρ0(1 + δρ)
u = u0 = 100 m.s−1

p = p0 = 1 bar
(20)

with the normalized density fluctuation given by,

δρ =

A sin2( πx
l ) if 0 ≤ x ≤ l

0 elsewhere,
(21)

where A = 10−2 is the amplitude of the perturbation, l = L/5 the length on which the density
is perturbed, T is the period of the perturbation and L = u0T = 10 m is the length of the
computational domain [0, L]. For the present exemple, the initial center of the perturbed density
region is located in xc = 0.1L, as seen in figure 7. The simulation stops at t f = 0.7T which is the
time for which the center of the density fluctuation is located at xc = 0.8L.
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Figure 7: Sinus advection test case: initial solution and grid arrangements for the chimera configuration.

Computations have been performed on both a single grid domain (without any patch), and
with a patch that is located centered on the substrate, from x1 = 1/3L to x2 = 2/3L as it is
shown in figure 7. On the substrate, we used 6 different grids from the coarsest Ncells = 100
cells regularly distributed on L to the finest using Ncells = 3200 cells, i.e. the grid spacing
evolves with power of 2 between two meshes. We note Ncells the number of grid cells along
the substrate. As we would like to highlight the spatial accuracy, whatever the grid is, a constant
time step ∆t = 10−5 s has been used for lowering the time integration error.

First, we set the cell ratio between the patch and the substrate to χ = 1, and we consider that
the mesh on the patch is not coincident with the mesh on the substrate (see Fig. 7 for a sketch).
This allows us to study the grid convergence as well as the impact of the Chimera interpolation
on the global accuracy.

At the final time t f , we compare numerical solutions obtained on both the single grid config-
uration (only the substrate is considered) and the configuration with the patch superimposed on
the substrate, to the analytical solution which is the simple convection of the initial density pro-
file without any diffusion. To measure numerical errors, we calculate the L1 norm of the density
error, computed as follows:

L1(ερ) =

∫ L

0
|ρnum − ρth| dx ≈

ΩW∑
i=0

|ρi − ρth(xi)|∆x, (22)

where ρth is the analytical density profile and ρnum the numerical density solution. The evolution
of the L1 norm of density errors versus the grid spacing is plotted in figure 8. On the one hand,
for the single mesh configuration (without any patch), the second-order of accuracy is clearly
recovered for finest grids (at least from 800 grid points over L) by using the 2nd-order Godunov
approach based on a MUSCL scheme. On the other hand, using the present Chimera method on
a patched configuration on 1/3 length of the computational domain does not seem to notably de-
teriorate the order of accuracy of the original method. As the interpolation of ghost cell solutions
between two facing grids is 2nd-order accurate, the global order of accuracy is almost recovered
although slight discrepancies compared to single grid results can hardly be noticed in the coarsest
grid configurations (Fig. 8). To judge the very low intensity of these discrepancies, we report in
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table 1 the L1 density errors as well as the measured order of accuracy. As mentioned earlier, the

Figure 8: Grid convergence analysis of the sinus advection case for the first study (χ = 1).

second-order of accuracy is achieved with at least 800 grid points even if a Chimera method is
employed with a non-coincident patched grid.

Table 1: Grid convergence analysis: results on density (ρ) errors obtained with a single grid configuration as well as with
the present Chimera approach using a patch with same grid spacing as the substrate (χ = 1.0) but with non-coincident
grids.

Ncells
L1 error Order of convergence p

Single Chimera Single Chimera

100 1.609e-4 1.643e-4 1.595 1.551
200 5.499e-5 5.607e-5 1.755 1.770
400 1.629e-5 1.644e-5 1.909 1.913
800 4.338e-6 4.366e-6 2.022 2.026

1600 1.068e-6 1.072e-6 2.119 2.108
3200 2.459e-7 2.487e-7 - -

Secondly, we prescribe the cell number on the substrate to Ncells = 200, and refine the grid
on the patch in order to assess the impact of the transfer between a coarse substrate and a finer
patch which seems to be the most sought-after configuration. Cell ratios between the patch and
the substrate spread from χ = 1 which is the previous situation where grid spacing is identical
on the patch and on the substrate with however non-coincident grids, to χ = 16 where the grid
spacing on the patch is 16 times smaller than on the substrate. Results on the L1 norm of density
errors are reported in Table 2. The last column reports the equivalent number of cells (Ncells)
that would be needed on the substrate to recover the same grid refinement as used in the patched
region. Let us recall that solution errors are calculated at t f = 0.7T once the density profile
passed through the patch and completely left the patch, situated from x1 = 1/3L to x2 = 2/3L.
That way, errors obtained must mainly be compared to the ones of single grid configuration with
Ncells = 200 cells. Refining the patch slightly increases the accuracy of the overall results while
it is obvious that solution errors are mostly dominated by the ones generated on the coarser grid
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Table 2: L1 norms of density error obtained with the present Chimera approach using a patch with several cell ratios
between the patch and the substrate (1 ≤ χ ≤ 16); the substrate comprises Ncells = 200 gris cells.

Ratio χ L1(ερ) error Equivalent Ncells on the patch
1 5.607e-5 200
2 4.405e-5 400
4 4.135e-5 800
8 4.032e-5 1600

16 4.014e-5 3200

of the substrate. In other words, this however emphasizes that errors due to Chimera exchange
between the two facing grids do not impact the global solution error when the patch is finer than
the substrate.

4.2. Conservation properties of the present Chimera method

Although our local conservation hypothesis is not sufficient to ensure global conservation of
the system [30, 31, 56], we verify in this section that the Chimera method does not introduce
conservation error with coincident grid interfaces. Then, we verify that the conservation error
due to the Chimera exchange with non-coincident grid interfaces and variable cell ratios meet
acceptable levels for industrial requirements.

To this end, we study the behavior of the finite volume Chimera formulation when a steady
shock wave is located at the patch interface. This 1D test case is taken from [61] and [42]. The
full computational domain is −5 ≤ x ≤ 5 and it is discretized in two regions of Ncells = 25 each
for the single grid configuration.We note hW and hV respectively the cell size ofW andV. We
define the exchange zone shift δS as:

δS = δGC −
1
2

(hW + hV). (23)

The interface between the two regions is located at x = 0 and the chimera configurations are
depicted in figure 9 with coincident grid interfaces (δS = 0) and non-coincident grid interfaces
(δS , 0) with χ = 2. For every Chimera grid configuration, the patch interface is fixed and
coincide with the shock wave discontinuity at x = 0. The variable Ncells also corresponds to the
number of cells on the substrate while the number of cells on the patch is defined by the cell ratio
χ. The flow states on each side of the discontinuity are the following:

(ρ, u, p)L = (1 kg.m−3, 1.5 m.s−1, 0.71429 Pa),
(ρ, u, p)R = (1.8621 kg.m−3, 0.8055 m.s−1, 1.7559 Pa).

(24)

As the shock discontinuity coincides with the patch interface, the patch contains exclu-
sively the right state of the shock. All simulations are performed up to a dimensionless time
t? = t uL/L = 100, using a prescribed CFL number CFL = 0.4 on both the single grid con-
figuration and the overlapping grids. This time ensures a converged solution with residuals of
density, momentum and total energy lower than 10−9 on every case. The error on conservation is
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computed for each conservative variables as the following:

ε(ρ(t?)) =

∣∣∣ ∫ ρ(t?,x) dV−
∫
ρ(0,x) dV

∣∣∣∫
ρ(0,x) dV

ε((ρu)(t?)) =

∣∣∣ ∫ (ρu)(t?,x) dV−
∫

(ρu)(0,x) dV
∣∣∣∫

(ρu)(0,x) dV

ε(ρE(t?)) =

∣∣∣ ∫ (ρE)(t?,x) dV−
∫

(ρE)(0,x) dV
∣∣∣∫

(ρE)(0,x) dV

(25)

W

V

W
Non-coincident grid interfaces

x = 0

δS

δS = 0

Ghost cells :

x = 0

Coincident grid interfaces

χ = 2

V

hW

hV

Figure 9: Stationary shock grid configuration for coincident grids and non-coincident grids with the shock located at
x = 0.

Figure 10: Density profile of the stationary shock converged solution in a single grid configuration with Ncells = 25
and a Chimera configuration with coincident and non-coincident grids for Ncells = 25 and χ = 1 compared to the exact
solution.

In figure 10, we show the results of the Chimera configurations with coincident grid interfaces
and non-coincident grid interfaces with equivalent cell size compared to the single mesh config-
uration (Ncells = 25, χ = 1) and the exact solution. As highlighted by the table 3, conservativity
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(a) Coincident grid interfaces

(b) Non-coincident grid interfaces

Figure 11: Density profile of the stationary shock converged solution in a Chimera configuration with coincident and
non-coincident grids for Ncells = 25 and χ varying from 2 to 16 compared to the exact solution.

is preserved on mass, momentum and total energy for the coincident grid interface case as seen
in figure 10 with identical errors compared to the single mesh case. It is obvious that the Chimera
method with non-coincident grid interfaces introduces conservation error since a maximum of
about 0.6% is recorded on the conservation error of momentum. In fact, the shockwave is still
located at the patch interface but at the same time, is also located within a coarse cell of the
substrate that induces higher error levels. When refining the patch (χ = 2, 4, 8 and 16) with coin-
cident grids, we can observe from table 4, that total mass, momentum and energy are relatively
preserved with an error of the same order of magnitude as the single grid configuration which is
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10−4%. As the shock diffuses upstream in the substrate grid when non-coincident grid interfaces
are used, refining the patch has only a weak effect on error levels. The error magnitude is how-
ever relatively low since it does not exceed 1%. To put those results in perspective, figure 11 (b)
shows the impact of the Chimera method on the post-shock state with non-matching grids. The
loss on the density jump is at most 0.35% of the exact post-shock state which is acceptable for
industrial applications.

Table 3: Total mass, momentum and energy error computed on the converged solution with a single grid configuration
as well as with the present Chimera approach using a patch with the same grid spacing as the substrate (Ncells = 25,
χ = 1.0) with a shock matching the patch boundary.

ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in %

Single 5.9708302e-4 2.4492026e-3 4.4632114e-3
Chimera (coincident grids) 5.9708302e-4 2.4492026e-3 4.4632114e-3

Chimera (non-coincident grids) 4.3402693e-1 6.3486174e-1 4.6451928e-1

Table 4: Total mass, momentum and energy error computed on the converged solution with a single grid configuration
as well as with the present Chimera approach using a patch with different grid spacings and a shock matching the patch
boundary.

χ
Chimera (coincident interfaces) Chimera (non-coincident interfaces)

ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in % ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in %

1 5.970e-4 2.449e-3 4.463e-3 4.340e-1 6.349e-1 4.645e-1
2 6.110e-4 3.113e-3 3.344e-3 1.331e-1 3.223e-1 3.185e-1
4 6.154e-4 3.175e-3 3.815e-3 1.152e-1 3.899e-1 4.271e-1
8 6.176e-4 3.209e-3 4.062e-3 2.183e-1 5.589e-1 5.628e-1

16 6.189e-4 3.225e-3 4.189e-3 2.422e-1 5.987e-1 5.949e-1

4.3. Flow around a circular cylinder at Mach = 3
A circular cylinder with a radius D = 1 m, is initially placed in Air (γ = 1.4) which is assumed

as a perfect gas. A shock wave is initially located 8 cylinder diameters in front of the cylinder
with a flow at Mach M∞ = 3 upstream of the shock wave. Infinite pressure and density are
prescribed, respectively at P∞ = 96774 Pa, and ρ∞ = 0.519 kg.m−3 upstream of the shock wave.
Initial conditions downstream this shock wave, around the cylinder, are prescribed by using the
Rankine-Hugoniot relationships assuming that the front shock wave moves towards the cylinder
with a Mach number equal to Msh = 1. The initial state of this test case is shown in figure 12
where we see the computational domaine (x × y) ∈ [−10, 10]2 m ×m.

A grid that fits both the body and external domain boundaries is first built to serve as a single-
grid configuration. A zoom-in view in the vicinity of the cylinder is provided in figure 13-(a),
where we see the transition between a O-grid very close to the cylinder towards a H-grid far
away. In the followings, we use the number of grid cells (Ncells) distributed along the cylinder
perimeter as the parameter to refer as refinement. We then built the grid of the patch, attached
to the cylinder with a O-grid that at most coincides with the single-grid configuration very close
to the cylinder to facilitate comparisons with the single grid model (see in Fig. 13-(a) the grid
in red superimposed to the single grid configuration). Then the substrate model employed in the
Chimera computation is a Cartesian grid that fits the external boundaries of the computational
domain, as we can see in figure 13-(b), where a zoom-in close to the cylinder is presented show-
ing the patch grid superimposed to the substrate model. Let us remark that, when considering
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Figure 12: The circular cylinder test case: computational domain and the initial solution.

the problem with overlapping domains, the cylinder only belongs to the patch domain and does
not explicitly appears in the substrate model.

(a) Single mesh case vs Patch (b) Chimera case

Figure 13: Grid configuration for the single mesh case and the Chimera case.

All simulations are performed up to a dimensionless time t? = t u∞/L = 52.5 (where u∞ is the
infinite velocity), using a prescribed CFL number CFL = 0.4 on both the single grid configuration
and the overlapping grids.

At first, we keep the cell ratio between the patch and the substrate close to unity, meaning that
the minimum grid spacing used in the patch (along the cylinder perimeter) is the same as the
one used in the substrate although meshes are not coincident away from the cylinder, as we can
see in figure 13-(b). Several grid resolutions are employed from Ncells = 50 along the cylinder
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perimeter to Ncells = 400, to study grid convergence.
Steady state solutions are presented in figure 14, on the density contours obtained at a dimen-

sionless time t? = 52 and for Ncells = 200 grid cells along the cylinder perimeter between, with
the single-grid configuration (on the left), and the overlapping grids (on the right). As we can
see, results seem to be similar, and it is hard to differentiate them following the density contours.
Let us first remark that in the Chimera case, when the front shock wave passes through the inter-
face from the substrate to the patch, no spurious reflection is generated, meaning that the present
Chimera method is able of dealing with wave propagation across grid interfaces.

(a) Chimera case (b) Single mesh case

Figure 14: Steady state density field for both single grid case (on the left), and the overlapping grids (on the right) with
a cell ratio of unity (χ = 1), obtained at a dimensionless time t? = 52 and for Ncells = 200 grid cells along the cylinder
perimeter.

To get a better validation of results obtained with the Chimera method, we use an integral
quantity based on the pressure drag force exerted by the flow on the cylinder, calculated at each
time step. Time history of this pressure drag force is plotted in figure 15.

When the moving front shock wave interacts with the cylinder, a peak on the pressure drag
force occurs, followed by a relaxation period during which the front shock wave comes estab-
lished as a bow shock in front of the cylinder. Then a steady state solution occurs. Whatever
the grid spacing is, a statistically converged steady state solution is achieved from at most a di-
mensionless time t? = 35, with however the finer the grid, the greater this time occurs. As we
can see, for the coarsest grids the drag force converges towards a constant value while for the
finer grids oscillations around a converged value appear due to the high resolution of the cylinder
wake. Compared to the single grid computations, the Chimera method gives comparables results
on the drag force while some weak discrepancies can be recorded for the coarsest grids. Very
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Figure 15: Time history of the pressure drag force for several number of grid cells (Ncells) obtained on both the single-
grid configuration, and the ovelapping grids with however similar grid spacings (χ = 1).

similar results have however been recovered for the finest grid tested with the Chimera method.
By zooming in on the steady state region between dimensionless times 40 and 52.5 as shown in
figure 16, we can see that the average force seems to converge toward the value F ≈ 202 × 103

N. We can observe that the Chimera case captures oscillations around the cylinder with a coarser
grid refinement than the single grid configuration. Considering that grids between the single
mesh case and the Chimera case are similar but not identical, differences might be caused by a
difference in the grid resolution as well as a better grid regularity of the mesh in the Chimera
case.

On table 5, we have reported the averaged force calculated for several number of cells over the
cylinder perimeter (Ncells), over the time interval t? ∈ [40; 52.5] for both the single mesh case
and the Chimera case. Relative differences, w.r.t. the single grid case, between the overlapping
case and the single grid configuration are reported in the last column as percentages. Discrep-
ancies between the single mesh case and the Chimera case decrease as grids are refined. For
grids for which solutions are considered as converged (Ncells ≥ 200), discrepancies are very
small which fulfill our expectations, especially since meshes employed in Chimera method are
less distorted, possibly creating less approximation errors.

Table 5: Average resulting pressure force over t? ∈ [40; 52.5] for the first study cases (χ = 1).

Ncells
1

t2−t1

∫ t2
t1

F(t) dt (N) % difference with Single

Single Overlap

50 207328 210871 1.7 %
100 203606 206604 1.47 %
200 201774 202320 0.27 %
400 203000 202164 0.47 %

Secondly, we set Ncells = 100 on the substrate model and vary χ values of the overlapping
grid, χ = 1, 2, and 4, which corresponds to refine the patch with equivalent number of cells along
the cylinder perimeter, respectively Ncells = 100, 200, and 400. In other words, it corresponds
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(a) Ncells = {50, 100} (b) Ncells = {100, 200}

(c) Ncells = {200, 400}

Figure 16: Zoom in the interval dimensionless times t? ∈ [45 ; 52.5] of the pressure drag force history for several number
of grid cells (Ncells), obtained on both the single-grid configuration, and the ovelapping grids with however similar grid
spacings (χ = 1).

to a patch refinement over a constant grid spacing substrate. In figure 17, we plot histories of
the drag force on the cylinder obtained on several refined overlapping grids compared with the
equivalent fine single mesh (EFSM) with the same number of cells along the cylinder perimeter.
Refining the patch does not introduce local perturbation but instead increases the accuracy of the
resulting force as the regularity of the mesh is better ensured than in a single case for the same
Ncells (see Fig. 13).

To better examine predicted converged values of the drag force, we plot a zoom in of histories
in between t? ∈ [45 ; 52.5] obtained with both the overlapping grids with cell several ratios and
the equivalent fine single mesh (Fig. 18). Similar results as with the Chimera case with χ = 1 are
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Figure 17: Resulting pressure force over time for the second study cases (Ncells = 100).

(a) χ = {1, 2} (b) χ = {2, 4}

Figure 18: Resulting pressure force over time for the second study cases (χ = 1) zoomed in the time interval [45 ; 52.5].

obtained that compare very well with the equivalent fine single grid cases. In fact, as reported
in table 6, comparable discrepancies with respect to the equivalent single grid computations are
recorded by the refined Chimera case (χ , 1) compared to the results obtained with χ = 1.
Nevertheless, the force of the Chimera method allows to predict results with the similar accuracy
at however a much less computational cost since less grid points are necessary for the same
grid spacing. This is confirmed in table 6, where we report the ratios of the CPU times for the
equivalent fine single grid to the CPU time of the corresponding Chimera configuration when
χ varies. The ratios of the memory usage for the equivalent fine single grid to the memory
usage of the corresponding Chimera configuration when χ varies are also reported. When χ =

1, the ratio is less than 1 expressing that the Chimera method costs more than the single grid
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Table 6: Results obtained with the Chimera cases (Ncells = 100), compared with their equivalent fine single grid
computations.

χ
Chimera Ncells EFSM Error (%) CPU time CPU memory

Average F compared to EFSM ratio ratio

1 206604 100 1.47 % 0.97 0.97
2 202314 200 0.27 % 2.3 2.41
4 201966 400 0.5 % 3.5 3.8

computation because of a higher number of grid cells, interpolation and transfer of ghost cell
solutions. However, compared to single mesh computations with same grid resolutions, once we
increase χ, equivalent results are obtained at a much lower cost, mainly coming from the gain in
the number of grid points since the time step is equivalent because the grid spacing is the same.
Even though the present Chimera method is not intended to grid optimization, the method allows
significant gains in time and memory without impacting the resulting solution.

To have a better local insight in present results, we measure the detachment distance of the
bow shock wave in front of the cylinder. A sketch of the flow structure in front of the cylinder is
proposed in figure 19, where the detachment distance (δ) of the bow shock wave is defined. An
analytical measurement of the shock wave standoff distance has been proposed by Sinclair and
Cui [62], that provides with δ = 0.3649D at an infinite Mach number M∞ = 3.

Figure 19: Geometric illustration of the flow structure in front of the cylinder.

From our results, we measured the detachment distance along the horizontal axis of symmetry
(y = 0) as the first point encountered from infinity where the pressure rise exceeds 50 % of the
theoretical pressure jump across the shock wave. Detachment values (δ) recorded on Chimera
results are reported in Table 7. The left side of the table refers to overlapping grids with similar
cell ratio (χ = 1) while the right side relates on results obtained by increasing the cell ratio (χ)
with Ncells = 100 grid cells along the cylinder perimeter in the substrate model. Numerical
values of δ converge towards the analytical value [62] as grids are progressively refined with a
discrepancy close to 2 % of the analytical value obtained for the finest grid. Using O-grid is
certainly not the best mesh to accurately capture the bow shock wave that may explains why
relative errors don’t seem so small. A more suitable grid for the patch could probably have been
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Table 7: Detachment distance of the bow shock wave in front of the cylinder: overlapping grids with the proposed
Chimera cases. On the left side, number of cells are increased keeping the cell ratio (χ = 1) constant. On the right side,
cell ratio (χ) is varied with a prescribed number of cells in the substrate model (Ncells = 100).

Overlapping grids with χ = 1, and Ncells is varied:

Ncells δ/D relative error E (%) w.r.t. analytical value

50 0.433 18.66
100 0.428 17.29
200 0.398 9.07
400 0.372 1.95

Ncells = 100 in the substrate model and χ is varied:

χ δ/D relative error E (%) w.r.t. analytical value

1 0.428 17.29
2 0.395 8.25
4 0.372 1.95

used, but this is not the purpose of this work. What is important to underline is that, compared to
overlapping grids with equivalent cell ratio (χ = 1), same δ values have been recorded by using a
refined patch model keeping a rather coarse substrate grid at a much smaller computational cost
which is promising for target applications.

4.4. Interaction of a shock wave moving in Air with a Helium bubble,
In order to assess the Chimera method with two-phase flow interfaces, we have numerically

reproduced one of the emblematic experiments originally proposed by Haas and Sturtevant [63]
and more recently conducted by Layes et al. [64], where a shock wave moving at a Mach
number Ma = 1.22 in Air interacts with a cylindrical bubble initially filled of Helium. The
initial configuration is depicted in figure 20. The computational domain is defined as (x × y) ∈

Bubble (He)
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22
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Ly = 8.9 cm

Lx = 17 cm

D = 5 cm

Ncells

Figure 20: Shock wave / Bubble interaction: initial conditions taken from Layes et al. experiments [64] and computa-
tional domain.

[−44.5 × 10−3; 44.5 × 10−3] × [0; 170 × 10−3] m2. The initial center of the bubble, having an
initial diameter of D = 50 × 10−3 m, is located at xb = 52.5 × 10−3 m, and yb = 0 m. The shock
wave is initially positioned at xs = 10× 10−3 m and moves to the right towards the bubble with a
Mach number Ma = 1.22. Flow is then initialized by using the Rankine-Hugoniot relationships,
and the corresponding initial conditions [65] on density, streamwise velocity, pressure, and heat
capacity ratio are:

(ρ0, u0, p0, γ) =


(1.66 kg.m−3, 114 m.s−1, 159080 Pa, 1.4 ) for x > xs,

(1.2062 kg.m−3, 0, 101325 Pa, 1.4) in air, for x ≤ xs,

(0.2204 kg.m−3, 0, 101325 Pa, 1.6451) inside the He bubble.
(26)

Helium and air are both considered as perfect gases.
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Cartesian grids are employed in these simulations. The arrangements for the overlapping grids
is presented in figure 21. In the followings, meshes are dimensioned with the parameter Ncells
that is the number of grid points along the bubble diameter (D). The patch model is a 6 × 10−3

m side square grid, centered on the initial bubble location, and rotated at θ = 30◦ (w.r.t. the
horizontal axis) in order to stress the geometrical intersections of the Chimera exchange. Let us
note that the single grid configuration is equivalent to the substrate model used in the Chimera
case.

Figure 21: Bubble Shock test case numerical configuration.

Simulations are performed on both the single grid configuration and the overlapping grid case,
using a constant CFL number CFL = 0.4, over a dimensionless time of t?End = t u0/D = 1.54.
Three grids are considered: Ncells = 50, 100, and 200. When the shock wave interacts with the
bubble, the bubble is severely deformed and globally moves downstream as we can see in fig-
ure 22 where iso-countours of the Helium volume fraction are plotted at two dimensionless time
t? = 0.24, and 1.54 for the single grid configuration with Ncells = 200. As Helium is less dense
than the surrounding Air, the bubble acts as a divergent acoustic lens explaining deformations. In
fact, as the gradient of pressure induced by the shock wave is not always aligned with the gradient
of density imposed by the Air/Helium interface, vorticity is locally produced by baroclinic effect
explaining the deformation and the interface coiling. This present single mesh solution using the
finest grid (Ncells = 200) fits experimental results from [64]. This grid resolution allows the
capture of anti-symmetrical vortices as well as oscillations of the interface on the bubble front.
Although vortices are locally produced by baroclinic effect, perfectly anti-symmetrical vortices
are produced since the integral of vorticity must stay to zero as no vorticity is present at the initial
state. The present single grid simulation allows to account for this physical aspect.

Regarding the Chimera configuration, let us notice that the bubble is only prescribed inside
the patch grid and so, does not initially exist in the substrate model. As the patch grid is kept
fixed, the bubble moves away from the patch to the substrate during simulations, and at the final
time, the bubble is completely located on the right hand side of the substrate mesh and is no
longer inside the patch. This allows us to study the robustness of the present Chimera method
to deal with a moving two-component interface through the external patch boundary where the
local grid spacing abruptly changes. That way, a particular attention will be devoted to examine
the field of the Helium volume fraction over time.

In a first step we keep the ratio χ = 1 while grids in both the patch and the substrate models
are refined using the three resolutions previously considered Ncells = 50, 100, and 200. Iso-
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Figure 22: Iso-contours of the Helium volume fraction obtained with a single grid configuration with Ncells = 200 at
two different dimensionless times t? = 0.24, and 1.54.

contours of the Helium volume fraction are plotted, at a dimensionless time t? = 1.54, for both
the single grid configuration (Fig. 23), and the overlapping grids (Fig. 24) with χ = 1. Very good
agreement is achieved by the present Chimera method on overlapping grids with the same cell
ratio (χ = 1), compared to the single grid configuration. The Chimera exchange does not alter
the shape of the bubble nor induces sensible perturbations but provides a better description of the
bubble curvature due to a more fitted grid. On the finest grid, it is noted that the small symmetry
alteration from the Chimera method comes from the symmetry breaking position of the patch.
This means that with the coarser grids (Ncells = 50 and 100), the Chimera impact is minimal
and on the finest grid (Ncells = 200), the more adapted grid helps capturing the bubble front but
the asymetrical patch grid slighlty breaks the symmetry. We can conclude that the impact of the
Chimera exchange on the two-phase interface can help improving the solution with a better fitted
grid when χ = 1, fulfilling our requirements.

(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 23: Helium volume fraction field obtained in the single mesh case at t? = 1.54, for a number of cells along the
bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).
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(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 24: Helium volume fraction field obtained with the present Chimera method with overlapping grids with the
same cell ratio (χ = 1) at t? = 1.54, for a number of cells along the bubble diameter of Ncells = 50 (on the left), 100 (in
the middle), and 200 (on the right).

Secondly, we keep the number of grid cells (along the bubble diameter) Ncells = 50 constant
in the substrate model and increase the ratio χ = 1, 2, 4, and 8, which respectively correspond to
an equivalent mesh refinement of Ncells = 50, 100, 200, and 400 in the patch model. We plot
results in figure 25 obtained by using these refinements in the patch, at a dimensionless time
t? = 1.54 after the bubble has crossed the external patch boundary and is fully embedded in
the substrate. By using cell ratio greater than 1, we can see that the solution has been improved
compared to the single grid solution with the same resolution as the one used in the substrate
(Ncells = 50). However, although the higher the cell ratio (χ) the better the quality of the final
solution, the quality of the solution is mainly impacted by the resolution used in the substrate,
and it is obviously hard to recover the quality obtained with the equivalent grid refinement. What
it is important to note is that the use of high cell ratios does not introduce numerical artifact
but on the contrary improves the quality thanks to the increased grid resolution in the patch.
Unlike what Pärt-Enander and Sjögreen [56] observed, we show that refining a patch model in a
overlapping grid strategy improves the quality of the solution without any discernable numerical
damage on the solution.

4.5. Double Mach Reflection problem

The last problem concerns the emblematic test case of the Double Mach Reflection (DMR)
originally proposed by Woodward and Colella [66] as a benchmark for assessing Euler codes.
The problem consists in a front shock wave that hits a 30 degree inclined ramp. Going up the
ramp, a self similar structure with two triple points develops. A sketch of the flow structure is
displayed in figure 26. More detailed explanations of the flow structure can be found in [66, 67].
It is a difficult test case, involving both strong shocks and multiple stems. This case is thus rele-
vant to assess the present Chimera method to deal with complex transient flow structures where
multiple shock waves and their interactions creating slip lines occur over time (see Fig. 26). The
idea is here to check the ability of the present method to account for multiple discontinuities
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(a) Ncells = 50, χ = 1 (b) Ncells = 50, χ = 2 (c) Ncells = 50, χ = 4

(d) Ncells = 50, χ = 8

Figure 25: Iso-contours of the Helium volume fraction obtained with the present Chimera approach, at a dimensionless
time t? = 1.54, by using several cell ratios (χ = 1, 2, 4, 8).

and their interactions to pass through the external patch boundary where a drastic change of grid
spacings can occur.

The numerical configuration of the single mesh case is shown in figure 27a, where the 30◦

ramp starts at xi = 1/6 m with an overall computational domain length Lx = 4 m, and height
Ly = 1 m. The number of cells in the single mesh configuration is parametrized by Ncells which
is the number of cells in the height of the domain. Let us say that the single grid case uses
4Ncells × Ncells grid points in the (x × y) directions. The shock wave is initially located at
xs = 1/10 m. Initial conditions are defined with a driven shock wave moving at a high mach
number MS = 10 in Air (γ = 1.4) initially at rest. Thanks to the Rankine-Hugoniot relationships,
initial conditions on primitive variables are:(ρ, u, v, p)0 = (1.4 kg.m−3, 0, 0, 1 Pa),

(ρ, u, v, p)1 = (8 kg.m−3, 8.25 m.s−1, 0, 116.5 Pa).
(27)
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Figure 26: Sketch of the self-similar structure of the Double Mach Reflexion (DMR) problem

As we know in such configuration, the driven shock wave (i, in figure 26) reflects on the wall
of the ramp leading to a diffracted bow shock wave (m’) that stays ahead of the ramp. This
interaction also creates several Mach stems (m, m’). with reflected shock waves (r, r’), triple
points (T, T’) and subsequent slip lines (s, s’). Issued from the contact discontinuity flow (s), a
jet forms along the wall, which is also very difficult to properly predict.
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Figure 27: Computational domains and initial conditions: configurations of the single mesh case (a), and the Chimera
case (b) displayed with a cell ratio χ = 4.

Regarding the Chimera configuration as shown in the figure 27b, the substrate is a standard
Cartesian H-grid (Lx = 4 m long and Ly = 3 m high) configured with the parameter Ncells in
order to respect the same grid resolution as the single mesh case. Let us notice that the substrate
comprises Ncells grid points over 1 meter. The patch uses the same geometry as the one of the
single grid configuration, that is however positioned so that the bottom surface coincides with
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that of the substrate. The patch model can be refined using the χ parameter measuring the cell
ratio between grid spacings from the substrate and the patch models. As we can see in figure 27b,
the driven shock wave is initially located ahead of the patch grid, unlike the original test case of
[66]. The dimension of the patch is then chosen so as to allow multiple strong shock waves and
the related triple points and slip lines to pass through the external boundary of the patch to study
the robustness of the present Chimera method when grid spacings abruptly change. Therefore,
the patch extends from x = 0.12 m to the end of the substrate, and is 1/4 m high. This grid
configuration has been chosen in order to assess the impact of the proposed Chimera method on
flow structures generated inside the patch that cross the overlapping grid interface. The single
mesh configuration has then been adapted to be as close as possible to the Chimera configuration.

Simulations are performed on the overlapping grid configuration as well as the single mesh
case to allow validation. The CFL number is constant and equal to CFL = 0.4.

At first, we keep the cell ratio between the patch and the substrate at χ = 1 and use Ncells =

160 grid points over 1 meter. Results obtained at an equivalent dimensionless time t? = t S/Lx =

0.2 + t?0 (where S is the speed of the driven shock wave and t?0 is the theoretical dimensionless
time needed for the shock to go from xs = 0.1 m to x = 1/6 m) are plotted in figure 28 where
the Chimera case (black iso-contour lines) is compared to the single grid configuration (red iso-
contour lines). The patch boundary is materialized with the dashed white line.

Figure 28: Density contours obtained with the present Chimera approach (black iso-contour lines) compared to the
single mesh case (red iso-contour lines) at an equivalent dimensionless time t? = 0.2 + t?0 for Ncells = 160 and χ = 1.0.
30 density contours from ρ = 1.4 to 21.4. Dashed white line materializes the patch boundary.

Compared to the single grid configuration, a very good agreement is achieved by the present
Chimera method since Mach stems, reflected shock waves as well as slip lines are coincident.
The jet located at the end of the ramp is also similarly described with the Chimera method since
it is always located inside the patch. These results can also be compared to results from Stone
et al. [68] (Fig. 16) obtained using a second order accurate scheme in both time and space,
that can be taken as reference solutions. Concerning the Chimera case, few oscillations can
be observed in the substrate part that may result from solution transfers between overlapping
grids that might interfere with acoustic waves. Secondly, we check the influence of the cell ratio
parameter (χ). The number of grid cells in the substrate is kept constant and equal to Ncells = 80
cells over 1 meter. The cell ratio is varied using three values χ = 2, 4, and 8 which correspond
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to an equivalent single mesh resolution respectively using Ncells = 160, 320, and 640 grid
cells over 1 meter. Results on the density contours (black iso-contour lines) obtained with the
present Chimera method are presented in figure 29 for χ = 2, Fig. 30 for χ = 4, and Fig. 31
for χ = 8, and compared to their equivalent fine single grid solution (red iso-contour lines)
obtained with respectively Ncells = 160, 320 and 640. At moderate cell ratio value (χ = 2, 4),
the overall comparison is very good, although oscillations present inside the substrate are slightly
accentuated when the refinement increases but these oscillations do not seem to interfere with
what occurs in the patch. In contrast, flow patterns inside the patch are better predicted as the cell
ratio has been increased, mainly the jet that forms at the end of the ramps that has an equivalent
description to the equivalent fine single mesh solution. However, when increasing to much the
ratio to a high value χ = 8 (Fig. 31), the abrupt change in grid spacing at the external boundary
of the patch induces perturbations. As shear layers are likely to develop instabilities, oscillations
are mainly visible in the slip line that also alter the jet flow structure.

Figure 29: Density contours obtained with the present Chimera approach (black iso-contour lines) by using Ncells = 80
cells on the substrate and a cell ratio χ = 2 on the patch, compared to the single mesh case (red iso-contour lines) with
Ncells = 160 , at an equivalent dimensionless time t? = 0.2 + t?0 . 30 density contours from ρ = 1.4 to 21.4.

Figure 30: Density contours obtained with the present Chimera approach (black iso-contour lines) by using Ncells = 80
cells on the substrate and a cell ratio χ = 4 on the patch, compared to the single mesh case (red iso-contour lines) with
Ncells = 320 , at an equivalent dimensionless time t? = 0.2 + t?0 . 30 density contours from ρ = 1.4 to 21.4.
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Figure 31: Density contours obtained with the present Chimera approach (black iso-contour lines) by using Ncells = 80
cells on the substrate and a cell ratio χ = 8 on the patch, compared to the single mesh case (red iso-contour lines) with
Ncells = 640 , at an equivalent dimensionless time t? = 0.2 + t?0 . 30 density contours from ρ = 1.4 to 21.4.

We can conclude that the proposed Chimera method, with reasonable cell ratios, gives good
results by increasing the quality of the solution with however useful gains in the CPU time and
memory usage compared to a single grid computation. This is confirmed in table 8, where we
report the ratios with respect to single grid computations with the equivalent number of cells
(Ncells) of the CPU time as well as the memory usage. When χ = 1, the ratio is lower than 1
expressing that the Chimera method costs because of a higher number of grid cells, interpolation
and transfer of ghost cell solutions. However, compared to single mesh computations with same
grid resolutions, once we increase χ, equivalent results are obtained at a much lower cost, mainly
coming from the gain in the number of grid points since the time step is equivalent because the
grid spacing is the same. Again, even though the present Chimera method is not intended to grid
optimization, the method allows significant gains in time and memory without impacting the
resulting solution. Nevertheless, when strong waves pass through the patch/substrate interface
some numerical actifacts can be recorded when the value of the cell ratio (χ) is too high, at least
greater than 4 which imposes an abrupt grid spacing change.

Table 8: Results obtained with the Chimera cases (Ncells = 80), compared with their equivalent fine single grid compu-
tations.

χ Ncells EFSM CPU time CPU memory
ratio ratio

1 80 0.39 0.43
2 160 1.14 1.30
4 320 2.38 2.67
8 640 2.54 3.62
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5. Conclusion and open prospects

The present work provides with a numerical strategy which consists of superimposing a local
grid (named the patch) onto a global one (namely the substrate). The goal sought after was to
superimpose onto the global solution geometrical details accounted in a refined overlapping grid
to access to more sophisticated physical aspects, and increase the overall quality of the solution in
the region of overlap. We have built an approach based on the Chimera method that is compatible
with multi-component flows in order to be adapted to accidental situations involving explosive
configurations that can be influenced by geometrical details.

The proposed method relies on data transfers through 2nd-order interpolations using an in-
tegral piecewise linear approximation of the solution to update solution in ghost cells that are
defined in both the substrate and the patch in a layer edging the interface of the overlapping
region. As an explicit time integration is used, ghost cells allow the evaluation of numerical
fluxes at cell interfaces close to the overlapping region. To avoid spurious oscillations close to
discontinuities in solution reconstruction at cell interfaces as well as in interpolations, a modified
version of the finite volume K-Dubois limiter has been proposed to be adapted to the proposed
Chimera method since it prevents occurrence of local extrema when high cell size ratios are used
between the patch and the substrate. The proposed Chimera method have then been assessed by
using five well-known test cases; each test case is chosen to exhibit capabilities and limitations
of the method on specific aspects. We have demonstrated with a linear advection of a smooth
solution that the second order Chimera reconstruction does not alter the order of convergence of
the global solution. The use of high cell ratios on the patch can improve the quality of the global
solution although this improvement is however curtailed by the grid resolution used in the global
model. A coincident and converged stationary shock, showed that even though the method is not
conservative, its impact on conservativity is of an order of magnitude of 0.1% of the inital state
which is reasonable for industrial applications. The supersonic flow around a circular cylinder
has shown that the proposed Chimera method allows inclusion of a geometrical detail inside a
global calculation. The Chimera method favorably affects the final results compared to the single
mesh case, and equivalent results are obtained at a much lower computational cost when high
cell ratios in the patch are employed because of the gain realized on the number of grid points.
The third test case has demonstrated the ability of the proposed Chimera method to account for
multi-component flows where a shock wave interacts with a two-fluid interface. Unlike Pärt-
Enander and Sjögreen [56], we demonstrated that refining patch cells in an overlapping grid
strategy improves the quality of the solution without any discernable numerical damage on the
solution. Finally, the last test case, showed that the proposed Chimera method, with reasonable
cell ratios (χ ≤ 4), improves the quality of the solution compared to a single grid computation,
with useful gains in the CPU time and memory usage.

The validation of the method is made on reference two-dimensional cases but the grid inter-
sections are already 3D compatible for industrial applications. The validation of the method on
complex 3D cases is in the scope of a future work. In this paper, we only studied the ability
of the present Chimera method to deal with fast transient dynamics with wave propagations in
compressible flows as well as contact discontinuities usually present in multi-component flows.
However, interactions of moving strong discontinuities with flexible structures often occur in
accidental configurations involving explosions. Therefore, if one wants to include geometrical
details that could influence the Fluid-Structure Interaction (FSI), we must extent the Chimera
method to deal with moving deformable structures. In the next future, we will tackle this difficult
problem with a special attention devoted to situations where the deformable structure crosses the
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boundary of the overlapping grid. Our focus will be on an immersed boundary approach to easily
account for fluid structure coupling mainly following the recent work done in [69].

36



References

[1] J. Park, Y. Cho, S. Kim, J. Lee, Effects of leak rate on LOCA probability of pipes in nuclear power plants, 2014.
doi:10.1533/9780081002254.203.

[2] M. Joyce, Nuclear Safety and Regulation, 2018. doi:10.1016/b978-0-08-100962-8.00014-7.
[3] V. Faucher, P. Galon, A. Beccantini, F. Crouzet, F. Debaud, T. Gautier, Hybrid parallel strategy for the simulation

of fast transient accidental situations at reactor scale, Annals of Nuclear Energy (2014) to appear. URL: https:
//hal.archives-ouvertes.fr/hal-01101743. doi:10.1016/j.anucene.2014.07.049.

[4] M. J. Berger, P. Collela, Local adaptive mesh refinement, Journal of Computational Physics (1989) 64–84.
[5] H. Ben Dhia, Problemes mecaniques multi-echelles: La methode Arlequin, Comptes Rendus de l’Academie

de Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie 326 (1998) 899–904. doi:10.1016/
S1251-8069(99)80046-5.
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Georg-Augus-Universitëxitedat Göttingen, 2011.

[33] T. Aoyama, C. Yang, S. Saito, Numerical analysis of active flap for noise reduction using moving overlapped grid
method, Journal of the American Helicopter Society 52 (2007) 189–200. doi:doi:10.4050/JAHS.52.189.

[34] C. Benoit, G. Jeanfaivre, Three-dimensional inviscid isolated rotor calculations using chimera and automatic
cartesian partitioning methods, Journal of the American Helicopter Society 48 (2003) 128–138. doi:10.4050/
JAHS.48.128.

[35] G. Houzeaux, R. Codina, A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier-
Stokes equations, Computer Methods in Applied Mechanics and Engineering 192 (2003) 3343–3377. doi:10.
1016/S0045-7825(03)00276-7.

[36] G. Houzeaux, B. Eguzkitza, R. Aubry, H. Owen, M. Vázquez, A Chimera method for the incompressible Navier-
Stokes equations, International Journal for Numerical Methods in Fluids 75 (2014) 155–183. doi:10.1002/fld.
3886.

[37] K. H. Kao, M. S. Liou, C. Y. Chow, Grid adaptation using chimera composite overlapping meshes., AIAA journal
32 (1994) 942–949.

[38] K. H. Kao, M. S. Liou, Advance in overset grid schemes: From Chimera to DRAGON grids., AIAA journal 33
(1995) 1809–1815.
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[54] D. Drikakis, J. Majewski, J. Rokicki, J. Óltak, Investigation of blending-function-based overlapping-grid technique
for compressible flows, Computer Methods in Applied Mechanics and Engineering 190 (2001) 5173–5195. doi:10.
1016/S0045-7825(00)00373-X.

[55] H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method,
Pearson Education Limited, 2007. URL: https://books.google.fr/books?id=RvBZ-UMpGzIC.
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