
HAL Id: hal-03779081
https://hal.science/hal-03779081

Submitted on 16 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differentiable Piano Model for MIDI-to-Audio
Performance Synthesis

Lenny Renault, Rémi Mignot, Axel Roebel

To cite this version:
Lenny Renault, Rémi Mignot, Axel Roebel. Differentiable Piano Model for MIDI-to-Audio Perfor-
mance Synthesis. 25th International Conference on Digital Audio Effects (DAFx20in22), Sep 2022,
Vienna, Austria. �10.5281/zenodo.7092602�. �hal-03779081�

https://hal.science/hal-03779081
https://hal.archives-ouvertes.fr

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

DIFFERENTIABLE PIANO MODEL FOR MIDI-TO-AUDIO PERFORMANCE SYNTHESIS

Lenny Renault, Rémi Mignot and Axel Roebel

UMR 9912
STMS, IRCAM, Sorbonne Université, CNRS, Ministère de la Culture

Paris, France
renault@ircam.fr | mignot@ircam.fr | roebel@ircam.fr

ABSTRACT

Recent neural-based synthesis models have achieved impressive
results for musical instrument sound generation. In particular, the
Differentiable Digital Signal Processing (DDSP) framework en-
ables the usage of spectral modeling analysis and synthesis tech-
niques in fully differentiable architectures. Yet currently, it has
only been used for modeling monophonic instruments. Lever-
aging the interpretability and modularity of this framework, the
present work introduces a polyphonic differentiable model for pi-
ano sound synthesis, conditioned on Musical Instrument Digital
Interface (MIDI) inputs. The model architecture is motivated by
high-level acoustic modeling knowledge of the instrument which,
in tandem with the sound structure priors inherent to the DDSP
components, makes for a lightweight, interpretable and realistic
sounding piano model. The proposed model has been evaluated
in a listening test, demonstrating improved sound quality com-
pared to a benchmark neural-based piano model, with significantly
less parameters and even with reduced training data. The same
listening test indicates that physical-modeling-based models still
achieve better quality, but the differentiability of our lightened ap-
proach encourages its usage in other musical tasks dealing with
polyphonic audio and symbolic data.

1. INTRODUCTION

The development of synthesizers and digital instruments has been
prevalent in the evolution of music composition and production.
Indeed, synthesizers led composers, musicians and sound design-
ers to explore new sounds beyond those offered by acoustic instru-
ments. Concurrently, the improvements made in instrument mod-
eling have allowed for democratizing the usage of acoustic instru-
ments to other musicians, by leveraging their sound in restricted
contexts and with simpler controls. As such, instrument models
need to be controllable to be usable in music creation workflows,
while still being realistic by reproducing subtleties in the modeled
instrument sounds.

Over the last several years, neural-based generative models
have encountered success in producing convincing audio signals
thanks to their expressiveness and the release of associated datasets.
For monophonic and percussive sound synthesis, such models in-
clude autoregressive models [1], recurrent models [2], (variational)
auto-encoders [3, 4], distillation model [5, 6] and Generative Ad-
versarial Network (GAN) [7, 8, 9]. The more recently introduced
DDSP method [10] modernized the spectral modeling paradigm

Copyright: © 2022 Lenny Renault et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

[11] by implementing traditional synthesizers and digital signal
processing operations as differentiable layers controlled by a Deep
Neural Network (DNN). Those components are designed to ex-
hibit characteristic properties of audio signals, such as periodicity
and harmonicity. As these strong biases on the sound structure
are introduced, the amount of training data and model parame-
ters can be significantly reduced and the synthesis process is more
interpretable. In the light of such results, other synthesizers and
signal processing methods have been added to the set of DDSP
components and were used in end-to-end neural models, such as
wavetables [12], waveshapers [13] and infinite impulse response
filters [14]. For better integration within music creation frame-
works, there has been several improvements [15, 16, 17] to make
the method compatible with the MIDI protocol. Polyphonic mix-
tures of audio signals can also be synthesized by combining mul-
tiple monophonic DDSP-based models [18, 19].

For the moment, all these previous methods have only been
applied for monophonic instrument sound synthesis. While DDSP
does not prevent its application for the polyphonic case, to the
best of the authors’ knowledge, no extension has been made to
the DDSP components for handling simultaneous pitches on a sin-
gle instrument. The piano, in particular, has been one of the most
popular instruments through the history of western music, notably
because of its versatility as a polyphonic instrument with a wide
tessitura and dynamic range. The controls for playing it remain
fairly simple despite its complexity, which inspired researchers for
modeling it with different simulation systems for decades before
the advent of deep generative models.

The contribution of this work if twofold. First, we propose
an extension of a MIDI-compatible DDSP model to handle poly-
phonic input. Secondly, exploiting the modularity of the DDSP
components, we conceive a model architecture that is motivated
by high-level modeling knowledge, including several sub-models
dealing with specificities of the piano sound, such as partials inhar-
monicity and beating. Trained on a publicly available dataset, the
proposed approach of a fully differentiable piano synthesizer has
been evaluated in a subjective evaluation. The results demonstrate
that with significantly less parameters, and even with less training
data, the proposed model achieves significantly better subjective
evaluation than a state of the art neural-based model.

This paper is organized as followed. In section 2, different
methods for piano sound synthesis are reviewed. The proposed
model is then presented in section 3, while its training procedure is
explained in section 4. Finally, model evaluation and comparison
with other piano synthesis models are made in section 5. As a
complement of this paper, audio samples and the source-code are
provided online 1.

1https://github.com/lrenault/ddsp-piano

DAFx.1

https://www.stms-lab.fr/
mailto:renault@ircam.fr
mailto:mignot@ircam.fr
mailto:roebel@ircam.fr
http://creativecommons.org/licenses/by/4.0/
https://github.com/lrenault/ddsp-piano

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

2. METHODS FOR PIANO SYNTHESIS

Piano sound synthesis can be achieved using different methods,
with varying complexity, needs for data and overall quality.

The most common approach in the industry, which is also the
most straightforward, is the concatenative synthesis, or sampling-
based synthesis [20]. High-fidelity recordings of isolated notes are
played back upon triggers from the MIDI input. The notes can be
recorded at different velocities to cover the amplitude range, which
can require significant memory storage, depending on the chosen
resolution. While single notes can be perceived as realistic, mu-
tual interactions between simultaneous notes (such a sympathetic
resonances) cannot be reproduced with this approach and the user
has very limited control over the piano model.

On the contrary, physical-modeling-based systems rely on ex-
plicitly modeling the sound generation and propagation processes
in the physical instrument. These systems can achieve realistic, in-
terpretable and controllable sound synthesis, but they require ex-
tensive modeling and precise measurements of physical compo-
nents [21]. For practical usages, such approaches can be efficiently
implemented with digital waveguides [22] or modal synthesis [23].

Signal-based methods can model the instrument by analysis
and synthesis of audio examples with hand-crafted models. Un-
derlying models include additive synthesis [24] and source-filter
models [25]. These lightweight approaches are controllable and
flexible as they can be directly applied to other instruments, but
they often lack realism in the synthesis because of insufficient rep-
resentation of physical details of the instrument or too simplistic
controls.

Finally, data-driven neural-based systems train black-box mod-
els to synthesize audio from a large annotated dataset. Most of
these models adapt successful text-to-speech techniques to the task
of MIDI-to-audio synthesis for piano. The first works for this cat-
egory of systems synthesize audio directly from the MIDI data
using an auto-regressive WaveNet [1]. Others works make use
of an acoustic model followed by a vocoder model to synthesize
audio while usually predicting Mel-spectrograms as the interme-
diate audio representation [26, 27, 28]. The authors from [29]
achieved better quality by predicting MIDI-filter-bank-based spec-
tra instead: this time-frequency representation is a variant of the
Mel-spectrogram where the filters for computing it from the Short-
Term Fourier Transform (STFT) are centered around the MIDI
note frequencies instead of the Mel frequencies. While differen-
tiable, these neural-based systems require a significant amount of
annotated recordings [1] and they do not explicitly model instru-
ment properties. Controls on these systems are limited to the con-
ditioning inputs provided during the model training.

3. PROPOSED APPROACH

The proposed synthesis model is a harmonic-plus-noise synthe-
sizer [11] in a polyphonic context. It separately generates the in-
harmonic and noisy components yadditive and ynoise of up to P
simultaneous notes. The synthesized audio ŷ is produced by sum-
ming all monophonic signals and by applying the estimated effect
IRi of the recording environment i:

ŷ(t) = (IRi ∗
P∑

p=1

(yadditive
p + ynoise

p))[t]. (1)

The following sections detail the sub-modules composing the
full model architecture, which is illustrated in Figure 1.

3.1. Inputs

The model is conditioned by all the controls a pianist has over its
instrument, being the sequence of played notes, the pedals action
and the recording environment.

By taking inspiration from the monophonic conditioning of
DDSP [10, 17] and the polyphonic piano roll representation for
piano synthesis and transcription [26, 30], we encode the played
notes as a multi-channel sequence of active pitches and onset ve-
locities X(t):

X(t) = {xpitch
p (t), xvel

p (t)}p≤P . (2)

For a monophonic channel p, the active pitch component
xpitch
p (t) indicates the pitch (in the MIDI scale) of the note cur-

rently being active, taking the sustain pedal effect into consider-
ation. A pitch of 0 implies that no note is played at time t. The
force at which the note was played is given only at onset time in the
onset velocity component xvel

p (t). The information for each note
is contained within the same channel p in order for the model to
more easily capture the monophonic string vibration. This encod-
ing of the performance allows to disentangle sustained notes from
repeated notes within an active sustain pedal, as in [26], while re-
ducing the sparsity of regular piano rolls [31].

The una corda, sostenuto and sustain pedal signals are ex-
tracted from the MIDI 64, 66 and 67 Control Change (CC) chan-
nels at the same frame rate as the conditioning signal X(t), and
stacked into the pedals signal xped(t).

Finally, the piano model, the room reverberation and the mi-
crophones choice and placement are all entangled independently
of the piano performance: each recording environment is provided
as a one-hot encoding i ∈ [1, I], for I different recording environ-
ments in the dataset.

3.2. Global model

One piano model can differ from another one because of its size
and its tuning, which changes its inharmoncity profile over the tes-
situra [32] and its global detuning. We thus use an embedding
layer, the Z-Encoder, to compute an embedding vector zi, an in-
harmonicity modifier bi and an instrument specific detuning δfi
for each recording environment i.

Also, during a performance, the pedals activity and the inter-
action between simultaneous notes can change the timbre of an
individual note [21]. This effect is modeled by a C-dimensional
context signal c(t), which will be applied to all monophonic chan-
nels to influence the computation of the synthesizer controls. This
context signal is computed by the context network F , built upon a
Recurrent Neural Network (RNN), from the piano embedding zi,
the pedal signals xped(t) and the conditioning signal X(t):

c(t) = F{X(τ),xped(τ),zi}τ≤t. (3)

3.3. Monophonic string model

When a piano key is released, the damper mechanism is used to
attenuate the string in order to stop it from vibrating. However, the
total energy absorption is not instantaneous with this system, and
higher notes do not even have dampers [21]. Therefore, the piano

DAFx.2

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Piano ID

Pedals
Context Network

GRU

Li
ne

ar

Additive

Filtered
Noise

Reverb

Target audio Synthesized audioMulti-Resolution Spectral Loss

Conditioning
(pitches, velocities)

Note Release

detunings

inharmonicity

Z-Encoder

Embedding

L1

IR
Monophonic Network

Li
ne

ar

Li
ne

ar

GRU

Li
ne

ar

IR Dictionary

Embedding

Extended pitches

L1

Detuner
Linear

tanh

tanh

Li
ne

ar

Inharmonicity
Network

Linear exp

noise
magnitudes

amplitudes

modifiers

Figure 1: Full architecture of the proposed piano sound synthesizer. The blue boxes represent the trained modules for the control of the
synthesis. The synthesis modules from DDSP are represented by yellow boxes (Additive, Filtered Noise, and Reverberation). Finally, the
Multi-Resolution Spectral Loss compares the input target signal (bottom left) and the output synthesized sound (bottom right).

string still vibrates for a certain amount of time after the note off-
set. Taking inspiration from the release parameter of digital syn-
thesizers, a Note Release module is used to generate an extended
pitch signal x̃pitch(t) by prolonging the active pitch component of
the conditioning signal xpitch(t) by a learned duration Trelease.
Note that the extended pitch conditioning signal x̃pitch(t) does
not replace the original pitch conditioning xpitch(t) as we would
lose the note offset information.

Furthermore, the stiffness of piano strings induces the partials
of a piano note to not be pure harmonics of the fundamental fre-
quency. Such characteristic is implemented with an explicit inhar-
monicity model over the piano tessitura, taken from [32]: the in-
harmoncity factor along the p-th channel Bp(t) is computed from
the extended pitch x̃pitch

p (t) and the instrument specific modifier
bi:

Bp(t) = exp (αT x̃
pitch
p (t) + βT)

+ exp (αB x̃
pitch
p (t) + βB + γBbi),

(4)

with {αT , βT } (resp. {αB , βB}) the parameters of the linear
asymptote in the treble (resp. bass) range. Treble asymptotes are
the same for all pianos, according to [33], so bi should only influ-
ence the bass asymptote, weighted by the parameter γB .

Another specificity of the piano sound is the duplication of
higher strings to even out the loudness and the duration of notes
across the whole tessitura. As the duplicated strings are slightly
detuned from one another, partials beating can be perceived [34].
For nstrings sub-strings per note, a detuning factor δf of the funda-
mental frequency is computed by the detuner sub-model, by sum-
ming the global instrument-specific detuning δfi with estimated
detunings of the sub-strings by a time-distributed linear layer gδ:

δfp(t) = tanh(gδ(x̃
pitch
p (t)) + tanh(δfi). (5)

The tanh activation function scales the detuning of each contribu-
tion to the semi-tone range, as in [17].

Finally, the spectral envelopes of notes and their evolution is
predicted by the monophonic network G. It is implemented as
a causal RNN that computes the remaining synthesizers controls
from the extended pitch x̃pitch(t), the conditioning vector X(t)
and the context vector c(t). As it is applied along each channel
p ≤ P , this recurrent network learns a monophonic string model
to predict the notes amplitude a(t), the energy distribution h(t)
for K partials and noise filter magnitudes η(t) :

ap(t),hp(t),ηp(t) = G{Xp(τ), x̃
pitch
p (τ), c(τ)}τ≤t. (6)

3.4. Differentiable Synthesizers

The differentiable synthesizer layers convert the network controls
into audio signals, in the spectral modeling paradigm [11]. Synthe-
sizer controls are upsampled from frame rate to sample rate, with
linear interpolation as in [10].

For a monophonic channel p ≤ P , the additive synthesizer
generates the (quasi-)harmonic audio component yadditive

p (t) of
the piano notes. It sums multiple sinusoids at frequencies com-
puted from the extended pitch x̃pitch

p (t), inharmonicity Bp(t) and
detuning δfp(t) controls, and with amplitudes provided by the
global amplitude ap(t) and harmonic distribution hp(t):

yadditive
p (t) =

ap(t)

nstrings

nstrings∑
n=1

K∑
k=1

hp,k(t) sin(Φp,n,k(t)), (7)

where Φp,n,k(t) is the instantaneous phase of the k-th partial given
by:

Φp,n,k(t) = 2π

t∑
τ=0

fp,n,k(τ). (8)

The inharmonic frequencies {fp,n,k(t)}k≤K are computed as
in [32] from the fundamental frequency fp,n,0(t) and the inhar-

DAFx.3

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

monicity coefficient Bp(t):

fp,n,k(t) = kfp,n,0(t)
√

1 +Bp(t)k2, (9)

with the fundamental frequency fp,n,0 deduced from the detuned
pitch x̃pitch

p + δfn with the MIDI note-to-frequency conversion
formula:

fp,n,0(t) = 440× 2
1
12

(x̃pitch
p (t)+δfn(t)−69). (10)

The subtractive synthesizer generates the residual noises that
happen during a performance, mainly the hammer and key noise
upon note onsets, the pedal noises and even the recording back-
ground noise. As in [10], a white noise N(t) is filtered in the
frequency domain with the noise filter magnitudes η(t) computed
by the model:

ynoise
p (t) = DFT−1(ηp(t)N(t)) (11)

The room acoustics of the piano recordings is modeled by a
differentiable convolutional reverberation. An impulse response
IRi is learned for each recording environment i and it is applied to
the sum of audio signals from the bank of additive and subtractive
synthesizers (equation 1).

4. EXPERIMENTAL SETUP

4.1. Dataset

The proposed model is trained and evaluated with performances
from the MAESTRO v3.0.0 dataset [1]. This dataset contains al-
most 200 hours of professional piano performances spanning over
I = 10 editions of the International Piano-e-competition. Pianists
performed on Yamaha Disklaviers where MIDI data were recorded
and aligned with the audio recordings. The ground-truth audio per-
formances are downsampled to 16kHz and downmixed to mono,
while the conditioning and pedals signals are extracted from the
MIDI data with a frame rate of 250.

The model is trained with 3-second long segments, with a 50%
overlap between two consecutive segments. Segments containing
more simultaneous notes than the model polyphonic capacity P
are removed from the training set.

4.2. Baseline systems

Our system is compared with other synthesis methods briefly pre-
sented in section 2. All samples synthesized with the following
systems are also downsampled to 16kHz and converted to mono.

The open-source software Fluidsynth 2 is used as a
sampling-based baseline system. The audio is synthesized by
concatenating note recordings from the YDP Grand Piano 3

soundfont accordingly to the MIDI data.
As for the physical-modeling-based reference system, we

chose the commercial software Pianoteq 74, which relies on
modal synthesis [23]. Samples are generated using the default pre-
set NY Steinway D Classical.

Finally, the Text-to-Speech (TTS)-inspired model from [29] is
selected for the neural synthesis baseline. The taco3-mfb-noi

2https://www.fluidsynth.org/
3https://freepats.zenvoid.org/Piano/

acoustic-grand-piano.html
4https://www.modartt.com/pianoteq

Model Parameters
TTS-baseline 31.4M
- Tacotron-2 30.6M
- NSF 736.3k
Default 521.5k
- Sub-models 281.5k
- Reverb 240k

Table 1: Approximate number of trainable parameters for evalu-
ated neural-based models and their sub-models.

variant exhibits the best quality according to their experiments.
It is also trained on the MAESTRO dataset and it consists of
a modified Tacotron-2 model [35] predicting MIDI-filter-bank-
based spectra from active piano rolls. This time-frequency rep-
resentation is then converted to audio with a simplified Neural
Source Filter (NSF) model [36] with white noise as source.

4.3. Model implementation details

Our proposed system is implemented with a polyphonic capacity
of P = 16. The Z-Encoder outputs an embedding zi of size 16 for
each recording environment. The context network F is composed
of a time-distributed dense layer of size 32 with leaky ReLU ac-
tivation, followed by a causal Gated Recurrent Unit (GRU) layer
of hidden size 64 and with layer normalization, then by a time-
distributed linear layer outputting a context signal of size 32.

The Note Release module is initialized to extend the pitch con-
ditioning signal by Trelease = 1s. The inharmonic model is ini-
tialized with the parameters estimated in [32]: α0

B = −0.0847,
β0
B = −5.82, α0

T = 0.0926 and β0
T = −13.64. We generate

nstrings = 2 string signals per note, but their detuning are ini-
tialized to zero in the linear model gδ of the detuner. The model-
specific inharmonicity and detuning modifiers of the Z-encoder are
also set first to zero, to learn a generic piano model during early
training.

The monophonic model G input is processed by a 128-unit
time-distributed dense layer with leaky ReLU activation, then by a
192-unit GRU layer and another dense layer of size 192 with leaky
ReLU activation. Layer normalization is then applied before com-
puting the note amplitude, K = 96 harmonic amplitudes and 64
noise filter coefficients with a linear layer.

Finally, the different reverb impulse responses are 1.5 seconds
long at 16kHz (24k parameters for each recording environment),
with the same random initialization as in [13] and the inference
decay function from [17].

The total number of training parameters in this default config-
uration is given in Table 1, against TTS, the neural-based bench-
mark from Section 4.2.

4.4. Training

As with many recent neural-based audio synthesis methods [10,
13, 29], the model is trained to minimize the spectral difference be-
tween the target audio y and the synthesized audio ŷ with a multi-
resolution spectral loss. The component Lm of the spectral loss
with resolution m compares the two audio signals by summing the
L1 differences between both their spectrogram magnitudes and log

DAFx.4

https://www.fluidsynth.org/
https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
https://www.modartt.com/pianoteq

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

spectrograms, as in [10]:

Lm(y, ŷ) = ∥|STFTm(y)| − |STFTm(ŷ)|∥1
+ ∥ log |STFTm(y)| − log |STFTm(ŷ)|∥1,

(12)

with ∥.∥1 the L1 norm and STFTm the short-time Fourier trans-
form with FFT size m ∈ {2048, 1024, 512, 256, 128, 64}.

In preliminary experiments, it has been observed that the re-
verb module tried to model the notes sustain and release behaviors,
which resulted in abnormal reverberations and unrealistic unre-
verbed signals. As these behaviors should be learned by the mono-
phonic model G instead, a L1 regularization loss LL1 is applied on
the impulse response parameters.

Furthermore, the correct placement of partials in frequency is
decisive for training stability, especially during early training. As
partial frequencies in our system are deduced from explicit sub-
modules, we propose a two-phase training procedure for separately
optimizing the pure DNN components and the explicit sub-models.

During the first training phase, weights responsible for com-
puting the partials frequencies are frozen to their initial values
from Section 4.3, as they should be close to their optimal values:
concerned weights are those from the detuner, the inharmonicity
model and the model-specific detuning and inharmonicity modi-
fiers of the Z-encoder. The other modules can then learn the notes
spectral envelopes, residual noises and the reverb without displac-
ing the note partials. The Adam algorithm [37] is used to optimize
the model parameters, with a learning rate of 10−3 and a batch size
of 6, with regard to the first loss function L1:

L1 =
∑
m

Lm(y, ŷ) + λIRLL1(IRi), (13)

with λIR the balancing weight for the reverb regularization loss
with regard to the spectral loss, here set to 0.01.

During the second training phase, the trainability of the model
weights are reversed compared to the first training phase. In such
manner, the system should match the learned partials frequency
and beating to each piano specifically. For training stability pur-
pose, a L1 regularization loss is applied on the inharmonicity
model parameters deviation from their initial values. During this
second training phase, the loss L2 can be expressed as:

L2 =
∑
m

Lm(y, ŷ) + λB

∑
θ∈{αB ,βB ,αT ,βT }

|θ − θ0|, (14)

with λB = 0.1 the weight on the inharmonicity model regular-
ization loss with regard to the spectral loss. The weights of the
detuner, inharmonicity model and Z-Encoder model-specific mod-
ifiers are fine-tuned by Adam with a learning rate of 10−5 and a
batching size of 3.

The whole system can be optimized and fine-tuned by succes-
sively alternating between these two training phases. For our ex-
periments, the system is trained with the first step for 2 full epochs
on the training data until note partials are correctly generated by
the additive synthesizer. It is then fine-tuned for 1 full epoch on
the training data with the second training step. Finally, the first
training step is applied again for further fine-tuning until the mini-
mal validation loss value is reached. The full model training takes
about 340k steps.

4.5. Ablation study

The relevance of our system sub-modules are evaluated by train-
ing and evaluating alternate versions of our approach. All follow-
ing systems are trained with the procedure exposed previously in
Section 4.4.

The Deep Inharmonicity variant replaces the explicit inhar-
monicity model from [32] by a DNN. As the deep inharmonicity
model should ideally reproduce the equation 4, we use a Multi-
Layer Perceptron (MLP) with sinusoidal activations as in [13].
The model takes the extended pitch conditioning and the model-
specific inharmonicity modifier through 3 dense layers with sinu-
soidal activation and a hidden size of 8, then through a linear layer
with ReLU activation for obtaining the note inharmonicity factor.
The final output is scaled in order to keep the inharmoncity factor
within a realistic range B ∈ [0, 0.02].

The Reduced-context variant imitates sample-based synthesis
by removing the conditioning input from the context vector com-
putation. Since the synthesizer controls are computed on all mono-
phonic channels independently, a monophonic note control would
not have information on which other notes are also played, thus
preventing mutual interaction between notes.

The No Fine-tuning variant is the default system without ap-
plying the fine-tuned values of the inharmonicity model and the
detuner. This variant is an approximation of a model trained only
with the first training phase of Section 4.4.

The DDSP components exploits sound structure priors that en-
ables model training with low amount of data. Subsequently, we
test the quality of our system on a simpler task but with reduced
data by only modeling a single piano model. The 2009-only sys-
tem is trained by only keeping training and validation data from
the year 2009 in the MAESTRO dataset, which amount for about
20 hours.

5. EVALUATION

The default configuration of our approach presented in Sections 3
and 4.3 is compared against its ablated variants from Section 4.5
and the other synthesis methods from Section 4.2.

5.1. Reconstruction quality

A first indicator of a model capacity to correctly reproduce its tar-
get data is the spectral loss value on unseen samples during train-
ing. The values of the spectral loss, as defined in Section 4.4, on
the test recordings in the MAESTRO dataset are given in Table 2
for all evaluated systems.

Spectral Loss
Model MAESTRO-all MAESTRO-2009
Deep-Inharmonicity 5.89 (0.77) 5.93 (0.84)
Reduced-context 5.49 (0.73) 5.53 (0.66)
No Fine-Tuning 5.48 (0.78) 5.69 (0.83)
2009-only - 5.61 (0.73)
Default 5.48 (0.76) 5.69 (0.83)

Table 2: Systems evaluation on the MAESTRO test set and the
2009 year test subset only. Measured by mean value of spectral
loss difference with the original recordings (with standard devia-
tion in parenthesis). Low loss value indicates better reconstruction
quality.

DAFx.5

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

For all variants, the loss values are higher on the 2009 sub-
set than on the whole MAESTRO test set, which implies that this
recording environment was one of the hardest to model. The sys-
tem trained solely with data from the year 2009 obtains the same
reconstruction quality as the default configuration on the 2009 sub-
set. Therefore, if one wants to profile a single piano model, train-
ing on the full MAESTRO dataset is not necessary and smaller
aligned datasets could be used instead [38].

The Deep Inharmonicity variant has higher loss values on both
test sets than other variants relying on the explicit inharmonicity
model from [32]: this explicit model proves to be beneficial for
the system as it allows it to reproduce the spectral envelopes more
faithfully with the additive synthesizer.

No statistical difference can be observed on the full test set
by reducing the context. Reverb and the piano model embedding
are enough to condition the global timbre in this classical reper-
toire. Hence, because of its reduced complexity, the Reduced-
context variant converges faster than the default configuration and
can achieve better reconstruction quality for the same number of
training epochs, which can explain its better performances on the
2009 subset. Mutual interaction between notes (sympathetic res-
onances) is more exploited in contemporary music for instance:
using such examples may help the system learning this specificity.

The approach also performs similarly without applying the
fine-tuned inharmonicity and detuning parameters. Either the sec-
ond training phase from Section 4.4 could not successfully fine-
tune these parameters to their optimal values, or their initial values
were already sufficient for allowing the whole system to converge.

In conclusion, one can train the proposed approach with a sin-
gle piano model, with reduced context and by only applying the
first training phase from Section 4.4, but keeping the explicit in-
harmonicity model is crucial for faster training while getting simi-
lar reconstruction quality.

5.2. Listening test

We conducted a listening test for gathering Mean Opinion Score
(MOS) for all systems under evaluation. 11 performances were
kept from the test data, covering all recording environments and
with a diversity of composers, registers and note densities. The
first 9 seconds of the performances were synthesized with all sys-
tems, which, with the real recordings, gives 99 audio samples to
evaluate. Listeners were asked to rate their overall quality with a
scale from 1 (very annoying) to 5 (real recording). In each trial,
2 samples from each of the 8 systems and 2 real recordings were
randomly presented to the listener for rating. We gathered 52 par-
ticipants that are musicians or audio professionals: 14 among them
have notions of piano playing and 29 have been playing the instru-
ment for several years. The results are reported in Figure 2.

The results from the previous reconstruction quality evaluation
can be confirmed as the proposed system is rated similarly to its
ablated versions, with the exception of the Deep Inharmonicity
model having lower scores. Hence the quality improvement by
using the explicit inharmonicity model is confirmed perceptually.
For the tested samples, the natural beating between simultaneous
notes in harmony may be sufficient for achieving realistic partials
beating, and the mutual notes interaction is eventually negligible
in front of the direct notes sound. Since single piano modeling is
possible with our approach, it would be interesting to investigate
the minimum amount of training data needed while preserving the
perceived quality.

Figure 2: MOS per system with 95% confidence intervals. Better
sounding models have higher mean ratings. Scores are separated
between non-pianists and people with notions of piano playing.

All variants of our approach, including the model trained on
a single piano, were preferred over the neural-based TTS bench-
mark. Even though the TTS baseline is more versatile for audio
synthesis, as it was designed for speech synthesis, our approach
is better suited for the task of piano sound synthesis: it achieves
better sound quality with significantly less training parameters, as
shown in Table 1.

The physical-modeling-based method has the best overall
quality, even slightly better than the real recordings, as in [29].
The varying noise and recording quality in the real samples can be
perceived as annoying compared to the clean synthesis offered by
the Pianoteq software. As the quality of the training data is the
upper bound limit, cleaner recordings can help the system achiev-
ing better synthesis quality. However, there is still improvements
to be made on the system for actually reproducing the quality of
the target data. As it stands, compared to the sampling-based sys-
tem, the quality of our DDSP-based piano synthesizer is on par,
according to the piano players, and slightly lower for the other lis-
teners.

It is worth noticing that piano players are less convinced by
the Fluidsynth concatenative synthesizer than non-piano players:
they are more sensitive to an unrealistic feature in this synthesis
approach, which can be the lack of interaction between notes, the
constant use of the same samples for repeating notes or the lack of
samples for correctly covering the velocity range.

6. CONCLUSIONS

This work presents an extension of the DDSP approaches to poly-
phonic instruments by designing a differentiable piano synthesizer
motivated by high-level modeling knowledge. The approach re-
lies, in particular, on an explicit model to account for the inhar-
monicity of the notes partials, which helps reproducing the spec-
tral envelope of piano notes. In subjective evaluation, our model,

DAFx.6

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

with significantly less parameters, obtains better synthesis quality
than a state-of-the-art neural-based model. Its quality also does
not decrease for the task of single piano modeling, which makes
it usable for tasks with lower amount of training data. However,
the proposed two-phase training does not improve the model per-
formances compared to a simple training while fixing the explicit
sub-models. Future works will investigate different approaches for
training the explicit sub-models within this deep generative model.

The proposed approach does not outperform sampling-based
and physical-modeling-based approaches, and quality can be im-
proved by further integration of acoustic modeling knowledge for
example. Still, thanks to its interpretability and its differentia-
bility, our lightweight system can find its usage in other poly-
phonic music-related tasks, such as source separation [19] and
self-supervised multi-pitch transcription [39].

7. ACKNOWLEDGMENTS

This work was supported by European Union´s Horizon 2020 re-
search and innovation programme under grant number 951911 -
AI4Media. We would like to thank Erica Cooper, among the au-
thors from [29], for kindly sharing their test samples for our lis-
tening test. Part of this work was performed using HPC resources
from GENCI-IDRIS (Grant 2022-AD011013202).

8. REFERENCES

[1] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Si-
mon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich
Elsen, Jesse Engel, and Douglas Eck, “Enabling factorized
piano music modeling and generation with the MAESTRO
dataset,” in Proc. of the International Conference on Learn-
ing Representations (ICLR), 2019.

[2] Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon
Bottou, and Francis Bach, “Sing: Symbol-to-instrument neu-
ral generator,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[3] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Diele-
man, Mohammad Norouzi, Douglas Eck, and Karen Si-
monyan, “Neural audio synthesis of musical notes with
wavenet autoencoders,” in Proc. of the International Confer-
ence on Machine Learning (ICML). PMLR, 2017, pp. 1068–
1077.

[4] Philippe Esling, Axel Chemla-Romeu-Santos, and Adrien
Bitton, “Bridging audio analysis, perception and synthesis
with perceptually-regularized variational timbre spaces.,” in
Proc. of the International Society for Music Information Re-
trieval (ISMIR), 2018, pp. 175–181.

[5] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro, “Diffwave: A versatile diffusion model for
audio synthesis,” in Proc. of the International Conference on
Learning Representations (ICLR), 2021.

[6] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, Peng Liu,
and Zhou Zhao, “Diffsinger: Singing voice synthesis via
shallow diffusion mechanism,” Association for the Advance-
ment of Artificial Intelligence (AAAI), 2022.

[7] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan
Gulrajani, Chris Donahue, and Adam Roberts, “Gansynth:

Adversarial neural audio synthesis,” in Proc. of the Inter-
national Conference on Learning Representations (ICLR),
2019.

[8] Javier Nistal, Stefan Lattner, and Gael Richard, “DrumGAN:
Synthesis of drum sounds with timbral feature conditioning
using generative adversarial networks,” in Proc. of the Inter-
national Society for Music Information Retrieval (ISMIR),
2020.

[9] Antoine Lavault, Axel Roebel, and Matthieu Voiry, “Style-
WaveGAN: Style-based synthesis of drum sounds with ex-
tensive controls using generative adversarial networks.,” in
Proc. of the 19th Sound and Music Computing (SMC) Con-
ference, 2022, to appear, arXiv preprint arXiv:2204.00907.

[10] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam
Roberts, “DDSP: Differentiable digital signal processing,”
in Proc. of the International Conference on Learning Repre-
sentations (ICLR), 2020.

[11] Xavier Serra and Julius Smith, “Spectral modeling synthesis:
A sound analysis/synthesis system based on a deterministic
plus stochastic decomposition,” Computer Music Journal,
vol. 14, no. 4, pp. 12–24, 1990.

[12] Siyuan Shan, Lamtharn Hantrakul, Jitong Chen, Matt Avent,
and David Trevelyan, “Differentiable wavetable synthesis,”
Proc. of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022, to appear,
arxiv preprint arxiv:2111.10003.

[13] Ben Hayes, Charalampos Saitis, and György Fazekas, “Neu-
ral waveshaping synthesis,” in Proc. of the International So-
ciety for Music Information Retrieval Conference (ISMIR),
2021.

[14] Boris Kuznetsov, Julian D Parker, and Fabián Esqueda, “Dif-
ferentiable IIR filters for machine learning applications,” in
Proc. of the International Conference of Digital Audio Ef-
fects (eDAFx-20), 2020, pp. 297–303.

[15] Rodrigo Castellon, Chris Donahue, and Percy Liang, “To-
wards realistic MIDI instrument synthesizers,” NeurIPS
Workshop on Machine Learning for Creativity and Design,
2020.

[16] Nicolas Jonason, Bob Sturm, and Carl Thomé, “The control-
synthesis approach for making expressive and controllable
neural music synthesizers,” in AI Music Creativity Confer-
ence, 2020.

[17] Yusong Wu, Ethan Manilow, Yi Deng, Rigel Jacob Swavely,
Kyle Kastner, Tim Cooijmans, Aaron Courville, Anna
Huang, and Jesse Engel, “MIDI-DDSP: Hierarchical mod-
eling of music for detailed control,” in Proc. of the Inter-
national Conference on Learning Representations (ICLR),
2022, to appear, arXiv preprint arXiv:2112.09312.

[18] Masaya Kawamura, Tomohiko Nakamura, Daichi Kitamura,
Hiroshi Saruwatari, Yu Takahashi, and Kazunobu Kondo,
“Differentiable digital signal processing mixture model for
synthesis parameter extraction from mixture of harmonic
sounds,” Proc. of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2022, to
appear, arXiv preprint arXiv:2202.00200.

[19] Kilian Schulze-Forster, Clement SJ Doire, Gaël Richard, and
Roland Badeau, “Unsupervised audio source separation us-
ing differentiable parametric source models,” arXiv preprint
arXiv:2201.09592, 2022.

DAFx.7

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

[20] Diemo Schwarz, “Concatenative sound synthesis: The early
years,” Journal of New Music Research, vol. 35, no. 1, pp.
3–22, 2006.

[21] Juliette Chabassier, Modélisation et simulation numérique
d’un piano par modèles physiques, Theses, Ecole Polytech-
nique X, Mar. 2012, Thèse sous la codirection de Antoine
Chaigne, Unité de Mécanique, ENSTA ParisTech.

[22] Jukka Rauhala, Mikael Laurson, Vesa Välimäki, Heidi-
Maria Lehtonen, and Vesa Norilo, “A parametric piano syn-
thesizer,” Computer Music Journal, vol. 32, no. 4, pp. 17–30,
2008.

[23] Balazs Bank and Juliette Chabassier, “Model-based digital
pianos: From physics to sound synthesis,” IEEE Signal Pro-
cessing Magazine, vol. 36, no. 1, pp. 103–114, 2019.

[24] Julius O. Smith and Xavier Serra, “PARSHL: An anal-
ysis/synthesis program for non-harmonic sounds based on
a sinusoidal representation,” in Proc. of the International
Computer Music Conference (ICMC). International Com-
puter Music Conference, 1987.

[25] Henrik Hahn and Axel Röbel, “Extended Source-Filter
Model for Harmonic Instruments for Expressive Control of
Sound Synthesis and Transformation,” in Proc. of the In-
ternational Conference on Digital Audio Effects (DAFx),
Maynooth, Ireland, Sept. 2013, p. 1.

[26] Jong Wook Kim, Rachel Bittner, Aparna Kumar, and
Juan Pablo Bello, “Neural music synthesis for flexible tim-
bre control,” in Proc. of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 176–180.

[27] Hao-Wen Dong, Cong Zhou, Taylor Berg-Kirkpatrick,
and Julian McAuley, “Deep performer: Score-to-audio
music performance synthesis,” Proc. of the IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022, to appear, arXiv preprint
arXiv:2202.06034.

[28] Yin-Jyun Luo Hao Hao Tan and Dorien Herremans, “Gener-
ative modelling for controllable audio synthesis of expressive
piano performance,” in ICML Workshop on Machine Learn-
ing for Media Discovery Workshop (ML4MD), 2020.

[29] Erica Cooper, Xin Wang, and Junichi Yamagishi, “Text-to-
Speech Synthesis Techniques for MIDI-to-Audio Synthesis,”
in Proc. of the 11th ISCA Speech Synthesis Workshop (SSW
11), 2021, pp. 130–135.

[30] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts,
Ian Simon, Colin Raffel, Jesse Engel, Sageev Oore, and Dou-
glas Eck, “Onsets and frames: Dual-objective piano tran-
scription,” in Proc. of the International Society for Music
Information Retrieval Conference (ISMIR), 2018.

[31] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck,
and Karen Simonyan, “This time with feeling: Learning ex-
pressive musical performance,” Neural Computing and Ap-
plications, vol. 32, no. 4, pp. 955–967, 2020.

[32] François Rigaud, Bertrand David, and Laurent Daudet, “A
parametric model of piano tuning,” in Proc. of the Interna-
tional Conference on Digital Audio Effects (DAFx), Septem-
ber 2011, pp. 394–399.

[33] Robert W. Young, “Inharmonicity of plain wire piano
strings,” The Journal of the Acoustical Society of America,
vol. 24, no. 3, pp. 267–273, 1952.

[34] Gabriel Weinreich, “Coupled piano strings,” The Journal of
the Acoustical Society of America, vol. 62, no. 6, pp. 1474–
1484, 1977.

[35] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster,
Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang,
Yuxuan Wang, Rj Skerrv-Ryan, Rif A. Saurous, Yannis
Agiomvrgiannakis, and Yonghui Wu, “Natural tts synthesis
by conditioning wavenet on mel spectrogram predictions,”
in Proc. of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 4779–
4783.

[36] Xin Wang, Shinji Takaki, and Junichi Yamagishi, “Neural
source-filter-based waveform model for statistical parametric
speech synthesis,” in Proc. of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 5916–5920.

[37] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proc. of the International Con-
ference for Learning Representations (ICLR), 2015.

[38] Valentin Emiya, Nancy Bertin, Bertrand David, and Roland
Badeau, “MAPS - A piano database for multipitch estima-
tion and automatic transcription of music,” Research report,
INRIA, July 2010.

[39] Jesse Engel, Rigel Swavely, Lamtharn Hanoi Hantrakul,
Adam Roberts, and Curtis Hawthorne, “Self-supervised
pitch detection by inverse audio synthesis,” ICML Workshop
on Self-supervision in Audio and Speech, 2020.

DAFx.8

	1 Introduction
	2 Methods for piano synthesis
	3 Proposed approach
	3.1 Inputs
	3.2 Global model
	3.3 Monophonic string model
	3.4 Differentiable Synthesizers

	4 Experimental setup
	4.1 Dataset
	4.2 Baseline systems
	4.3 Model implementation details
	4.4 Training
	4.5 Ablation study

	5 Evaluation
	5.1 Reconstruction quality
	5.2 Listening test

	6 Conclusions
	7 Acknowledgments
	8 References

