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ABSTRACT

Frailty in older individuals has been a hot research topic in the past two decades. This syndrome of
physiological decline is characterized by damage to physical function. In the literature, walking speed
and gait variability have been discussed and identified as major indicators of frailty. Short walking
tests under supervised conditions are frequently considered when assessing the frailty status, where
the subject is instructed to walk a certain distance, and the speed and temporospatial features are
compared to thresholds. In this paper, we propose a more generalized and fully automated approach
using wearable sensors, by suggesting a set of parameters extracted from acceleration signals. The
interconnections between these variables, which are related to the gait quality and the frailty trajectory
of the subject, are investigated. This study was done on older adults of diverse profiles, in free-living
conditions during their daily routine, without any predefined protocol.

©

1. Introduction

The frailty syndrome manifests as disastrous declines in
health and physical function, and increases the vulnerability of
the person. It is known for its high prevalence in older adults
and its complicated symptoms [6]. Accordingly, it constitutes
an emerging public health priority, while the highest healthcare
costs in industrialized countries are due to medical consump-
tion by frail seniors [8].

Frailty has been a trending research topic in the past two
decades [9, 25, 7]. Fig. 1 illustrates the model of this sick-
ness and its different stages. The elderly person goes through
four levels: (a) Robust (full performance), (b) Pre-frail (clini-
cally silent), (c) Frail (progressive clinical worsening), and (d)
Disabled (lack of autonomy and serious consequences). Two
curves are plotted as a function of age, namely (i) normal aging
and (ii) accelerated aging. The curve representing rapid weak-
ening in the second process is framed in black (dash-dotted box)
in the same figure. During this period called the “Frailty time-
window”, which varies between older adults, a transition from
robustness to frailty, and then to disability, occurs.
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Fig. 1: The frailty model is divided into different stages. The dash-dotted box
represents the frailty time-window, i.e. the period between good performance
and disability, which is subject-dependent.

Fried et al. proposed a phenotype [9], which is defined by the
presence of three of the following criteria: unintentional weight
loss, exhaustion, low physical activity, slow walking speed, and
weakness. Among these features, gait speed, which is the ra-
tio of distance walked to time taken, is declared as one of the
most relevant indicators. This variable is not only a predic-
tor of health-related well-being outcomes, but also one of the
strongest predictors of incident disability [23]. Middleton et
al. described walking speed as a robust measure for physical
function monitoring, and provided several recommendations on
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procedures to evaluate this variable, like optimal distance, ex-
perimental protocol, and so on [16]. Furthermore, Castell et
al. showed that a gait speed with a value exceeding 0.9 m/s ex-
cludes the presence of frailty, and with a value below 0.8 m/s,
doubles its probability [5].

Now, walking is a complex activity of daily living (ADL)
and cannot only be restricted to gait velocity. Other parame-
ters may vary during the transition towards frailty. It is worth
mentioning that gait recognition and analysis have been tackled
in the literature [13, 30]. Several gait parameters were also in-
spected in the context of frailty assessment. For instance, Kres-
sig et al. proposed a set of temporal and spatial features, includ-
ing cadence, stride length and stance, to better understand the
effect of frailty on movements [14]. Moreover, gait variabil-
ity was targeted and associated with frailty in elderly people
[17]. Additional variables like displacement and smoothness of
the center of pressure trace were inspected [11]. Even though
these features are informative, we still do not know much about
the relationship between gait parameters and categorical frailty
classes [27]. Further analysis is needed to define the correla-
tion between a set of gait variables and frailty. Furthermore,
there is lack of studies that consider walking indicators, ex-
cluding speed, to develop a reliable frailty classifier [22]. To
our knowledge, fully automated systems, which identify walk-
ing periods and compute features from acquired signals under
unsupervised conditions to predict the frailty status and to bet-
ter target preventive interventions, have received little attention
in the literature. Moreover, gait analysis has not been imple-
mented in routine assessments of frailty status in older adults
[27]. Consequently, for a better frailty analysis, we propose a
machine learning system that depends on acquired acceleration
data from wearable devices, which are widely-used for activity
and health monitoring [10]. This system can operate in free-
living conditions, by wearing a single accelerometer placed on
the trunk of the human body during daily routine. Gait pe-
riods could be identified in real-time using a human activity
recognition approach, like the multinomial decomposition al-
gorithm (MDA) [2]. Afterwards, an ensemble of time-domain
and frequency-domain features, is extracted from raw data rep-
resenting the gait of the wearer of the device to assess gait qual-
ity and track the frailty conditions.

This paper is organized as follows. The next section briefly
introduces the gait analysis framework in elderly people, and
justifies the choice of the proposed method. Section III is de-
voted to data collection, as well as material and methods. Sec-
tion IV illustrates and discusses the experimental results before
concluding the paper in section V.

2. Gait Analysis Framework

We shall now explore the different axes of human gait in
older adults. The stance phase starts from the moment the
foot touches the ground to the moment the same foot leaves it.
This phase constitutes around 60% of the gait cycle. The swing
phase starts when the foot leaves the ground and ends when it
touches the floor again, constituting the remaining 40% of the
cycle. Both phases lead to the stride time (gait cycle). Double

support is the period in the gait cycle when both feet are in con-
tact with the floor. It occurs twice in the cycle and it changes
with speed. A detailed illustration can be found in [28]. In
the literature, these features were considered to evaluate frailty
conditions [14, 3]. Moreover, gait variability, characterized by
parameters such as stride time, stride length and step width vari-
ability, was associated with frailty in older adults [17]. The
degree of variability might be more closely linked to fall risk
than average gait speed and stride time [18, 12]. Gait mats with
force plates and computerized walkways are used to measure
the aforementioned features. Subjects complete several trials
under supervised conditions, while walking at a self-selected
usual pace (and/or fast pace) toward a visual target placed at
the end of the walkway. Reflective markers and wireless sen-
sors can be placed on the heel and the lower limb segments
for example. Besides, some devices like McRoberts’ MoveTest
are developed for unobtrusive assessment of physical perfor-
mance under supervised conditions [15]. When worn on the
lower back, it enables elderly subjects to perform short physi-
cal performance tests such as Timed Up & Go (TUG) Test, with
a pre-defined protocol to facilitate execution. The device then
provides qualitative evaluation.

It can be seen that the aforementioned approaches are hardly
applicable during daily routine in free-living conditions. Us-
ing the corresponding equipment is not a practical solution for
community-dwelling seniors on a regular basis, and the autho-
rized team conducting the analysis may not always be available
to ensure the efficient execution of the trials. Spatial features,
such as step width and stride length to name a few, might not
be estimated accurately using a single accelerometer. Addition-
ally, computing gait variability under unsupervised conditions
might lead to erroneous results. The subject has to complete a
set of instructions with a pre-defined pace in order to obtain a
clear gait pattern resulting in an efficient gait variability calcula-
tion. This is not the case when he is walking on his own in real-
world situations. Besides, it is worth mentioning that the use of
stance, swing, and stride in the same set of features is somewhat
redundant and may not add knowledge to the classifier, since
they are correlated to each other in some way (stride is the sum
of the stance and swing phases). Further analysis is needed
to define a processing unit which is able to automatically de-
tect the transition between frailty classes under unsupervised
conditions using a set of descriptive and heterogeneous gait in-
dicators, without being limited to the statistical significance of
the aforementioned parameters. Consequently, we propose a
fully-automated acceleration-based approach which computes
an ensemble of features to assess the frailty level.

3. Materials and Methods

3.1. Population and Data Characteristics

To conduct the study, two datasets from two projects were
merged to constitute one final dataset called GAnFA (which
stands for Gait Analysis for Frailty Assessment).
The first dataset is called ActFreeLi (Activities in Free Living
conditions). It consists of acceleration data that were collected
by our research team, using a wearable device developed by
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Fig. 2: (a) Acceleration magnitude as a function of time representing the gait of each category (steps in red circles) and (b) the corresponding autocorrelation of
each time series as a function of the lag (in number of data-points).

the company RF-Track, based in Cesson-Sévigné, France. This
device consists of a 3D accelerometer, namely LIS3DH, with
a sampling frequency Fs equal to 50 Hz. Two positions were
considered: waist-worn and necklace. Community-dwelling el-
derly over 80 years old were involved in this study. The use of
acceleration signals belonging to these people was approved by
the Ouest VI Institutional Review Board of Morvan University
Hospital of Brest, France. Older adults residing in long-term
care facilities were also recruited. Here, data collection was ap-
proved by the Ethics Committee of the University Hospital of
Rennes, France. All participants gave their informed consent.
The second dataset is the publicly available WWBS Metrics
[21] from the FrailSafe project. Older adults of diverse profiles
wore a sensorized smart vest during their daily routine, which
was equipped with a 3D accelerometer configured at Fs = 25
Hz.

Next, gait periods were cut using 6-second windows. This
length (6 s) is appropriate for this task, since the proposed sys-
tem operates automatically in unsupervised conditions. While
shorter windows may discount some descriptive parts of the gait
cycles, larger windows may contain some movements of a dif-
ferent activity, especially when the target is the analysis of the
senior’s gait in his daily routine. Finally, we down-sampled the
ActFreeLi data by a factor of 2 (50 Hz→ 25 Hz) and we com-
bined them with the FrailSafe data to constitute GAnFA.

Acceleration data constituting GAnFA are time series of
N = 150 samples each (6 s × 25 Hz), representing 6 seconds
of walking. These time series were distributed over 50 subjects
whose age ranges from 70 to 92 years. Among these subjects,
16 were identified as being robust, 18 were diagnosed as pre-
frail, and the remaining 16 as frail. The frailty status was indi-

cated using the five criteria of frailty phenotype.

3.2. Gait Parameters
We propose the use of six handcrafted features characteriz-

ing the gait of elderly people with regards to frailty status. In
other words, the evolution of these parameters, which are de-
tailed in this section, has to be correlated with frailty trajectory.
Two components are considered in this analysis, namely the
vertical component aX(t) and the acceleration magnitude ||a(t)||
computed as follows:

||a(t)|| =
√

a2
X(t) + a2

Y (t) + a2
Z(t) (1)

Fig. 2.a illustrates three time series, namely the acceleration
magnitude, each one associated to a subject belonging to one of
the three populations: (i) Robust, (ii) Pre-frail, and (iii) Frail.
The orange part is the same acceleration signal after truncating
the 25% lowest and highest data-points. Fig. 2.b illustrates the
autocorrelation of each time series as a function of time-lag
expressed in number of data-points (acceleration points).

Feature F1: The range of orange signals decreases when
the subject becomes frail, showing a decrease in movements
intensity while walking. F1 is the 25% trimmed range of
the acceleration magnitude. It is the range of the signal after
excluding the highest and lowest k values, with k = N

2 × 25
100 ,

N being the number of samples in the 6-second window as
mentioned previously. Suppose that ||â(t)|| is the truncated
acceleration magnitude (orange signal in Fig. 2.a), hence:

F1 = max(||â(t)||) − min(||â(t)||) (2)
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The use of trimmed estimators helps eliminate the influence of
outliers. The accelerometer might induce some noise (due to
mechanical or other reasons), which results in high peaks in
the signals. This phenomenon may lead to erroneous results
and justifies the use of truncated signals when calculating the
range. Fig. 3 illustrates the violin plots corresponding to this
feature. The median of the first class (Robust) is the highest,
and decreases when the subject becomes pre-frail then frail.

Feature F2: The cadence or steps rate over a fixed window
length L (6 s in our case) constitutes the second feature F2.
Seeing that the accelerometer works on the principle of a mass
on a spring, the spring is compressed or stretched when a step
is taken. This produces a force corresponding to the accelera-
tion (Newton’s second law), which reaches a peak during this
phase. Hence, the number D of peaks in acceleration signals
corresponds to the number of steps performed by the subject.
Therefore:

F2 =
D
L

(3)

Note that several techniques have been developed in the litera-
ture to detect peaks in a signal, like in [20, 1].
The values of both features (F1 and F2) are mentioned in Fig.
2.a for each of the illustrated acceleration signals. They de-
crease with the deterioration of the physical function. It is
worth mentioning that the cadence of very fit/healthy elderly
and “transitioning to frailty” older adults were reported as 1.86
±0.14 and 1.76 ±0.21 steps/s respectively in the literature, when
calculated under supervised conditions using markers and walk-
ways [14, 29]. Interestingly, the proposed feature F2 shows
that this variable is around 1.67 ±0.18 steps/s for robust people,
1.33 ±0.23 steps/s for pre-frail elderly, and 1 ±0.43 for frail
older adults, when calculated over 6 seconds using a single ac-
celerometer in free-living conditions.
Feature F3: since walking is a cyclic activity, the periodicity of
the signal should be taken into consideration. Here, to identify
the presence of cycles in the signal, the goal is the observation
of similarity between ||a(t)|| and its delayed version ||a(t − τ)||
where τ is a time lag. Consequently, the autocorrelation which
can be calculated as a function of τ, is denoted by A(τ) and is

 

Fig. 3: The violin plot of feature F1.

computed following three steps [4]:



FR( f ) = F {||̃a(t)||}
M( f ) = ||FR( f )||2
F′R(τ) = F −1{M( f )}
A(τ) = Re{F′R(τ)}

where ||̃a(t)|| denotes the demeaned acceleration magnitude, F
is the fast Fourier transform, F −1 its inverse, and Re{X} the real
part of X.
A(τ) is then normalized, by dividing its components by A(0) (its
maximum value). It is clear from Fig. 2.b that A(τ) (τ = 1, ...,T ,
with T = 20) is regular for the robust (healthy) subject. How-
ever, the sinusoidal shape vanishes while heading towards the
frail status, since the periodicity disappears in the acceleration
signals, meaning that the gait loses its fluidity. The information
carried by A(τ) is encoded in a third feature F3, by calculating
the distribution entropy of this autocorrelation signal. The en-
tropy quantifies the unpredictability or the randomness of A(τ),
which is partitioned into 10 equal intervals of size W. If the
number of points in the ith interval is equal to ti:

F3 = log(W) −
10∑

i=1

ti
T

log(
ti
T

) (4)

Feature F4: the dynamism of the elderly while walking might
be an important indicator of frailty. To this end, we could mon-
itor the sudden jumps in ||a|| during gait periods, which reflect,
in some way, the variability of the time series. The goal behind
this fourth feature is to count the number S of times where the
absolute value of the difference between two consecutive accel-
eration samples exceeds a predefined threshold found by trial
and error (in our case equal to 0.075 g). The total count is then
divided by the total number of samples N to constitute F4:

F4 =
S
N

(5)

Features F5 & F6: here, the vertical component aX(t) is con-
cerned. A fitted AutoRegressive model (AR) to the time series
could be relevant in gait analysis to detect physical weaken-
ing. This model predicts the future behavior based on the past.
The time series aX(t) (representing the vertical component) is
explained linearly by its past values aX(t − i), a bias b, and a
stochastic term εt [19]:

aX(t) = b +

p∑

i=1

φiaX(t − i) + εt (6)

p is the order of the model and φi are its parameters. Note that
φi is the ith element of φ. Eight AR models are estimated [26],
from order 1 to order M (p = 1, ...,M, with M equal to 8 in
our case). Afterwards, two criteria are applied to choose the
optimal order p, namely Akaike information criterion (AIC) or
Bayesian information criterion (BIC). The smallest value for
this order is selected. For example, when an AR model of order
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Table 1: The resultant p-values of (i) Wilcoxon Rank Sum Test for each pair of populations and (ii) Kruskal-Wallis H Test, and the feature ranking of ReliefF with
k = 5 nearest neighbors.

Wilcoxon Rank Sum Test Features Kruskal-Wallis H Test ReliefF Ranking
Robust vs Pre-frail Robust vs Frail Pre-frail vs Frail

< 0.001 < 0.001 < 0.001 F1 < 0.001 2
> 0.05 < 0.01 < 0.001 F2 < 0.001 4
< 0.001 < 0.001 < 0.001 F3 < 0.001 5
< 0.001 < 0.001 < 0.001 F4 < 0.001 3
< 0.001 < 0.001 < 0.001 F5 < 0.001 1
< 0.01 < 0.001 > 0.05 F6 < 0.001 6

p = 3 is fitted, φ4,...,M are set to 0. Then, two features are calcu-
lated to encode the set of AR model parameters. Feature F5 is
the standard deviation σφ of vector φ:

F5 =

√√
1
p

p∑

i=1

(φi − µφ)2 (7)

where µφ is the mean value of φ.
Feature F6 is the kurtosis Kφ of vector φ, indicating whether
the distribution of the AR model parameters is tight (smaller
AR order) or flattened (higher AR order):

F6 =

1
M
∑M

i=1(φi − µφ)4

[ 1
M
∑M

i=1(φi − µφ)2]2
(8)

Expressly, it identifies whether the tails of this distribution carry
some extreme values or not.
The combination of cadence (feature F2) with the remaining
five novel features characterizes the gait of older adults and will
be used to predict their frailty status.

4. Experimental Results

4.1. Performance Evaluation

In this section, the discrimination power of the proposed fea-
tures is examined. The aforementioned six features were first
extracted from the 6-second acceleration windows of GAnFA.
We started by the individual performance of each feature. The
non-parametric statistical hypothesis test, namely Wilcoxon
Rank Sum Test, was first applied to assess the statistical sig-
nificance. Hence, for each feature, this test was applied follow-
ing three pairs (X, Y), namely (Robust, Pre-frail), (Pre-frail,
Frail), and (Robust, Frail). Additionally, the Kruskal-Wallis H
Test, which is similar to the aforementioned test but can ac-
commodate more than two groups, was also applied. The im-
portance rank of features was evaluated using ReliefF algorithm
with k = 5 nearest neighbors [24]. Table 1 illustrates the cor-
responding results. The cadence (F2) is unable to differentiate
between the robust and pre-frail populations. Meanwhile, the
pre-frail and frail subjects do not differ significantly following
feature F6 (the kurtosis of AR model coefficients φi). Nonethe-
less, the Kruskal-Wallis test reveals the statistical significance
of all features when it comes to the tri-class classification, with
a p-value below 0.001. The ReliefF ranking shows that the top

three features are {F5, F1, F4}, i.e. the variability of φi, the
intensity of movements, and the dynamism.

Now, the goal is to see to what extent the combination of
those parameters is able to predict the frailty status of an el-
derly person. Therefore, feature vectors were scaled using the
sigmoidal transformation, affecting both the values and the dis-
tribution of these features in the space:

F̂ =
1

1 + exp(− F−µF
σF

)
(9)

where F̂ is the scaled feature vector, F is the original feature
vector, µF is the mean value of F, and σF is the standard devi-
ation (SD) of F.
We first applied the principal component analysis (PCA) tech-
nique for graphical representation purposes, by reducing the di-
mensionality while minimizing the information loss. Fig. 4 il-
lustrates the data distribution following the three principal com-
ponents. Three clusters can be observed: the first one (blue
points) with a (0.33; -0.03; 0.01) centroid represents the robust
population, the second one (yellow points) with a (-0.13; 0.36;
0) centroid represents the pre-frail population, and the third one
(orange points) with a (-0.47; -0.18; 0) centroid represents the
frail population. Although a certain intersection can be seen be-
tween each pair of clusters, the populations are quite separable.

 

Fig. 4: Data distribution of the three populations following three principal com-
ponents.
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Table 2: The configuration (chosen parameters) of each classifier

Classifier Configuration
NN 1 hidden layer, 15 neurons, logistic*

SVMR Radial basis function kernel
KNN 5 nearest neighbors (k = 5)
RF ntrees = 10, d = 10‡

GBM nestimators = 100, d = 5‡, l = 0.1†

* Activation function – ‡ Depth – † Learning rate

Next, to quantify the discrimination power of the proposed fea-
tures, several machine learning classifiers were considered and
were fed by the scaled feature vectors of length 6, namely (i)
a neural network (NN), (ii) Support Vector Machines (SVMR),
(iii) k-Nearest Neighbors (KNN), (iv) Random Forest (RF), and
(v) Gradient Boosting Machine (GBM). Table 2 shows the cor-
responding parameters for each classifier. Other less efficient
classifiers were also tested (Naive Bayes and Linear Discrimi-
nant Analysis to name a few), but are not mentioned in this pa-
per for readability purposes. Leave-Subject-Out (LSO) cross-
validation was applied to ensure a fair evaluation. Table 3 illus-
trates the different results in terms of accuracy. The accuracy of
the aforementioned classifiers ranges from 86.26% to 88.5%.
SVMR is the top performer, where on average, an accuracy of
88.5% was achieved per subject. The NN is a close competitor
with an accuracy of 88.18%. It is worth mentioning that the
number of trees ntrees of RF is relatively small, compared for
example to GBM which uses 100 estimators. Increasing ntrees
indefinitely might increase the accuracy of RF, but may also in-
duce overfitting which prevents the generalization of the model
(the ability of a trained model to classify unseen data). Explic-
itly, with more than 20 estimators, the accuracy of RF exceeds
88%, and it is somewhat saturated beyond 45 estimators. The
achieved accuracy in this case may not reveal the reliability of
the system in real world situations.

Fig. 5 illustrates the confusion matrix, based on the output
of SVMR (the best classifier). The columns represent the target
class or the ground truth, while the rows represent the predicted
class or the output of the classifier. The diagonal elements con-
stitute the correct decisions. For instance, 92.3% of gait sig-
nals belonging to the robust elderly subjects are well classified.
However, 5% of those signals are misclassified as pre-frail and
the remaining 2.7% as frail. The highest confusion occurs with
the pre-frail class for which 11.3% of signals linked to this pop-
ulation are classified as robust, and 2.1% of those signals are
categorized as frail. Furthermore, 8.4% of signals labeled as
frail were classified as pre-frail by SVMR.

4.2. Discussion

This work analyzes the relationship between heterogeneous
gait parameters and the frailty status of elderly people in free-

Table 3: Results of different machine learning classifiers

Classifier NN SVMR KNN RF GBM
Accuracy (%) 88.18 88.5 86.26 87.26 87.51

Robust 92.3% 11.3% 8.7%

Pre-frail 5% 86.6% 8.4%

Frail 2.7% 2.1% 82.9%

Robust Pre-frail Frail

Actual class

O
u

tp
u

t 
cl

as
s

Fig. 5: Confusion Matrix resulting from SVM with a RBF kernel (SVMR).

living conditions during daily routine, unlike the aforemen-
tioned literature studies which focused on temporospatial fea-
tures under supervised conditions. The previous sub-section re-
vealed the efficiency of the proposed parameters, with an accu-
racy of 88.5%. This means that based solely on the proposed six
gait variables, one can predict the frailty status with an accuracy
of nearly 90%. This result is satisfying since frailty is much
more than the gait analysis, and the ground truth is based on 5
different indicators. Besides, it is worth noting that the proposal
of fully automated systems, which classify elderly into three
frailty levels based on their gait, has received little attention
in the literature [27]. ANOVA analyses and statistical signifi-
cance are usually deployed for performance evaluation [17, 3].
Moreover, some studies were limited to a quantitative report of
features for each population [14, 29]. In this paper, predictive
models were considered and the discrimination power of fea-
tures was quantified.

Now, the classification is a “frozen” process in this context,
i.e. the prediction is done at a particular time (a specific day).
However, the evolution of those parameters with respect to the
frailty curve and the long-term surveillance are what matter the
most. Therefore, the confusion matrix should be carefully in-
terpreted. The elements outside of the diagonal are the rate of
misclassified signals. A part of this confusion is informative
and valuable for the analysis of the syndrome, and is not neces-
sarily linked to the system deficiency. In fact, the Robust/Pre-
frail and Pre-frail/Frail misclassification rates define the curve
of the frailty trajectory. The 5% of robust older adults, who
are classified as pre-frail by our model, but are robust accord-
ing to the frailty phenotype, might very well be showing signs
of physical weakening, and are likely to be considered as such
by the aforementioned phenotype in the next few weeks. This
finding is important for prevention and could help the practi-
tioner by proposing an intervention in order to avoid serious
consequences. The same remark holds for the 2.1% confusion
between Frail and Pre-frail classes. As for the 8.4% misclassifi-
cation rate, the gait of those seniors, who are frail according to
Fried’s criteria, is still not completely damaged. These subjects
present progressive worsening, and are on the verge of getting
frail (see framed zone in Fig. 1). A rapid intervention is then
needed to help the elderly in retrieving their physical condition
and avoid any sudden turn towards disability.

In summary, this paper assessed the discrimination power of
a novel set of gait parameters and its ability to (i) predict the
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frailty status automatically and (ii) assess and detect the tran-
sition towards frailty. Our results are twofold: (i) the resultant
confusion matrix is well correlated with frailty phenotype, (ii)
the deviations from the target classes should be seen as impor-
tant and useful clues in the frailty trajectory.

5. Conclusion

In this paper, we outlined the importance of gait analysis in
frailty assessment using wearable sensors. Five different gait
characteristics were discussed, namely (a) the intensity of the
movements, (b) the steps rate, (c) the periodicity of the move-
ments, (d) the gait dynamism, and (e) the representation of the
gait as a time-varying process by fitting an AR model (repre-
sented by two features). Unlike previous studies which focused
on temporospatial features calculated under supervised condi-
tions, our method gives new dimensions to the gait analyses
by calculating the set heterogeneous parameters during daily
routine under unsupervised conditions. The SVMR, fed exclu-
sively by six features, is able to predict the frailty status with
an average accuracy of 88.5%. The results from 50 older sub-
jects in real world conditions showed a correlation between the
proposed gait parameters and frailty phenotype. The proposed
model might also track the transition between frailty levels, and
thus assist the clinician for a better assessment.

In a future work, angular velocity acquired from gyroscope
could be studied, to see if it provides some added value to the
proposed model. The analysis of postural transitions like sitting
down and standing up is going to be a research topic.
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 A fully automated system for gait analysis in the context of frailty 

 Extraction of original features describing the older adults’ gait in regards to frailty status 

 Assessment of frailty trajectory in elderly under unsupervised conditions during daily routine 

 An added value in comparison with the standard frailty phenotype 
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