
HAL Id: hal-03779116
https://hal.science/hal-03779116v1

Submitted on 16 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of nonlinear, nonstationary systems in
operational modal analysis using wavelet transform

Raphaël Carpine, Pierre Argoul, Claude Rospars

To cite this version:
Raphaël Carpine, Pierre Argoul, Claude Rospars. Characterization of nonlinear, nonstationary sys-
tems in operational modal analysis using wavelet transform. ISMA-USD Noise and Vibration Engi-
neering Conference 2022, Sep 2022, Louvain, Belgium. �hal-03779116�

https://hal.science/hal-03779116v1
https://hal.archives-ouvertes.fr


Characterization of nonlinear, nonstationary systems in
operational modal analysis using wavelet transform

R. Carpine, P. Argoul, C. Rospars
Univ Gustave Eiffel, MAST-EMGCU,
F-77454 Marne-la-Vallée, France
e-mail: raphael.carpine@univ-eiffel.fr

Abstract
This study focuses on the characterization of nonstationary, weakly nonlinear, weakly damped mechanical
systems, subjected to an unknown ambient excitation modeled as white Gaussian noise. A theoretical anal-
ysis using a novel approach of a one degree of freedom system, whose dynamic response is investigated
in time domain as a Markov process, allows simple relations to be established on the expectation and stan-
dard deviation of its amplitude and instantaneous frequency. This theoretical study of the system behavior
is coupled with the use of the Continuous Wavelet Transform (CWT) ridge, which gives the amplitude and
instantaneous frequency of its vibrations. A discussion on the tuning of the mother wavelet function for the
analysis of these signals is presented. A simple procedure based on the use of the CWT, characterizing the
system’s nonlinear, nonstationary behavior, is then proposed. Finally, numerical simulations are carried out,
and the proposed method is implemented. Results show good agreement with those of the theoretical study.

1 Introduction

Structural Health Monitoring (SHM) techniques capable of accurately monitoring the structural response to
load conditions in real time, detecting damage in the structure, and reporting the location and nature of that
damage are developing currently very rapidly in the world of civil engineering infrastructure. Detecting and
characterizing nonlinearities in the dynamical behavior of systems and structures has become an important
issue in the field of SHM, because it can be linked in some cases to damage [1, 2]. However, as SHM is
generally based on output-only signals where ambient excitation is uncontrolled and unknown, this detection
constitutes a challenge. In this paper, we propose a new method to characterize nonlinear, nonstationary
systems under unknown white Gaussian noise. It is based on the wavelet transform, because of its abilities
in time-frequency signal analysis and instantaneous frequency estimation.

Developed by French researchers in the early 1980s, the wavelet transform has since made significant
progress, especially in the fields of signal processing and image processing [3]. Its field of application
also extends to the treatment of vibratory responses of mechanical structures or engineering structures, in
particular through the use of the Continuous Wavelet Transform (CWT), of which the books [4, 5] present
an excellent overview. CWT is a time-frequency analysis tool, particularly adapted to signals resulting from
modal analysis. Indeed, its ability to separate the amplitudes Ak(t) and phases Φk(t) of the different compo-
nents Ak(t) cosΦk(t) of a signal allows, in the case of transient vibratory responses of mechanical systems,
to easily identify their modal parameters. We can for example mention the case of free responses of linear
systems, often analyzed from the ridges of their CWT, and of which one can find a presentation in [6], with a
discussion on the tuning of the time-frequency resolution of the wavelet transform using its quality factor, or
in [7], which deals with free responses of linear systems with non-proportional damping. For free responses
of nonlinear systems, the use of the Krylov-Bogoliubov method [8] is often coupled with that of wavelet
analysis for an estimation of modal and nonlinear parameters [9, 10]. Finally, in the case of linear systems
under ambient excitation, the use of CWT usually requires an additional filtering (or transformation) step.
This filtering can be done a posteriori, with for example the use of the singular value decomposition [11], or
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a priori, by transforming this ambient response into a free response, from the autocorrelation and crosscor-
relation of the signals [12, 13], or from the random decrement technique [14].

However, these filtering techniques are not suitable for nonlinear systems under ambient excitation, because
they are based on the use of the convolution product between the impulse response of the system and exci-
tation, which is relevant only in the linear case. This study therefore proposes a new technique, based on
the CWT, to characterize nonlinear, nonstationary systems under ambient excitation. We will limit ourselves
to mechanical systems with low nonlinear stiffness, low linear damping (classical assumption in structural
dynamics), and by simplification, with one degree of freedom. The ambient excitation will be modeled by a
white Gaussian noise.

The paper is divided into three parts. The first part is devoted to an analytical study of linear and nonlinear
systems under ambient excitation, allowing the characterization of their dynamic behavior from a time-
frequency point of view, suitable for the subsequent use of wavelet analysis. Then, the identification method
based on CWT is presented, with some preliminary reminders, and the wavelet parameters settings are de-
tailed. Finally, two simple case studies based on numerical simulations allow to test the implementation of
the proposed method, and to assess the accuracy of the theoretical results.

2 Theoretical analysis

2.1 Linear, stationary oscillator

We consider in all this study an oscillator with mass m, stiffness k and damping coefficient c, linear and
stationary at first, weakly damped and subjected to an excitation w. Its equation of motion is written in its
normalized form:

ẍ+ 2ζωnẋ+ ω2
nx =

w

m
, (1)

with x its displacement, ωn = (k/m)1/2 its natural angular frequency, ζ = c/2(km)1/2 its damping ratio,
ωd = ωn(1− ζ2)1/2 its damped angular frequency, µ = ζωn its damping constant and λ = iωd − µ its pole.
Its free response xfree, when w = 0, can be expressed as:

xfree(t) = A0e
−µt cos(ωdt+ φ0), (2)

where A0 and φ0 are constants that depend on the initial conditions.

2.1.1 Discretization of the input and response signals

For simplification purposes, continuous input w is replaced by a discrete form w̃, defined as:

w̃(t) =

+∞∑
n=−∞

wnδ(t− tn), (3)

where tn = n∆t, wn is defined as the integral of w from tn − ∆t/2 to tn + ∆t/2, and δ is the Dirac
function. Then, we assume that excitation is a white Gaussian noise, which implies that (wn) is a sequence
of independent and identically distributed random variables, following a normal distribution:

∀n, wn ∼ N (0, σ2). (4)

Next, displacement x is discretized as well. Using Eqs. (2) and (3), we get x(tn + τ) = An cos(ωdτ +
φn)e

−µτ for τ ∈ (0, ∆t), which leads us to introduce the complex, discrete position Xn = Ane
iφn . The

following recurrence relation is then derived from Eqs. (1) et (3):

Xn+1 = Xne
λ∆t − i

wn+1

mωd
. (5)



Next, introducing P = 2π/(ωd∆t) the number of time increment in a period of the damped system, and by
assuming that P ∈ N (∆t can be adjusted to that purpose), we get from Eq. (5) a new recurrence relation:

Xn+P = r0Xn −
i

mωd

P∑
j=1

wn+je
λ(P−j)∆t, (6)

with r0 = e−2πµ/ωd < 1. Because the system is assumed to be weakly damped, i.e. ζ ≪ 1, its pole λ can be
approximated by its imaginary part λ ≈ iωd, and we introduce a new random variable WP,n, defined as:

WP,n =
P∑
j=1

wn+je
iωd(P−j)∆t ≈

P∑
j=1

wn+je
λ(P−j)∆t. (7)

It can be shown from the definition of wk given in Eq. (4) that random variables Re{WP,n} and Im{WP,n}
are uncorrelated and both follow a centered normal distribution of variance πσ2/(ωd∆t).

We now focus on the system evolution on one period, from a known state, i.e. Xn+P |Xn. For that purpose,
we introduce the random variable Y P,n defined as:

Y P,n = r0Xn −
i

mωd
WP,n ≈ Xn+P , (8)

where the approximation is insured by Eq. (7). Random variables Re{Y P,n}|Xn and Im{Y P,n}|Xn follow
uncorrelated normal distributions, with expectations r0Re{Xn} and r0Im{Xn} respectively, and both with
variance πσ2/(m2ω3

d∆t). A graphical representation of the probability density of Y P,n|Xn in the complex
plane is given in Fig. 1.
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Figure 1: Representation of the probability density of Y P,n|Xn in the complex plane (the green cross is at
the center of the probability density).

2.1.2 Amplitude analysis

The variation of amplitude over a period is given by the study of |Y P,n|
∣∣Xn, whose expectation can be

expressed as:

E
[
|Y P,n|

∣∣Xn

]
≈ r0|Xn|+

πσ2

2r0m2ω3
d∆t|Xn|

. (9)

This way, for a high value of |Xn|, the amplitude of oscillation is expected to decrease, and on the contrary
for a low value of |Xn|, it is expected to increase. The limit case for which the amplitude is expected to be



sustained is reached for an amplitude that we will call Aref, which by Eq. (9) equals:

Aref ≈
σ

2mωd
√
r0 µ∆t

. (10)

To estimate the derivative of the amplitude of oscillation when it is equal to its reference value Aref, we are
now considering the variance of |Y P,n|

∣∣Xn, which can be written as:

Var
[
|Y P,n|

∣∣Xn

]
≈ πσ2

m2ω3
d∆t

. (11)

We then obtain an estimate of this derivative, which we will call Ȧref:

Ȧref =
1

P∆t

√
Var

(
|Y P,n|

∣∣ |Xn| = Aref
)
≈ σ

2m
√
πωd∆t

. (12)

Finally, from Eqs. (10) and (12) and the hypothesis of low damping, we get:

Ȧref

Aref
≪ ωd. (13)

Therefore, we can consider that over a period of oscillation of the system, its amplitude remains approxi-
mately constant.

2.1.3 Phase analysis

We now define ΩP,n, the instantaneous angular frequency of the system over one period, as:

ΩP,n =
1

P∆t

(
2π + arg

(
Xn+P

Xn

))
≈ ωd

(
1 +

1

2π
arg

(
Y P,n

Xn

))
. (14)

Its expectancy can then be computed from Eq. (8):

E
[
ΩP,n

∣∣Xn

]
≈ ωd, (15)

along with its variance:

Var
(
ΩP,n

∣∣Xn

)
≈

(
σ

2m|Xn|
√
πωd∆t

)2

. (16)

Thus, as shown in Eq. (15), the instantaneous angular frequency of the system under ambient excitation is on
average equal to that of its free response, ωd. However, this instantaneous angular frequency shows a certain
dispersion around its mean, whose standard deviation is inversely proportional to the oscillation amplitude
of the system (see Eq. (16)). This dispersion can be explained by the fact that for small amplitudes, the
excitation force w to which the system is subjected is no longer negligible in front of the inertia mẍ and
stiffness kx forces, which govern its free response behavior.

2.2 Nonlinear, stationary oscillator

We now consider that the system has a weak stiffness nonlinearity, modeled by an additional restoring force
g(x). Eq. (1) thus becomes:

ẍ+ 2ζωnẋ+ ω2
nx+

g(x)

m
=
w

m
, (17)

where |g(x)| ≪ |mω2
nx|.



2.2.1 Free response

In the case of a free response xfree of the system, i.e. for a null excitation w = 0, one can use the first-order
Krylov-Bogoliubov approximation [8], which results in:

xfree(t) ≈ Afree(t) cos(ωnt+ φfree(t)), (18)

where Afree and φ̇free vary slowly with respect to the period of the system, and verify the following system
of differential equations: [

Ȧfree
φ̇free

]
=

[
HA (Afree)
Hφ (Afree)

]
, (19)

where HA and Hφ are functions depending only on Afree, which will not be detailed here. Thus, for a given
amplitude A0, the nonlinear system exhibits a behavior similar to that of a linear system whose pole λ̃(A0)
can be written:

λ̃(A0) = i (ωn +Hφ (A0)) +
HA (A0)

A0
. (20)

For the real part of pole λ̃(A0), the Krylov-Bogoliubov method gives, as for the linear case, HA(A0)/A0 =
−µ. For its imaginary part, we will use ω̃(A0), the angular frequency of the nonlinear undamped system at
amplitude A0 (i.e. its response to Eq. (17) by replacing ζ and w by 0) rather than ωn +Hφ(A0), because nu-
merical simulations show that it is a better approximation for weakly damped systems in free response. This
higher precision is due to the relatively low influence of damping on free response frequency, as evidenced
by the linear case where it is of the second order on ζ, which is typically very low in mechanical systems.
The pole can thus be written:

λ̃(A0) = iω̃(A0)− µ. (21)

2.2.2 Ambient response

Finally, to deal with the case where the system is subjected to an ambient excitation, characterized by
Eqs. (3) and (4), we first notice that the amplitude of the oscillations varies slowly with respect to their
period (Eq. (13)), and that it can therefore be considered constant over one period. As explained previously,
we then have an analogous behavior to that of a linear system, whose pole is characterized by Eq. (21). Thus
all the results stated for the linear system apply, in particular Eq. (15) which becomes:

E
[
ΩP,n

∣∣Xn

]
≈ ω̃(|Xn|). (22)

The expectancy of the instantaneous angular frequency of the nonlinear system under ambient excitation is
therefore approximately equal to that of its free response.

2.3 Nonlinear, nonstationary oscillator

It is now assumed, in addition to the nonlinearity, that the parameters of the system, m, ωn, ζ and g,
are time dependent. This dependency is supposed to be slow compared to the period of the system, i.e.
|ṁ(t)/m(t)| ≪ ωn(t) for mass m, and so on.

Similarly to the nonlinear, stationary system, we notice that over one period, the parameters of the system
can be considered constant, and its behavior is therefore analogous to that of a linear system. Eq. (22) thus
becomes:

E
[
ΩP,n

∣∣Xn

]
≈ ω̃(tn, |Xn|), (23)

where ω̃(t, A) denotes the angular frequency of the undamped nonlinear nonstationary system at time t and
amplitude A.

Additionally, one particular case that deserves consideration here is when the system parameters can be
written as functions of one or an array of known explanatory variables, denoted κ. In this case, Eq. (23)



becomes:
E
[
ΩP,n

∣∣Xn

]
≈ ω̃(κn, |Xn|), (24)

where κn = κ(tn). For mechanical systems, these variables can be environmental factors such as tempera-
ture or humidity, or quasistatic loads for instance. In the latter case, the nonstationarity results from the shift
of the equilibrium position that effectively changes the nonlinearity. Indeed, by replacing w by F + w in
Eq. (17), where F is a slowly varying additive force, it can be rewritten as:

ẍdyn + 2ζωnẋdyn + ω2
nxdyn +

g(xstat + xdyn)− g(xstat)

m
=
w

m
, (25)

where xstat is the quasistationary response of the system to F that satisfies mω2
nxstat + g(xstat) = F and

whose time derivatives are neglected due to its slow variations, and xdyn is the “dynamic” response of the
system defined as xdyn = x − xstat. Eq. (25) is therefore a special case of nonlinear, nonstationary system,
where the explanatory variable is xstat.

3 Use of the Continuous Wavelet Transform

3.1 Definition and general properties

The Continuous Wavelet Transform (CWT) is a time-frequency analysis tool, particularly suited to the study
of modulated oscillatory signals [4, 6]. We propose the following definition, for a signal u:

Tψ[u](t, f) = 2πf

∫ +∞

−∞
u(τ)ψ (2πf(t− τ)) dτ, (26)

where ψ denotes a complex function called the mother wavelet. This definition written directly in the time-
frequency plane, instead of the classical definition in the time-scale plane, allows an easier use of the tool.
However, it requires a normalization and a centering of the mother wavelet in the Fourier domain, which we
will take for granted in the following. We will use the Morlet’s complex wavelet ψQ, for its good mathe-
matical properties (in particular its minimal uncertainty in the time-frequency plane µψ = 1/2), making it
particularly adapted to the analysis of amplitude and phase modulated signals. It is expressed as:

ψQ(θ) =
1

Q
√
π
exp (iθ) exp

(
− θ2

4Q2

)
, (27)

whereQ is a parameter of the mother wavelet called quality factor, characterizing its dispersion in the Fourier
domain [6, 7]. As previously mentioned, ψQ is normalized and centered in the Fourier domain.

For a modulated oscillatory signal u such as:

u(t) = A(t) cosφ(t), (28)

with slow variations ofAwith respect to φ̇, we obtain the following relations [4] on the ridge of the transform
fr, defined as:

fr(t) = argmax
f

|Tψ[u](t, f)| ≈ φ̇(t), (29)

and its amplitude Ar:
Ar(t) = max

f
|Tψ[u](t, f)| ≈ A(t). (30)

Other definitions of the ridge, or ridges of the CWT exist, in particular based on the study of its phase, but
we will use this one for its simplicity and the stability of its numerical implementation [4].



3.2 Use for nonlinear, stationary systems under ambient excitation

By implementing the CWT on the response of a system described by Eq. (17) to an ambient excitation, we
obtain from its ridge an estimate of the instantaneous frequency of the system (Eqs. (14) and (29)):

ΩP,n ≈ 2πfr(tn), (31)

and from its amplitude, an estimate of the amplitude of the system oscillations (Eq. (30)) :

|Xn| ≈ Ar(tn). (32)

Then, averaging fr for a given Ar, we can estimate ω̃(A0), the angular frequency of the undamped nonlinear
system at amplitude A0 (see Eq. (22)), and thus characterize its nonlinearity. Practically speaking, with
numerical signals, it is very unlikely to obtain several times exactly the same value of Ar, and therefore
impossible to average the values of fr for a given Ar. To overcome this issue, it is possible to gather the
values obtained for Ar into several small intervals, in order to obtain a sample large enough to average the
corresponding fr (similar to what can be done to compute a histogram for example).

Finally, obtaining an accurate ridge from the CWT (Eqs. (29) and (30)) is conditioned by the choice of
a suitable quality factor Q. Several bounds exist in the literature, in particular for free responses [6, 7],
ensuring among other things the separation of the different eigenfrequencies in the case of systems with
several modes. It is therefore necessary to determine under which condition on the quality factor Q, the
extraction of a ridge from the CWT gives accurate results for a system under ambient excitation. For this
purpose, the time dispersion of the CWT, proportional to Q in the case of the Morlet wavelet, must be well
below the characteristic time of variation of the signal amplitude, Aref/Ȧref ≈ (π/µωd)

1/2. We then obtain,
from Eqs. (10) and (12), the following bound:

Q ⩽
1

cA

√
π

ζ
, (33)

where cA is a safety factor, reflecting the minimum ratio between the characteristic time of variation of the
signal and that of the CWT. It will be set for the rest of this study at cA = 3.

3.3 Use for nonlinear, nonstationary systems under ambient excitation

The method given in part 3.2 can also be used for nonlinear, nonstationary systems, provided that their non-
stationarity can be explained by one or an array of known variables κ. Similarly to what is done for nonlinear,
stationary systems, the range of (A, κ) has to be divided into small subsets, for which the corresponding in-
stantaneous frequencies are averaged (see Eq. (24)). Obviously, the bound found for Q in Eq. (33) still has
to be met, in order to get an accurate ridge.

A compromise has to be found between the number of subsets of (A, κ) and the number of associated obser-
vations of frequency fr(tn). A too large number of subsets would cause a significant frequency scatter, due
to the limited number of asociated observations from which the averages are computed, while on the other
hand a small number of subsets would result in a poor resolution in the (A, κ) space. In some cases, ampli-
tude A or some of the explanatory variables of array κ contribute to a neglectible variation in frequency, and
can therefore be ignored. The (A, κ) space can then be replaced by a smaller dimension space, drastically
reducing the number of necessary subsets.

4 Numerical simulations

4.1 System under study

In order to illustrate the proposed method, numerical simulations of a nonlinear system under ambiant exci-
tation are carried out. The studied system is characterized by a piecewise linear rigidity function, presented



in Fig. 2, modeling an abrupt, asymmetrical softening.
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Figure 2: Rigidity function x 7→ kx+ g(x) of the system under study.

Eq. (17), which governs the system dynamic behavior, is integrated numerically using the fourth order ex-
plicit Runge-Kutta method [15], with time step ∆t = 1ms. The system is assumed to be initially at rest,
and a time interval for which it gains energy and reaches a nominal amplitude is discarded from the CWT
analysis. This time interval is chosen five time larger than the system characteristic damping time, (ζωn)

−1.
The simulations total time is T = 10000 s. The modal parameters of the associated linear system (for g = 0),
its natural frequency fn = ωn/2π and damping ratio ζ, are given in Table 1, along with informations on the
nonlinearity function g and numerical integration.

Table 1: Numerical simulations parameters.

Numerical integration Linear system Nonlinearity

T ∆t fn ζ x0 k′

10000 s 1ms 10Hz 1% 1 k/2

For the CWT computations, the Morlet wavelet is taken as mentionned before, with quality factor Q = 5.91,
which corresponds to the upper bound introduced in Eq. (33). The CWT edge effect zones present at the
begining and end of the signal are discarded [6, 7].

4.2 First case study

For the first case study, excitation w is modeled as a white Gaussian noise, whose amplitude is chosen large
enough so that x exceeds x0 and triggers the nonlinear regime. This corresponds to the nonlinear, stationary
system studied in part 2.2.

An extract of the response of the system obtained numerically is presented in Fig. 3, with its CWT. In Fig. 4,
we can see the ridge extracted from this CWT as a function of its amplitude, along with its average at fixed
amplitude, and the frequency of the undamped system (computed analytically using the principle of energy
conservation).

We find a good agreement with the results expected in the analytical study. Indeed, Fig. 4a shows a disper-
sion of the system’s instantaneous frequency inversely proportional to its amplitude, as stated in Eq. (16).
Moreover, we can see in Fig. 4b that the average frequency of the system under ambient excitation seems to
match its undamped frequency, as expected in Eq. (22), except for low and high amplitudes. The discrepan-
cies at high amplitudes can easily be explained by statistical dispersion and can therefore be quantified, as
such vibration amplitudes are scarce in the response sample. For low amplitudes however, there is a clear
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Figure 3: Numerical simulations, first case study: (a) extract of the system response x, (b) modulus of its
CWT, with associated ridge (black curve).
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Figure 4: Numerical simulations, first case study: (a) CWT ridge fr as a function of its amplitude Ar (blue),
with its averages by amplitude increments of 0.05 (red), (b) CWT ridge averages (red), and undamped system
frequency ω̃/2π (blue).

tendency to underestimate the frequency. This bias seems to be linked to the CWT analysis rather than to the
approximations made in the modeling part, as a similar time-frequency signal processing tool, the Hilbert
transform, was implemented as a substitute to the CWT and showed an inverse bias on the frequency (over-
estimating) for low amplitudes. Further numerical simulations showed a decreasing trend in this bias for
lower values of system damping.

4.3 Second case study

For the second case study, excitation is modeled as a white Gaussian noise w, to which is added a “qua-
sistatic” force F , harmonic with a period of 100 s. The amplitude of F is chosen high enough so that xstat
exceeds x0 and triggers the nonlinear regime (see Eq. (25)), while that of w is chosen low enough so that
|xdyn| ≪ x0, and thus the amplitude of xdyn provides a negligible contribution in the frequency variations
of the system. This corresponds to the nonlinear, nonstationary equivalent system described in part 2.3,
although it can be considered linear here because of the low dynamical vibrations amplitude.



In Fig. 5a, the ridge of the CWT of the system’s response is presented as a function of its displacement x,
along with its average at fixed displacement. This average is then compared in Fig. 5b to the undamped
system frequency, which is computed analytically for a null vibration amplitude. The two curves show
good agreement, except around x0 where the CWT results do not exactly match the theoretical frequency
discontinuity, but rather display a steep sigmoid. This is due to the influence of amplitude on the system’s
frequency, which does play a part around the slope change of the rigidity function at x0.
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Figure 5: Numerical simulations, second case study: (a) CWT ridge fr as a function of displacement x (blue),
with its averages by displacement increments of 0.05 (red), (b) CWT ridge averages (red), and undamped
system frequency ω̃/2π (blue).

5 Conclusions

The analytical study proposed in the first part, focusing on a weakly nonlinear and weakly damped me-
chanical system subjected to an ambient excitation, allowed to establish simple relationships regarding its
instantaneous amplitude and frequency. In particular, it was shown that this frequency, at a given amplitude,
is a random variable whose expectation is the system’s free response frequency at that amplitude. These re-
sults were then generalized in the case of a nonstationary (nonlinear) system. The use of the CWT was then
presented, to extract from the system’s response its instantaneous amplitude and frequency. A new bound
on the quality factor of the CWT, essential to obtain accurate results, was introduced. Finally, numerical
simulations were performed on a simple case study. They showed good agreement between the theoretical
and numerical results.
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