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Analysis of a model of cell crawling migration∗

Thomas Lepoutre † Nicolas Meunier ‡

September 16, 2022

Abstract

We introduce and study a model for motility of cells on substrate. The cell
is 1d, inextensible and it contains a diffusive back-polarity marker, which satisfies
a non-linear and non-local parabolic equation of Fokker-Planck type with attach-
ment/detachment at the boundary. The idea behind the model is a quadratic
nonlinear coupling: the marker is advected by the cell velocity, which is itself
driven by a front-rear imbalance in marker. We show that it is of bistable type,
provided that the coupling between the asymmetry of the marker and the cell ve-
locity is sufficiently strong. In such a case we prove the non-linear stability of the
largest steady state, for large initial data. In the weak coupling case we prove the
convergence of the molecular concentration towards the Gaussian state.

keywords Cell polarisation, cell migration, global existence, asymptotic convergence.
AMS 35Q92; 92C17; 92B05.

1 Introduction

In this work we analyze a minimal model describing some aspects of cell motility. This
model is based on a non-linear and non-local parabolic equation of Fokker-Planck type
with attachment and detachment kinetic at the boundary. The Fokker-Planck equation
without kinetic at the boundary, was introduced and studied in [13]. Here, from the
mathematical viewpoint, the novelty is the attachment and detachment kinetic at the
boundary.

The cell is modelled as the inextensible segment [−1,1], with a boundary reduced to
two points {−1,1}. For the description of the diffusive back-polarity marker, we distin-
guish between cytoplasmic content whose concentration is c(t,x) and trapped molecules
on the boundary whose concentrations are µ±. We introduce the following function
which describes cell marker imbalance

δµ(t) =µ−(t)−µ+(t) . (1.1)

The model consists of the following equation
∂tc(t,x) =∂xxc(t,x)+∂x ((x+ηδµ(t))c(t,x)) , x∈ (−1,1)
d
dtµ−(t) = c(t,−1)−µ−(t) ,
d
dtµ+(t) = c(t,1)−µ+(t) ,

(1.2)
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together with the flux condition at the boundary:{
∂xc(t,−1)+(−1+ηδµ(t))c(t,−1) = d

dtµ−(t) ,

∂xc(t,1)+(1+ηδµ(t))c(t,1) =− d
dtµ+(t) .

(1.3)

The boundary condition (1.3) guarantees conservation of the total mass which is as-
sumed to be 1, namely ∫ 1

−1

c(t,x)dx+(µ−(t)+µ+(t)) = 1. (1.4)

The cell velocity v is proportional to the front-rear marker imbalance

v(t) =−γδµ(t) , (1.5)

with γ>0.
Briefly, the main assumptions that lead to (1.2) - (1.4) are the following: (i) the

marker in the bulk can either freely diffuse or be actively transported by actin retrograd
flow which is proportional to cell velocity, (ii) the cell velocity is itself driven by a front-
rear marker imbalance δµ and (iii) actin depolymerisation leads to the x term in the
drift. We refer to Section 2 for a detailed presentation of the model with biological
motivations.

Several mathematical models have been proposed in the past decade to describe cell
motility see [2, 3, 11, 13, 14, 24–26]. They incorporate many aspects of the mechanisms
involved in migration. Although some of these models have been tested for their ability
to fit quantitative data, they have not been quantitatively assessed for their ability to
make accurate predictions with no additional free parameter. Here we will continue
our analysis program of a model which was first introduced in [21] and then studied
in [13]. Our objective is to derive, by rigorous analysis, the long time behavior of
the solution to (1.2) - (1.4) and to go beyond the linear stability analysis performed
in [21]. In order to bypass the lack of comparison principle, our method is based on a
concentration-comparison principle that is obtained when equation (1.2) is integrated in
space, see [19]. This principle allows to construct some remarkable sub/supersolutions
and to perform a long-time analysis.

Before stating our results, let us give some comments. The dichotomy between
concentration of the solution vs. convergence towards Gaussian profile presents some
similarity with the classical Keller-Segel equation for chemotaxis [6]. However, there are
two differences. Firstly, here the interaction goes through the values at the boundary,
which makes the analysis more difficult. It is more singular, and furthermore it lacks
symmetry properties. In particular as far as we know there is no free energy associated
with (1.2) - (1.4). Secondly, the depolymerisation leads to the x term in the drift in
equation (1.2). Nevertheless, we show here that the system inherits some structure from
this analogy. This is quite remarkable as the system is genuinely non-linear.

Finally, let us mention that similar models involving a coupling between a one-
dimensional PDE and a scalar boundary value appear in the modelling of NNLIF models
[7, 12] except that the derivative at the boundary is involved, among other differences.

Intuitively, the problem (1.2) - (1.4) is of bistable type, with a bifurcation for larger
values of η. For small values of η and for any initial condition the density is expected
to converge to the Gaussian profile G defined by

G(x) =
e−

x2−1
2

2+
∫ 1

−1
e−

x2−1
2 dx

, (1.6)
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and to follow the behaviour driven by the linear Fokker-Planck part. In such a case the
cell velocity converges to zero. This corresponds to a ”diffusive” cell migration phase
with cell arrest. The coupling, described by the parameter η, is too weak to overcome
the combined effects of friction and marker diffusion. For large values of η and for large
enough initial data the concentration is expected to converge to the motile steady state
Gα (to the right or to the left) defined by

Gα(x) =
α

1−e−2αη
e−

x2−1
2 −αη(x+1) , (1.7)

where α>0 is defined by the mass constraint

Mα :=
α

1−e−2αη

(
2+

∫ 1

−1

e−
x2−1

2 −αη(x+1) dx

)
−α= 1. (1.8)

This latter situation corresponds to a ”persistent” migration phase, the coupling is
strong and the cell reaches steady motility. In this work we are interested in making
these informal statements rigorous.

Define η0 by

η0 = 1+
1

2

∫ 1

−1

e−
x2−1

2 dx>1 , (1.9)

and denote δx0
the Dirac measure in x0. The function C is the cumulated distribution

function of µ−(t)δ−1 +c(t,x)dx:

C(t,x) =µ−(t)+

∫ x

0

c(t,y)dy . (1.10)

The functions CG,CGα are respectively the cumulated distribution functions of 1
2η0

δ−1 +

G(x)dx and α
1−e−2αη δ−1 +Gα(x)dx.

Our first result states the convergence towards the Gaussian state for weak internal
coupling. For strong internal coupling, it also gives sufficient conditions under which
convergence towards the motile steady state holds.

Proposition 1. Assume that
∫ 1

−1
c0 logc0 dx<+∞, then

• for η≤η0 the solution to (1.2) - (1.4) converges to the unique steady state given
by (1.6),

• for η>η0, if liminft→∞δµ(t)>0 (resp. limsupt→∞ δµ(t)<0), then the solution
(c,µ−,µ+) to (1.2) - (1.4) converges to Gα (resp. G−α).

Finally define the functions Gλ and Cλ by:

Gλ(x) =

∫ x
−1
e−ηλy+ 1−y2

2 dy

eηλ+e−ηλ+
∫ 1

−1
e−ηλx+ 1−x2

2 dx
, (1.11)

and

Cλ(x) =µλ−+

∫ x

−1

Gλ(y)dy , (1.12)

with (
µλ−,µ

λ
+

)
=

1

eηλ+e−ηλ+
∫ 1

−1
e−ηλx+ 1−x2

2 dx

(
eηλ,e−ηλ

)
. (1.13)
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For strong internal coupling, our second result provides some sufficient conditions on
the initial data under which the convergence towards the motile state Gα (resp. G−α)
occurs.

Proposition 2. Assume that the initial data satisfy
∫ 1

−1
c0 logc0 dx<+∞ and that there

esists λ>0 such that

C(0,x)≥Cλ(x) ∀x∈ [−1,1] (resp.C(0,x)≤C−λ(x)).

Then the solution (c,µ−,µ+) to (1.2) - (1.4) converges to Gα (resp. G−α).

The article is organized as following. In Section 2 the origin of the model and
its biophysical relevance are discussed in more details. In section 3 we provide a global
existence theory for the above system. Section 4 is devoted to analytical investigations of
the non-linear Fokker-Planck equation, namely the stationary state solutions. In section
5 we state a comparison principle. The quadratic structure of the problem is nontrivial
and may lead to a bifurcation. In Section 6, in the case of small internal coupling, we
prove cell arrest, and convergence towards a Gaussian profile, see proposition 1 and
in the case of strong internal coupling together with large enough initial condition we
prove convergence towards a motile state, see proposition 1 and proposition 2.

2 Further biological background

It is now well established that the displacement of cells is based on the appearance and
maintenance of a functional asymmetry (polarity) between a ”cell front” and a ”cell
rear”. Biological markers of cell front-to-back polarity are e.g. the concentration and
organization of actin filaments, levels of myo-II molecular motors. The polarization of
motile cells can be induced by external gradient signals or appear spontaneously, by an
intrinsic mechanism that produces and maintains directional persistence.

Here we represent the cell cytoskeleton by a layer of viscous fluid, surrounded by a
rigid membrane. Following [5,17], we model actin polymerization and depolymerization
by adding active properties to the viscous fluid. Actin monomers are added to actin fil-
aments by the consumption of biological fuel ATP. It is commonly observed that actin
polymerization activators such as WASP proteins preferentially locate along the cell
membrane. For this reason, we suppose that the fluid is polymerized at the membrane.
Following the biological observations set in [21], the main ingredient of our model is
the coupling between actin polymerization and a biological marker which is transported
by actin flows. Its aggregation in a part of the membrane characterizes the cell rear,
hence its polarisation. This marker could be an antagonist to polymerization-inducing
molecules (Rac1, Cdc42), such as RhoA, Arpin, or even myosin II. Furthermore poly-
merization is balanced by depolymerization, which we assume to occur uniformly at
a constant rate in the cell body, to ensure the renewal of ressources for polymeriza-
tion. Polymerization and depolymerization induce an inward flow which rubs on the
substrate. This friction is responsible for the cell displacement.

More precisely, denote by ρ the actin concentration, by u its velocity with respect
to the substrate and by Ω(t) ={ρ(t,·)>0} the region occupied by the cell. Considering
a depolymerization rate kd in the cell bulk, we can write

∂tρ+div (ρu) =−kdρ in Ω(t).
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To account for polymerization which consists in a local increase in actin concentra-
tion, we impose a jump on the cell membrane:

ρ=ρ0 +εkp on ∂Ω(t),

where ε is a small parameter and ρ0 is a constant.
To determine u, we write Stokes equation inside the cell. Indeed, in the limit of low

Reynolds number, viscous forces dominate over inertial forces and the Navier-Stokes
equation simplifies to the force balance principle:

−divσ=f in Ω(t) ,

where σ=µ(∇u+ t∇u)−p Id is the stress tensor with µ being the viscosity and f is the
external force exerted on the actin filaments. We only take into account the friction of
the polymers on the substrate that is f =−ξu.

Following [8], we neglect viscosity arising from the polymer-polymer and polymer-
solvent friction forces inside the cell and consider the limit µ→0, hence we obtain:

∇p=−ξu in Ω(t) .

Furthermore, as it is classical, see [9] e.g., we assume that p is an osmotic pressure
ensuring that the polymer density stays constant, namely we consider that p is the
following function of ρ:

p=
1

ε
(ρ−ρ0) .

Therefore, we get the following problem for ρ:{
∂tρ− 1

ξdiv
(
ρ∇
(
ρ
ε

))
=−kdρ in Ω(t) ,

ρ=ρ0 +εkp on ∂Ω(t) .

Unformally, taking the limit ε→0 of the previous model, it yealds the Poisson problem:{
divu=− 1

ξ∆p=−kd in Ω(t),

p=kp on ∂Ω(t) .

Finally, let us describe how the domain velocity arises from friction forces. Since
the gel layer is at mechanical equilibrium, the cell moves as a consequence of the inside
flow rubbing on the substrate, hence we will consider a moving domain. Friction forces
occur at the microscopic scale, and mesoscopic tension forces also are at play. However,
for the sake of simplicity, we will neglect this heterogeneity to consider a global friction
coefficient γ, see [22] for more details about the adhesion force. Hence, for all t>0 we
write

v(t) =−γ
∫

Ω(t)

u(t,x)dx.

Biological observations, see [21] e.g., show that nucleation of new filaments occurs at
the cell membrane under the combined action of polymerization-inducing molecules.
Therefore, we consider that kp is a function of the concentration of antagonist to
polymerization-inducing molecules trapped on the cell membrane and denoted by µ.
This marker, whose concentration in the cell bulk is c, is assumed to diffuse and to
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be transported by actin filaments. At the membrane, we prescribe a flux condition to
ensure mass conservation (of c and µ). The corresponding problem writes{

∂tc+div (uc−D∇c) = 0 in Ω(t),

(D∇c−cu) ·n=−∂tµ on ∂Ω(t),

where n is the outward unit normal to the boundary.
In the one dimensional case where the cytoplasm of the cell is modelled by the interval

Ω = (−1,1), the model simply rewrites as (1.2) - (1.4) with D= 1, kp(µ) = 2(1−µ), kd= 1
and η= 1

ξ .

3 Well-posedness of the coupled system (1.2) - (1.4)

In this part we prove the following result.

Proposition 3. Assume that
∫ 1

−1
c0(x)logc0(x)dx<+∞ and that µ0

−,µ
0
+∈ [0,1] are

such that
∫ 1

−1
c0(x)dx+µ0

−+µ0
+ = 1. Then there exists a unique solution (c,µ−,µ+) to

(1.2) - (1.4) for all time.

Well-posedness of the Cauchy problem (1.2) - (1.4) relies on a fixed point theorem.
We proceed into two steps. First, we obtain refined entropy estimates for the sole PDE
problem, without the coupling. As such, we consider two given couples of functions(
µ1
−(t),µ1

+(t)
)

and
(
µ2
−(t),µ2

+(t)
)
, and we derive suitable contraction estimates on c1,c2.

We introduce the coupling in a second step.

3.1 An uncoupled PDE

Given the functions µ−,µ+, we consider the solution c of the problem
∂tc(t,x)−∂xxc(t,x)−∂x (v(t,x)c(t,x)) = 0, x∈ (−1,1),

∂xc(t,1)+v(t,1)c(t,1) =−(c(t,1)−µ+(t)) ,

∂xc(t,−1)+v(t,−1)c(t,−1) = c(t,−1)−µ−(t) ,

c(0,x) = c0(x) , x∈ (−1,1).

(3.14)

We start by a result concerning the sign of the solution to (3.14). For smooth v,µ
the local existence is obtained by standard theory. Moreover, if, µ±≥0 and c0≥0, the
solution remains nonnegative. For instance, we can apply the Stampacchia argument
and multiply the equation by c−= min(c,0), getting

1

2

d

dt
‖c−(t)‖2L2 = −‖∂xc−(t)‖2L2−

∫ 1

−1

∂xc
−(t,x)c−(t,x)(x+v(t,x)) dx

−c−(t,1)(c(t,1)−µ+(t))−c−(t,−1)(c(t,−1)−µ−(t))

≤ 1

4
‖v(t)‖2L∞‖c−(t)‖2L2 .

As for µ±≥0, c−(t,±1)(c(t,±1)−µ±) = c(t,±1)2−c−(t,±1)µ±≥0. Using Gronwall’s
lemma and ‖c0−‖L2 = 0, we deduce ‖c−(t)‖L2 = 0 for all time t∈ [0,T ].
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Lemma 4. Assume that c0>0∈L2 and µ±∈C0(R0) satisfy 1≥µ±(t)≥µ±(0)e−t>0.
Assume v is C1(R+× [−1,1]). Then the (nonnegative) solution of (3.14) exists globally
in L∞loc(R+,L logL(−1,1))∩L1

loc(R+,W
1,1(−1,1)). Moreover, we have the estimate∫ 1

−1

c(t,x)dx≤
∫ 1

−1

c0(x)dx+2t. (3.15)

Proof. We start with a few simple estimates, since µ+(t)+µ−(t)≤2 for all t≥0, we
have

d

dt

∫ 1

−1

c(t,x)dx=µ+(t)−c(t,1)+µ−(t)−c(t,−1)≤2,

leading to (3.15).
First, using

(c(t,x)−µ(t))logc(t,x)−(1−µ(t))logµ(t)

= (c(t,x)−µ(t))log
c(t,x)

µ(t)
+(c(t,x)−1)logµ(t),

we deduce that for µ≤1 and c>0, the following inequality holds

(c(t,x)−µ(t))logc(t,x)≥ (1−µ(t))logµ(t).

We do not fully detail the global existence, only the key estimate

d

dt

∫ 1

−1

(c(t,x)logc(t,x)−c(t,x)) dx

=−logc(t,1)(c(t,1)−µ+(t))− logc(t,−1)(c(t,−1)−µ−(t))

−
∫ 1

−1

c(t,x)∂x logc(t,x)(∂x logc(t,x)+v(t,x)) dx

≤−logµ+(t)(1−µ+(t))− logµ−(t)(1−µ−(t))

− 1

2

∫ 1

−1

c(t,x)|∂x logc(t,x)|2 dx+
1

2

∫ 1

−1

c(t,x)|v(t,x)|2 dx,

≤−logµ0
+− logµ0

−+2t

− 1

2

∫ 1

−1

c(t,x)|∂x logc(t,x)|2 dx+
‖v‖∞

2

(∫ 1

−1

c0(x)dx+2t

)
.

From this we easily infer an estimate of the form∫ 1

−1

c(t,x)| logc(t,x)|dx≤C(1+ t2).

and also
∫ t

0

∫ 1

−1
c|∂x logc|2 dxds≤C(1+ t2) and finally∫ t

0

∫ 1

−1

|∂xc|dxds ≤ ‖
√
c|L2((0,t)×(−1,1))‖c|∂x logc|‖L2‖((0,t)×(−1,1))

≤ C
√

1+ t2.
√

1+ t2≤C(1+ t2).
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In order to compare two solutions c1 and c2 associated with two inputs (µ1
±,v

1) and
(µ2
±,v

2), we introduce the Gajewski metric [16]:

dG(c1,c2) =

∫ 1

−1

h(c1)+h(c2)−2h

(
c1 +c2

2

)
dx,

where h is the convex function

h(a) =aloga−a+1 . (3.16)

We also define the function ∆h(c1,c2) by

∆h(c1,c2) =h(c1)+h(c2)−2h

(
c1 +c2

2

)
dx≥0.

We start with a technical result.

Lemma 5. The following inequalities hold

1

4

(b−a)2

a+b
≤ 1

4

(b−a)2

max(a,b)
≤∆h(a,b)≤ 1

4

(b−a)2

min(a,b)
, (3.17)

and

dG(c1,c2)≥ 1

4

(∫ 1

−1
c1 dx−

∫ 1

−1
c2 dx

)2

∫ 1

−1
c1 dx+

∫ 1

−1
c2 dx

. (3.18)

Proof. For all a,b, we have:

h(b)−h
(
a+b

2

)
=h′

(
a+b

2

)(
b−a

2

)
+

1

2
h′′(c)

(
b−a

2

)2

, (3.19)

for some c∈ [a,b], and a similar estimate at point a. This yields inequalities (3.17).
The pointwise inequality turns into the following integral from which inequality

(3.18) follows by Cauchy-Schwarz inequality:

dG(c1,c2)≥ 1

4

∫ 1

−1

(c1−c2)2

c1 +c2
dx.

In the sequel, we use the index or exponent m for the midpoint

cm=
c1 +c2

2
, µm+ =

µ1 +µ2

2
.. .

Denoting qi=
ci
cm

, we notice that q1 +q2 = 2 and thus ∂xq1 =−∂xq2.

Lemma 6. Let ci the solution associated to (3.14) with (µi−,µ
i
+). Then the following

inequality holds

d

dt
dG(c1,c2)≤∆h(µ1

−,µ
2
−)+∆h(µ1

+,µ
2
+)−∆h(c1(1),c2(1))

−∆h(c1(−1),c2(−1))+
∥∥v1(t,.)−v2(t,.)

∥∥2

∞

∫ 1

−1

c1 +c2
2

dx

− 3

4

(∫ 1

−1

c1|∂x logq1|2 dx+

∫ 1

−1

c2|∂x logq2|2 dx

)
. (3.20)
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Proof. We have

d

dt
(dG(c1,c2)) =

∫ 1

−1

(∂tc1 logq1 +∂tc2 logq2) dx

=−
2∑
i=1

(
(ci(t,1)−µi+)logqi(t,1)+(ci(t,−1)−µi−)logqi(t,−1)

)
−

2∑
i=1

∫ 1

−1

(∂xci+vici)∂x logqidx,

which rewrites as

d

dt
dG(c1,c2) =

2∑
i=1

(
µi+ logqi(1)+µi− logqi(−1)

)
−∆h(c1(1),c2(1))−∆h(c1(−1),c2(−1))

−
2∑
i=1

∫ 1

−1

c1 +c2
2

(∂x logci+vi)∂xqidx.

To bound the cross term involving µi± and ci(±1) in the first line, we notice that
the function

µ1 logq+µ2 log(2−q)
reaches a maximum for the critical value q∗ satisfying

µ1

q∗
=

µ2

2−q∗
, q∗=

2µ1

µ1 +µ2
.

Therefore, the first line is upper bounded by

2∑
i=1

(
µi+ log

(
2µi+

µ1
+ +µ2

+

)
+µi− log

(
2µi−

µ1
−+µ2

−

))
= ∆h(µ1

−,µ
2
−)+∆h(µ1

+,µ
2
+) .

We arrive at

d

dt
dG(c1,c2)≤∆h(µ1

−,µ
2
−)+∆h(µ1

+,µ
2
+)−∆h(c1(1),c2(1))−∆h(c1(−1),c2(−1))

−
2∑
i=1

∫ 1

−1

c1 +c2
2

∂xqi(∂x logci+vi)dx

= ∆h(µ1
−,µ

2
−)+∆h(µ1

+,µ
2
+)−∆h(c1(1),c2(1))−∆h(c1(−1),c2(−1))

−
∫ 1

−1

c1 +c2
2

∂xq1

(
∂x log

c1
c2

+v1−v2

)
dx.

We recall that c1
c2

= q1
2−q1 , so that

∂x log
c1
c2

=
2

q1(2−q1)
∂xq1 = .

d

dt
dG(n1,n2)≤∆h(µ1

−,µ
2
−)+∆h(µ1

+,µ
2
+)−∆h(c1(1),c2(1))−∆h(c1(−1),c2(−1))
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−
∫ 1

−1

c1 +c2
q1(2−q1)

|∂xq1|2 dx−
∫ 1

−1

c1 +c2
2

(v1−v2)∂xq1 dx

≤∆h(µ1
−,µ

2
−)+∆h(µ1

+,µ
2
+)−∆h(c1(1),c2(1))−∆h(c1(−1),c2(−1))

− 1

2

∫ 1

−1

c1 +c2
q1(2−q1)

|∂xq1|2 dx

+‖v1(t,.)−v2(t,.)‖∞
∫ 1

−1

c1 +c2
2

q1(2−q1)︸ ︷︷ ︸
≤1

dx

Using again the relationship q1 +q2 = 2 and ∂xq1 =−∂xq2, we see that

2

q1(2−q1)
|∂xq1|2 =

|∂xq1|2

q1
+
|∂xq1|2

2−q1
= q1|∂x logq1|2 +q2|∂x logq2|2.

Therefore,
c1 +c2

q1(2−q1)
|∂xq1|2 = c1|∂x logq1|2 +c2|∂x logq2|2.

and we end up with estimate (3.20).

3.2 The fixed point mapping

We now apply the previous estimates to a specific case. For a fixed T >0, we define the
space X by

X={(µ−,µ+)∈C(0,T ), ∀t∈ (0,T )µ0
+e
−t≤µ+(t)≤1, µ0

−e
−t≤µ−(t)≤1,

µ+(0) =µ0
+, µ−(0) =µ0

−} .

Taking ()µ−,µ+)∈X, we solve (3.14) with v(t,x) =x+η(µ−(t)−µ+(t). We define then

ν±(t) =µ±(0)+

∫ t

0

(c(s,±1)−µ±(s))ds,

the truncation function χ by

χ(x) =


0 x≤0,

x x∈]0,1[,

1 x≥1,

and the mapping F by {
F :X 7→X

(µ+,µ−)→ (χ(ν+),χ(ν−)) .
(3.21)

Denote Fn the function composed n times with itself, that is Fn=F ◦F ◦···◦F .
In this part we prove the following result.

Proposition 7. There holds

‖Fn(µ1
+,µ

1
−)−Fn(µ2

+,µ
2
−)‖X ≤

(C(T )T )n

n!
.

Therefore Fn is a contraction once we take n large enough.
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Proof. By construction, we have

ν±(t) =e−tµout
± (0)+

∫ t

0

es−tc(s,±1)ds, (3.22)

with the initial data satisfying

ν−(0)+ν+(0) = 1−
∫ 1

−1

c0(x)dx>0.

Since we assume that the functions µi± are continuous and take initial values such
that ci(0,x),µi±(0) are the same for i= 1,2. In particular we have dG(c01,c

0
2) = 0. In

addition we assume the following condition on the functions µi±:

µi±(t)≥µ±(0)e−t>0 and µi+(t)+µi−(t)≤2.

Using (3.17), we have

∆h(µ1
+(s),µ2

+(s))≤ es

4µ+(0)
|µ1

+(s)−µ2
+(s)|2 .

Integrating estimate (3.20), we obtain∫ t

0

(∆h(c1(s,1),c2(s,1))+∆h(c1(s,−1),c2(s,−1))) ds

≤C(t)

∫ t

0

(
|µ1

+(s)−µ2
+(s)|2 + |µ1

−(s)−µ2
−(s)|2

)
ds.

Then, we can estimate(∫ t

0

|c1(s,1)−c2(s,1)|ds
)2

≤
∫ t

0

|c1(s,1)−c2(s,1)|2

c1(s,1)+c2(s,1)
ds

∫ t

0

(c1(s,1)+c2(s,1)) ds

≤4

∫ t

0

∆h(c1(s,1),c2(s,1))ds

(
2µ+(0)+

∫ t

0

µ1
+(s)+µ2

+(s)ds

)
≤8(1+ t)

∫ t

0

∆h(c1(s,1),c2(s,1))ds,

and similarly for x=−1. So that, finally, we have an estimate of the form(∫ t

0

|c1(s,1)−c2(s,1)|ds
)2

+

(∫ t

0

|c1(s,−1)−c2(s,−1)|ds
)2

≤C2(t)

(∫ t

0

|µ1
+(s)−µ2

+(s)|2 + |µ1
+(s)−µ2

+(s)|2 ds

)
.

Using (∫ t

0

|µ1
+(s)−µ2

+(s)|ds
)2

≤
(∫ t

0

|µ1
+(s)−µ2

+(s)|2 ds

)
t

we deduce that(∫ t

0

|c1(s,1)−c2(s,1)|ds
)2

+

(∫ t

0

|c1(s,−1)−c2(s,−1)|ds
)2

11



+

(∫ t

0

|µ1
+(s)−µ2

+(s)|ds
)2

+

(∫ t

0

|µ1
−(s)−µ2

−(s)|ds
)2

≤ (C ′(t)+ t)

∫ t

0

(
|µ1

+(s)−µ2
+(s)|2 + |µ1

+(s)−µ2
+(s)|2

)
ds.

We have (∫ t

0

|(c1(s,1)−c2(s,1))−(µ1
+(s)−µ2

+(s))|ds
)2

+

(∫ t

0

|c1(s,−1)−c2(s,−1)−(µ1
−(s)−µ2

−(s))|ds
)2

≤2(C2(t)+ t)

(∫ t

0

|µ1
+(s)−µ2

+(s)|2 + |µ1
+(s)−µ2

+(s)|2 ds

)
.

Finally, from the definitions and the fact that µout,i± (0) =µin,i± (0) =µ±(0), we can write

for µ±(0)e−t≤µu,in± ≤1

(ν1
+(t)−ν2

+(t))2 +(ν1
−(t)−ν2

−(t))2

≤C(t)

∫ t

0

(µ1
+(s)−µ2

+(s))2 +(µ1
−(s)−µ2

−(s))2 ds.

Using the truncation χ which is 1−Lipschitz,

(χ(ν1
+(t))−χ(ν2

+(t)))2 +(χ(ν1
−(t))−χ(ν2

−(t)))2

≤C(T )

∫ t

0

(µ1
+(s)−µ2

+(s))2 +(µ1
−(s)−µ2

−(s))2 ds,

and with a classical iteration we obtain the result.

4 Stationary solutions

In this section we compute the stationary states of the PDE (1.2) - (1.4) by setting
∂tc= 0 and solving the resulting spatial ODE. We find that there exists a threshold
value η0 such that when η>η0 the problem (1.2) - (1.4) admits non Gaussian stationary
states that are steadily moving states while when η≤η0 it only admits the symmetric
Gaussian stationary solution.

Proposition 8. Let η0 be defined by (1.9). Consider equations (1.2) - (1.4). The
following alternative holds true:

• for 0≤η≤η0, the problem admits a unique symmetric Gaussian stationary solu-
tion G̃ defined by (1.6).

• for η>η0, there are three stationary solutions, the Gaussian profile, G̃, and two
asymmetric profiles G̃±α definef by (1.7), with α>0 is defined by the mass con-
straint (1.8).
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Proof. Stationary solutions to (1.2) - (1.4) satisfy
0 =∂xxc(x)+∂x ((x+ηδµ)c(x)) , x∈ (−1,1),

0 = c(−1)−µ− ,
0 = c(1)−µ+ ,

together with the flux condition at the boundary:{
∂xc(−1)+(−1+ηδµ)c(−1) = 0,

∂xc(1)+(1+ηδµ)c(1) = 0.

Hence, stationary solutions (c,µ−,µ+) of (1.2) - (1.4) are characterized by:
c(x) = c(−1)e−

x2−1
2 −αη(x+1) , x∈ (−1,1),

α= c(−1)(1−e−2αη) ,∫ 1

−1
c(x)dx+c(−1)+c(1) = 1,

(µ−,µ+) = (c(−1),c(1)) ,

where
α= c(−1)−c(1) = δµ=µ−−µ+ .

Consequently the potential stationary solutions are of the form G̃ or G̃α. It remains to
verify whether the functions G̃ and G̃α satisfy the mass constraint.

For all η>0 the function G̃ satisfies the mass constraint. It remains to study the
case where α 6= 0.

Recalling the definition(1.8) of Mλ, we see that Mλ=M−λ, for all λ>0, therefore
we need to characterize the set I={Mλ, λ>0}. We see that

Mλ=
λeλη

2sinh(λη)

(∫ 1

−1

e−
x2−1

2 −λη(x+1) dx+e−2λη+1

)
=

λ

sinh(λη)

(
1

2

∫ 1

−1

e−
x2−1

2 cosh(ληx)dx+cosh(λη)

)
,

it follows that λ>0 is a solution of Mλ= 1 iff

R(λ) = 0, (4.23)

where R is defined by

R(λ) =λ

(
1

2

∫ 1

−1

e−
x2−1

2 cosh(ληx)dx+cosh(λη)

)
−sinh(λη). (4.24)

For λ≥1, from the definition of R, we observe that

R(λ)≥ cosh(λη)−sinh(λη)>0 .

The result then follows from the following technical result.

Lemma 9. The function R satisfies

R(0) = 0, R(1)>0 , R′(0) =η0−η , R′′(α)≥η2R(α) .

Moreover if η>η0, there exists a unique α>0 defined by (1.8) such that R(α) = 0.
More precisely its behavior is summerized in the following tables
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λ ]−∞,0[ 0 ]0,+∞[
R(λ) <0 0 >0

Table 1: Case: η<η0

λ ]−∞,−α[ −α ]−α,0[ 0 ]0,α[ α ]α,+∞[
R(λ) <0 0 >0 0 <0 0 >0

Table 2: Case: η>η0 where α is defined by (1.8)

Proof. We first notice that R is trivially an odd function. So we only need to study it
on R+. We compact notations to R=λR1−sinh(ηλ). An immediate computation leads
to

R′(λ) =λR′1 +R1−ηcosh(ηλ),

and
R′′(λ) = 2R′1(λ)+λR′′1 (λ)−η2 sinh(ηλ).

The nonnegativity of R1,R
′′
1 is an immediate consequence of cosh≥0. Detailling the

results, we have,

R′′(λ) = 2

(
1

2

∫ 1

−1

e−
x2−1

2 ηxsinh(ληx)dx+η sinh(λη)

)
+λ

(
1

2

∫ 1

−1

e−
x2−1

2 (ηx)2 cosh(ληx)dx+η2 cosh(λη)

)
−η2 sinh(λη).

Hence, the function R satisfies

R(0) = 0, R(1)>0 , R′(0) =η0−η .

In particular one has R′(0)<0 iff η>η0. Moreover performing an integration by parts
leads to(

1

2

∫ 1

−1

e−
x2−1

2 ηxsinh(ληx)dx+η sinh(λη)

)
=
λη2

2

∫ 1

−1

e−
x2−1

2 cosh(ληx)dx,

and

R′′(λ) =λη2

∫ 1

−1

e−
x2−1

2 cosh(ληx)dx

+λ

(
1

2

∫ 1

−1

e−
x2−1

2 (ηx)2 cosh(ληx)dx+η2 cosh(λη)

)
−η2 sinh(λη),

=R(λ)+
η2λ

2

∫ 1

−1

(1+x2)e−
x2−1

2 cosh(ληx)dx

from which it follows that
∀λ≥0, R′′(λ)≥η2R(λ) .

This latter inequality yields that: if R≥0, then R is a convex function. Consequently,
the following alternative holds true
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• either η≤η0 and R>0 on ]0,∞[,

• or η>η0 and the function R is negative in the neighbourhood of 0+. Since R(1)>
0, from intermediate value theorem, it follows that there exists α∈ (0,1) such that
R(α) = 0. Since R is increasing in the neighbourhood of 0+, and once it is positive
it is convex, R can not decrease after being positive.

Hence this achieves the proof of lemma 9.

Recalling equation (4.23) rewrites as R(λ) = 0, this yields proposition 8.

5 The comparison principle and its consequences

We start noticing that there is no direct comparison principle on (1.2) - (1.4). In this
section, we first establish a concentration comparison principle on the cumulated dis-
tribution functions (1.10), reminiscent of [19], and analogous to the radially symmetric
Keller-Segel system, see for instance [4, 18] and references therein.

5.1 Comparison principle for Fokker Planck like equation with
attachment detachment dynamics on the boundary

We first notice that (1.2) - (1.4) is a specific case of a more general class of Fokker
Planck equation

∂tc(t,x)−∂xxc(t,x)−∂x ((x+δ(t))c(t,x)) = 0, x∈ (−1,1),

∂xc(t,−1)+(−1+δ(t))c(t,−1) = d
dtµ−(t),

∂xc(t,1)+(1+δ(t))c(t,1) = d
dtµ+(t) ,

d
dtµ−(t) = c(t,−1)−µ−(t) ,
d
dtµ+(t) = c(t,1)−µ+(t).

(5.25)

Recalling the definition (1.10) of the cumulated distribution C, we see that the inte-
grated (in space) version of (5.25) is

∂tC(t,x)−∂xxC(t,x)−(x+δ(t))∂xC(t,x) = 0, x∈ (−1,1),

C(t,−1) =µ−(t), C(t,1) = 1−µ+(t),
d
dtµ−(t) =∂xC(t,−1)−µ−(t),
d
dtµ+(t) =∂xC(t,1)−µ+(t) .

(5.26)

And we have a natural concept of supersolution and subsolution.

Definition 10. A supersolution (resp. subsolution) to (5.26) is a nondecreasing func-
tion C̄ (resp. C) satisfying

∂tC̄(t,x)−∂xxC̄(t,x)−(x+δ(t))∂xC̄(t,x)≥0 , x∈ (−1,1),

C̄(t,−1) = µ̄−(t) , C̄(t,1) = 1− µ̄+(t) ,
d
dt µ̄−(t)≥∂xC̄(t,−1)− µ̄−(t) ,
d
dt µ̄+(t)≤∂xC̄(t,1)− µ̄+(t) .

(5.27)

with similar definition for a subsolution by changing ≥ into ≤.

15



We now state the concentration comparison principle for the Fokker Planck like
equation with attachment detachment dynamics on the boundary.

Lemma 11. Let C̄,C be respectively smooth super and subsolution to (5.26) associated
to the functions δ̄,δ and defined on [0,T ]× [−1,1]. Assume that

∀x∈ [−1,1] C̄(0,x)≥C(0,x) , (5.28)

and
∀t≥0 δ̄(t)≥ δ(t) . (5.29)

Then, the following inequality holds

∀t∈ (0,T ),∀x∈ [−1,1] C̄(t,x)≥C(t,x) . (5.30)

Remark 12. From inequality (5.28) taken in x=−1 and x= 1 it follows that µ̄−(0)≥
µ−(0) and µ̄+(0)≤µ+(0).

Remark 13. From inequality (5.30) taken in x=−1 and x= 1 it follows that µ̄−(t)≥
µ−(t) and µ̄+(t)≤µ+(t).

Proof. Let Z= C̄−C, Zl= µ̄−−µ− and Zr =µ
+
− µ̄+. We have

∂tZ(t,x)−∂xxZ(t,x)−(x+ δ̄(t))∂xZ(t,x) = (δ̄(t)−δ(t))∂xC(t,x) ,

Z(t,−1) =Zl(t), Z(t,1) =Zr(t) ,
d
dtZl(t)≥∂xZ(t,−1)−Zl(t) ,
d
dtZr(t)≤∂xZ(t,1)−Zr(t),
Z(0,x)≥0, x∈ (−1,1),

(5.31)

and by assumptions (5.28) and (5.29), we know that (δ̄(t)−δ(t))∂xC(t,x)≥0 for all
x∈ (−1,1).

Consider ε>0. By assumption, see remark 12, Zl(0)≥0 and Zr(0)≥0. Hence, by
continuity in time there exists a time tε>0 such that Zl(t)>−ε and Zr(t)>−ε on
[0,tε[. We choose

tε= inf{t>0,Zr(t) =−ε or Zl(t) =−ε} .
From the equation, we have immediately Z(t,x)>−ε on [0,tε[×]−1,1[. If we assume
tε<+∞ then we can assume without loss of generality that we have Z(tε,−1) =−ε.
Since we have Z≥−ε, we have necessariliy ∂xZ(tε,−1)≥0 and therefore d

dtZl(tε)≥
−(−ε) = +ε>0. It means that we have

Zl(t)>−ε, t<tε, and
d

dt
Zl(tε)>0 .

Leading by contradiction (we treat the other boundary the same way) to tε= +∞.
Letting ε→0, we have the conclusion.

5.2 The concentration comparison principle on (1.2) - (1.4)

From now on we denote δµ=µ−−µ+.
We first recall the integrated version of (1.2) - (1.4).

∂tC(t,x)−∂xxC(t,x)−(x+ηδµ(t))∂xC(t,x) = 0, x∈ (−1,1),

C(t,−1) =µ−(t) , C(t,1) = 1−µ+(t) ,
d
dtµ−(t) =∂xC(t,−1)−µ−(t) ,
d
dtµ+(t) =∂xC(t,1)−µ+(t).

(5.32)
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Definition 14. A supersolution (resp. subsolution) to (5.32) is a nondecreasing func-
tion C̄ (resp. C) satisfying

∂tC̄(t,x)−∂xxC̄(t,x)−(x+ηδµ̄(t))∂xC̄(t,x)≥0, x∈ (−1,1),

C̄(t,−1) = µ̄−(t), C̄(t,1) = 1− µ̄+(t) ,
d
dt µ̄−(t)≥∂xC̄(t,−1)− µ̄−(t),

∂xC̄(t,1)− µ̄+(t)≥ d
dt µ̄+(t),

(5.33)

with similar definition for a subsolution by changing ≥ into ≤.

We now state the concentration comparison principle for the nonlinear model.

Lemma 15 (Comparison principle). Let C̄ and C be respectively smooth super and
subsolution to (5.32) defined on [0,T ]× [−1,1]. Assume that

(∀x∈ [−1,1]) C̄(0,x)≥C(0,x) and µ̄−(0)+µ+(0)>µ−(0)+ µ̄+(0). (5.34)

Then, the following inequality holds

(∀t∈ (0,T )) (∀x∈ [−1,1]) C̄(t,x)≥C(t,x) . (5.35)

Remark 16. From the first inequality in (5.34) taken in x=−1 and x= 1 it follows
that µ̄−(0)≥µ−(0) and µ̄+(0)≤µ+(0). Hence, the second inequality in (5.34) means
that one assumes either µ̄−(0)>µ−(0) or µ̄+(0)<µ+(0).

Remark 17. From inequality (5.35) taken in x=−1 and x= 1 it follows that µ̄−(t)≥
µ−(t) and µ̄+(t)≤µ+(t).

Proof. By a simple continuity argument, we have

µ̄−− µ̄+≥µ−−µ+
,

on a short time intervall [0,t0] with t0>0. Therefore, Z= C̄−C satisfies the conditions
of lemma 11, hence we can claim that on this intervall C̄≥C. To extend this inequality
for all times, we need a boostrap argument. Because of the initial strict inequality we
can claim that C̄(0,x) 6≡C(0,x). Then by a standard maximum principle argument,
we have that C̄(t,x)−C(t,x)>0 on ]0,t0[×]−1,1[. The bootstrap argument is based
on Hopf lemma. So, if µ̄−=µ− at time t0, then we have ∂x(C̄(t,−1)−C(t,−1))>0

and thereby d
dt (µ̄−−µ−)(t0)>0, which leads to a contradiction. The other side of the

boundary is treated the same way.

5.3 Comparison to remarkable subsolutions

A practical example of subsolution (supersolution) is the following. Consider the real
numbers (µλ−,µ

λ
+) and the functions Gλ and Cλ defined by

(
Gλ(x),µλ−,µ

λ
+

)
= 1

eηλ+e−ηλ+
∫ 1
−1
e−ηλx+

1−x2
2 dx

(∫ x
−1
e−ηλy+ 1−y2

2 dy,eηλ,e−ηλ
)
,

Cλ(x) =µλ−+
∫ x
−1
Gλ(y)dy .

(5.36)
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λ ]−∞,0[ 0 ]0,+∞[
Cλ subsolution solution supersolution

Table 3: Case: η<η0.

λ ]−∞,−α[ −α ]−α,0[ 0 ]0,α[ α ]α,+∞[
Cλ subsolution solution supersolution solution subsolution solution supersolution

Table 4: Case: η>η0.

Lemma 18. Let α and η0 be respectively defined by (1.8) and (1.9). The function Cλ,
defined by (5.36), is either a solution, or a subsolution, or a supersolution to (5.32)
according to the following tables

Proof. Denote δµλ=µλ−−µλ+, by construction we have

∂tCλ(x)−∂xxCλ(x)−(x+ηδµλ)∂xCλ(x) =η(λ−δµλ)∂xCλ(x) ,

Cλ(−1) =µλ− ,

Cλ(1) =µλ+ ,
d
dtµ

λ
−= 0 =∂xCλ(−1)−µλ− ,

d
dtµ

λ
+ = 0 =∂xCλ(1)−µλ+ .

(5.37)

So that, since ∂xCλ≥0, depending on the sign of λ−δµλ, Cλ is a super or a subsolution
to (5.32). Recalling the definition (4.24) of the function R, we notice that

λ−δµλ= 2
R(λ)

eηλ+e−ηλ+
∫ 1

−1
e−ηλx+ 1−x2

2 dx
. (5.38)

Referring to Table 1 and Table 2, we end up with the Table 3 and Table 4.

6 Asymptotic control of the boundary terms

We recall that the model is globally well posed and that we always have µ−≤1 and
µ+≤1 by construction. We introduce the following functions

δ̄(t) = sup
t′>t

δµ(t′), δ(t) = inf
t′>t

δµ(t′) . (6.39)

By definition we have

lim
t→+∞

δ̄(t) = limsup
t→+∞

δµ(t), lim
t→+∞

δ(t) = liminf
t→+∞

δµ(t) .

We now consider the general drift diffusion equation (5.25) with δ replaced by δ̄ or δ.
Applying Lemma 11, with µ̄±, c̄ (resp. µ±,c) solutions to (5.25) with δ= δ̄ (resp. δ= δ),

we know that the following inequality holds for all t>0 and x∈ [−1,1]

µ−(t)+

∫ x

−1

c(t,y)dy≤µ−(t)+

∫ x

−1

c(t,y)dy≤ µ̄−(t)+

∫ x

−1

c̄(t,y)dy .
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In particular, we have
∀t>0 , δµ(t)≤ δµ(t)≤ δµ̄(t) .

We then use the following convenient result that we prove for sake of completeness.

Proposition 19. Assume that
∫ 1

−1
c0(x)logc0(x)dx<+∞ and that the function δ con-

verges towards a finite limit δ0. Then the solution (c,µ−,µ+) to (5.25) with initial
condition (c0,µ0

−,µ
0
+) converges to the unique steady state of the equation with constant

δ0 defined by

(c̄, µ̄−,µ̄+) =
1∫ 1

−1
e−

x2−1
2 −ηδ0xdx+eηδ0 +e−ηδ0

(
e−

x2−1
2 −ηδ0x,eηδ0 ,e−ηδ0

)
.

Proof. By assumption on the initial data, the relative entropy

H(t) =

∫ 1

−1

c(t,x)log
c(t,x)

c̄(x)
dx+µ−(t)log

µ−(t)

µ̄−(t)
+µ+(t)log

µ+(t)

µ̄+(t)

is finite at t= 0. The function H(t) is nonnegative and vanishes only in case of equality
(c,µ−,µ+) = (c̄, µ̄−,µ̄+) since

H(t) =

∫ 1

−1

c̄(x)h

(
c(t,x)

c̄(x)

)
dx+ µ̄+h

(
µ+(t)

µ̄+

)
+ µ̄−h

(
µ−(t)

µ̄−

)
,

with h(x) =x logx−x+1≥0 being a convex function such that h(1) = 0.
Differentiating H, we obtain

d

dt
H(t) =− d

dt
µ−(t)log

c(t,−1)

µ−(t)
− d

dt
µ+(t)log

c(t,1)

µ+(t)

−
∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ(t))(∂x logc(t,x)+x+ηδ0)dx.

Moreover we see that∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ(t))(∂x logc(t,x)+x+ηδ0)dx

=−
∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0)
2

dx

+η(δ(t)−δ0)

∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0) dx,

and

η(δ(t)−δ0)

∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0) dx

≤ η|δ(t)−δ0|
(∫ 1

−1

c(t,x)dx

)1/2(∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0)
2

dx

)1/2

≤ 1

2
η2|δ(t)−δ0|2 +

1

2

(∫ 1

−1

c(t,x)dx

)(∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0)
2

dx

)
≤ 1

2
η2|δ(t)−δ0|2 +

1

2

∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0)
2

dx.
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Consequently we obtain

d

dt
H(t)≤−(c(t,−1)−µ−(t))log

c(t,−1)

µ−(t)
−(c(t,1)−µ+(t))log

c(t,1)

µ+(t)

− 1

2

∫ 1

−1

c(t,x)(∂x logc(t,x)+x+ηδ0)
2

dx+
1

2
η2|δ(t)−δ0|2 .

Define the functions D± and D by

D±(t) = (c(t,±1)−µ±(t))log
c(t,±1)

µ±(t)
≥0,

D(t) = D−(t)+D+(t)+
1

2
I(c|c̄).

Let K denote any constant depending only on the values of µ̄±, c̄. We have∥∥∥∥∂x(c(t,·)c̄

)∥∥∥∥
1

≤
∥∥∥∥1

c̄

∥∥∥∥
∞

∥∥∥√c(t,·)∥∥∥
2

∥∥∥∥√c(t,·)∂x log
c(t,·)
c̄

∥∥∥∥
2

≤ K
√
I(c|c̄)≤K

√
D(t) .

Denoting

M(t) = sup
x∈[−1,1]

c(t,x)

c̄(x)
, m(t) = inf

x∈[−1,1]

c(t,x)

c̄(x)
,

we obtain ∥∥∥∥c(t,·)c̄
−m

∥∥∥∥
∞

+

∥∥∥∥c(t,·)c̄
−M

∥∥∥∥
∞

+ |M−m|≤K
√
D(t).

From this, we infer

m(t)

∫ 1

−1

c̄(x)dx≤
∫ 1

−1

c(t,x)dx≤ (m(t)+K
√
D(t))

∫ 1

−1

c̄(x)dx,

which translates into

m(t)(1− µ̄+− µ̄−)≤1−µ+(t)−µ−(t)≤ (m(t)+K
√
D(t))(1− µ̄+− µ̄−),

hence
m≤1/(1− µ̄−− µ̄+)≤K.

Moreover, adding m(t)(µ̄+ + µ̄−)−1 we get

m(t)−1≤m(t)(µ̄+ + µ̄−)−µ+(t)−µ−(t)≤m(t)−1+K
√
D(t)(1− µ̄+− µ̄−),

ending up with

|m(t)−1|≤ |m(t)(µ̄+ + µ̄−)−µ+(t)−µ−(t)|+K
√
D(t)(1− µ̄+− µ̄−).

Finally, we notice that

(c(t,1)−µ+(t))log
c(t,1)

µ+(t)
≥ (c(t,1)−µ+(t))2

c(t,1)+µ+(t)
≥ µ̄+

( c(t,1)
µ̄+
− µ+(t)

µ̄+
)2

c(t,1)
µ̄+

+ µ+(t)
µ̄+
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≥ µ̄+(c(t,1)−µ+(t))2

K(1+
√
D(t))

.

This can be summarized as

|c(t,1)−µ+(t)|+ |c(t,−1)−µ−(t)| ≤ K(
√
D+(t)+

√
D−(t))

√
1+
√
D(t)

≤ K
√
D(t)+D(t)3/2 .

Putting everything together, we have

|µ+(t)−mµ̄+|≤ |µ+(t)−c(t,1)|+ |c(t,1)−µ+(t)|≤K
√
D(t)+D(t)3/2 ,

and finally |m(t)−1|≤K
√
D(t)+D(t)3/2. This leads finally to

|µ+(t)− µ̄+|+ |µ−(t)− µ̄−|+‖c(t,·)− c̄‖∞≤K
√
D(t)+D(t)3/2 .

By construction, since H≥0, limsup−D+η|δ−δ0|2≥0. Since the last part goes to 0,
this leads to liminfD(t) = 0 and thereby to liminfH(t) = 0. Finally, let ε>0. Assume
limsupH≥ε. There exists C(ε)>0 such that H(t)≥C(ε) for all t.

Let

G(δ) =
eηδ−e−ηδ∫ 1

−1
e−

x2−1
2 −ηδxdx+eηδ+e−ηδ

=
2δ sinh(ηδ)

F (δ)
,

where we have kept the notation (3.21) for F .
Applying proposition 19 with δ= δ,δ̄, it yields the following result.

Lemma 20. The solutions (c̄, µ̄−,µ̄+) and (c,µ−,µ+
) to (5.25) for respectively δ̄ and δ

defined by (6.39) satisfy

lim
t→∞

δµ(t) =G( lim
t→∞

δ(t)),

lim
t→∞

δµ̄(t) =G( lim
t→∞

δ̄(t)).

Lemma 21. Let (c,µ−,µ+) be solution to (1.2) - (1.4). Let δ̄∞= limsupt→∞δµ(t) and
δ∞= liminft→∞δµ(t), then the following inequalities hold

G(δ∞)≤ δ∞≤ δ̄∞≤G(δ̄∞).

Proof. By definition (6.39) of the functions δ and δ̄, we see that limt→∞δ(t) =
liminft→∞δµ(t) and limt→∞ δ̄(t) = limsupt→∞δµ(t).

Using lemma 11, it follows that for all time

δµ(t)≤ δµ(t)≤ δµ̄(t) ,

hence the result follows from lemma 20.

As a consequence, we have

Lemma 22. Let (c,µ−,µ+) be solution to (1.2) - (1.4). Then we have

−α≤ δ∞≤ δ̄∞≤+α.

Furthermore, if we can ensure δ∞>0 (resp. δ̄∞<0), then we have lim+∞ δµ=α (resp.
−α).
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Proof. We first recall that the steady states of the system (1.2) - (1.4) are characterized
by δµ= δ∈{−α,0,α} where 0≤α≤1 and with α= 0 if η≤η0 and α is the positive
solution in ]0,1[ of equation (1.8) if η>η0.

We prove it only for one side (the other comes from a symmetry argument). If δ̄∞≤0,
then the proof is achieved. If δ̄∞>0, then the inequality δ̄∞≤G(δ̄∞) is equivalent to
R(δ̄∞)≤0 (notations from the proof of lemma 8) and thereby to δ̄∞≤α.

As a final consequence, we have a few nonquantitaive convergence

Proof. From lemmas 20, lemma 21 and lemma 22 we infer that if we have a limit for
δµ and we are in position to apply lemma 19. The last point is a consequence of lemma
18.

7 Conclusion

Recently the first world cell race was organized by Maiuri et al [20]. During this race,
different types of cells were put on one-dimensional adhesive tracks. Collecting cell
trajectories showed a correlation between instantaneous cell velocity and persistence
time, defined as the average time a cell maintains its direction of movement.

Later in [21], the authors proposed a 1D model of cell crawling migration which
describes the dynamics of a marker of back-polarity (of concentration c(x,t)), binding
to actin filaments subjected to a retrograde flow of constant value in the cell V (t). The
basic idea of this coupling model is that V (t) is itself driven by a front-back asymmetry
in c(x,t). Assuming a fast dynamics of the marker (relative to the actin flow), the
average concentration is approximated by the quasi-stationary state:

c̄(x) =Ce−V x/D,

where D is the diffusion coefficient of c. The dynamics of the actin flow velocity V is
given by

dV

dt
=γ(V −V ∗),

with

V ∗=β

(
c(0,t)

Cs+c(0,t)
− c(L,t)

Cs+c(L,t)

)
,

where γ−1 is a relaxation time scale associated with acin flow fluctuations, β is a param-
eter controlling the intensity of the coupling (also corresponding to the maximal actin
speed), Cs is a saturation parameter for the marker concentration (meaning the maxi-
mal concentration of ”activated” molecules). Adding some stochasticity to the previous
model (with noise in both c and V ) the author of [21] predicts a rich motility phase di-
agram in the parameters β and Cs. The phases are: (i) ”diffusive” cell migration, when
β is low, (ii) ”persistent” migration, when β is large, and (iii) ”intermittent” migration
(corresponding to the low Cs regime), when the cell stochastically switches between
”diffusive” and ”persistent” motility. It was also shown in [21] that experimental cell
trajectories could be broadly classified into these three phases.

The present paper considers the full dynamics of a 1D model which is based on the
same ideas as thoses set in [21]. Here we prove that it yields the same state phase
behavior, hence giving a mathematical justification to the assumptions made in [21].
Future work [14] would be to extend the results of this paper to a two-dimensional
geometry with free boundary.
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