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AN EQUIVALENCE BETWEEN GAUGE-TWISTED AND

TOPOLOGICALLY CONDITIONED SCALAR GAUSSIAN FREE FIELDS

TITUS LUPU

Abstract. We study on the metric graphs two types of scalar Gaussian free fields (GFF),
the usual one and the one twisted by a {−1, 1}-valued gauge field. We show that the latter
can be obtained, up to an additional deterministic transformation, by conditioning the first on
a topological event. This event is that all the sign clusters of the field should be trivial for
the gauge field, that is to say should not contain loops with holonomy −1. We also express
the probability of this topological event as a ratio of two determinants of Laplacians to the
power 1/2, the usual Laplacian and the gauge-twisted Laplacian. As an example, this gives on
annular planar domains the probability that no sign cluster of the metric graph GFF surrounds
the inner hole of the domain.

1. Introduction

In this article we consider two types of scalar Gaussian free fields (GFF), the usual one
and the one twisted by a {−1, 1}-valued gauge field, and observe that the second is essentially
obtained from the first by conditioning on a topological (more precisely homotopical) event.

We will work on an abstract finite electrical network G = (V,E) endowed with conductances
C(x, y) = C(y, x) > 0 for {x, y} ∈ E. A the set of vertices V will be divided into two parts,
Vint and V∂ , with Vint being considered as the interior vertices, and V∂ as the boundary. The
discrete GFF ϕ with 0 boundary conditions on V∂ is given by the distribution

(1.1)
1

Z
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

Further, in the language of the gauge theory, we consider {−1, 1} as our gauge group, and
take a gauge field σ ∈ {−1, 1}E . The σ-twisted GFF ϕσ with 0 boundary conditions on V∂ has
for distribution

(1.2)
1

Zσ
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(σ(x, y)φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

The gauge field σ corresponds to disorder operators in the language of the Ising model [KC71].
To see the relation between ϕ and ϕσ one has to look at the level of metric graphs. The metric

graph G̃ associated to G is obtained by replacing each discrete edge {x, y} by a continuous line

of length C(x, y)−1 joining x and y. The discrete GFF ϕ has a natural extension ϕ̃ to the

metric graph G̃, which is a continuous Gaussian random field satisfying a Markov property.
This extension has been introduce in [Lup16]. The field ϕ̃, unlike ϕ, is known to satisfy some
exact identities, including for instance the probabilities of crossings. These relations have been
explored in the articles [Lup16, LW18, DPR22, DPR21]; see Section 2.4 for details. The twisted

discrete GFF ϕσ also has a natural extension ϕ̃σ to the metric graph G̃. It is introduced in
this paper in Section 3.1. Unlike ϕ̃, the field ϕ̃σ is not continuous in general, and has one
discontinuity point inside each e ∈ E for which σ(e) = −1. However, the absolute value |ϕ̃σ|
is a continuous field on the whole G̃, since the discontinuities of ϕ̃σ consist in switching to the

opposite sign by keeping the same absolute value. However, by taking a double cover of G̃
induced by the gauge field σ, one can extend ϕ̃σ to a continuous field on the double cover. This
is explained in Section 3.3.
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Figure 1. Conceptual depiction of the metric graph GFF ϕ̃ on an annular
domain. The black dots represent the boundary V∂ . The positive, resp. negative
values of the fields are in red, resp. blue. Left: no sign cluster of ϕ̃ surrounds
the inner hole of the annulus. Right: there is a sign cluster (in red) surrounding
the inner hole.

Let Tσ denote the subset of continuous functions on G̃, made of functions f such that for every
connected component U of the non-zero set {f ̸= 0}, U does not contain loops of holonomy −1
for σ. For the notion of holonomy in this setting (product of the values of σ along the edges
of the loop), we refer to Section 2.1. But let us give an example. Consider a planar annular
domain (one hole), such as depicted on Figures 3 and 1. One can consider a gauge field σ on this
annular domain that gives a holonomy −1 to loops that turn an odd number of times around
the inner hole, and holonomy 1 to other loops; see Figure 3. Then f ∈ Tσ if and only if no
connected component of {f ̸= 0} surrounds the inner hole; see Figure 1.

It is easy to see that |ϕ̃σ| ∈ Tσ a.s., and this is proved in Lemma 3.15 by relying on the

extension of ϕ̃σ to the double cover of G̃. Our main result is the following.

Theorem 1. Let be a gauge field σ ∈ {−1, 1}E. Then

(1.3) P(ϕ̃ ∈ Tσ) =
Zσ

Z
,

where Z and Zσ are the partition functions appearing in (1.1) and (1.2). Moreover, conditionally

on the event {ϕ̃ ∈ Tσ}, the field |ϕ̃| has the same distribution as |ϕ̃σ|.

To obtain the field ϕ̃σ, rather than just the absolute value |ϕ̃σ|, from the field ϕ̃ conditioned

on ϕ̃ ∈ Tσ, one has to additionally apply a deterministic sign flipping procedure across the
discontinuity points. This is explained in Corollary 3.24.

The identity (1.3) is thus a newcomer to the family of exact identities known to be satisfied

by ϕ̃. We would like to emphasize that Theorem 1 does not require at all the graph G to be
planar. However, for planar graphs the subset Tσ is simpler to interpret.

This article is organized as follows. Section 2 consists of preliminaries where we recall some
background that is maybe not common knowledge. In Section 2.1 we recall the notions of
gauge field, gauge equivalence and holonomy in our particular setting where the gauge group is
{−1, 1}. Section 2.2 deals with the discrete GFFs, the usual one and the gauge twisted. Section
2.3 deals with random walk representations of these fields. Section 2.4 recalls the method of the
metric graph and some results for the metric graph GFF. In Section 3 we present the results
of this article and provide the corresponding proofs. In Section 3.1 we introduce the natural
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extrapolation ϕ̃σ of the gauge-twisted GFF ϕσ to the metric graph. In Section 3.2 we consider
the double cover of the discrete graph induced by the gauge field and observe that the usual
discrete GFF and the gauge twisted one are projections of the discrete GFF on the double cover
on two orthogonal subspaces. In Section 3.3 we do the same at the level of the metric graph,
which in particular provides us a continuous extension of ϕ̃σ to the double cover of the metric
graph. In Section 3.4 we give a more detailed statement of Theorem 1 and then prove it. In
Section 3.5 we provide an isomorphism between ϕ̃σ and Brownian loop soups on the metric
graph that strengthens the result of Kassel and Lévy [KL21].

2. Preliminaries

2.1. On gauge fields, holonomy and gauge equivalence. Let G = (V,E) be a finite con-
nected undirected graph. We assume that there are no self-loops or multi-edges. We also assume
that the set of vertices consists of two disjoint parts, V = Vint ∪ V∂ , Vint ∩ V∂ = ∅, with both
Vint and V∂ non-empty. We see Vint as the interior vertices and V∂ as boundary vertices. Each
edge {x, y} ∈ E is endowed with a conductance C(x, y) = C(y, x) > 0. Thus, G is an electrical
network.

In this paper, a gauge field will mean a family (σ(e))e∈E ∈ {−1, 1}E . This is the simplest
case when the gauge group is {−1, 1}. We will also use the notation σ(x, y) = σ({x, y}), when
{x, y} ∈ E. Given an other collection of signs (σ̂(x))x∈V ∈ {−1, 1}V , this time above the
vertices, it induces a gauge transformation σ 7→ σ̂ · σ, where σ̂ · σ ∈ {−1, 1}E is the gauge field
defined by

(σ̂ · σ)(x, y) = σ̂(x)σ(x, y)σ̂(y).

Two gauge fields σ, σ′ ∈ {−1, 1}E are said to be gauge-equivalent if there is σ̂ ∈ {−1, 1}V such
that σ′ = σ̂ · σ. A gauge field σ ∈ {−1, 1}E is said trivial if it is gauge-equivalent to the gauge
field with value 1 on every edge.

Given ℘ = (x1, x2, . . . , xn) a discrete nearest-neighbor path in G, the holonomy of σ ∈
{−1, 1}E along ℘ is the product

holσ(℘) = σ(x1, x2)σ(x2, x3) . . . σ(xn−1, xn).

If the nearest-neighbor path ℘ with finitely many jumps is parametrized by continuous time,
then holσ(℘) is the holonomy along the discrete skeleton of ℘.

Lemma 2.1. (1) Assume that two gauge fields σ, σ′ ∈ {−1, 1}E are gauge-equivalent. Then

for every loop (i.e. closed path) ℘ = (x1, x2, . . . , xn−1, xn, x1) in G, holσ(℘) = holσ
′
(℘).

(2) Conversely, assume that there is x1 ∈ V such that for every loop ℘ = (x1, x2, . . . , xn−1, xn, x1)

rooted in x1, hol
σ(℘) = holσ

′
(℘). Then σ and σ′ are gauge equivalent.

(3) In particular, a gauge field σ ∈ {−1, 1}E is trivial if and only if for every loop ℘,
holσ(℘) = 1.

Proof. (1) If σ′ = σ̂ · σ, then for every path ℘ = (x1, x2, . . . , xn−1, xn, xn+1),

holσ
′
(℘) = σ̂(x1)hol

σ(℘)σ̂(xn+1).

In particular, if xn+1 = x1, hol
σ′
(℘) = holσ(℘).

(2) For each x ∈ V , take a path ℘x1,x from x1 to x in G and set

σ̂(x) = holσ(℘x1,x)holσ
′
(℘x1,x).

The value of σ̂(x) does not depend on the particular choice of the path ℘x1,x. Indeed, if ℘̄x1,x

is an other path from x1 to x, then one can concatenate ℘̄x1,x with the time reversal
←−−−
℘x1,x of

℘x1,x, so as to get a loop ℘̄x1,x ∧←−−−℘x1,x from x1 to x1, and then

holσ(℘x1,x)holσ(℘̄x1,x) = holσ(℘̄x1,x ∧
←−−−
℘x1,x) = holσ

′
(℘̄x1,x ∧

←−−−
℘x1,x) = holσ

′
(℘x1,x)holσ

′
(℘̄x1,x).

With σ̂ defined in this way, we have that σ′ = σ̂ · σ. Note that σ̂ is not the only element of
{−1, 1}V to relate σ and σ′ through induced gauge transformation. With G being connected,
there are exactly two such elements of {−1, 1}V , σ̂ and −σ̂. □
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Figure 2. Top: two trivial gauge fields. The edges with sign −1 are in violet.
Bottom: a gauge transformation relating the above gauge fields. In red are the
+1 vertices and in blue the −1 vetices. The black dots represent the boundary V∂ .

Figures 2, 3 and 4 provide examples of gauge-equivalent gauge fields together with the cor-
responding gauge transformation.

2.2. Discrete scalar GFF twisted by a gauge field. Let ∆G denote the discrete Laplacian
on G:

(∆Gf)(x) =
∑
y∼x

C(x, y)(f(y)− f(x)), x ∈ V,

where y ∼ x means that y is a neighbor of x, i.e. {x, y} ∈ E. Let (G(x, y))x,y∈V be the Green’s
function of −∆G with 0 boundary conditions on V∂ .

Further, if σ ∈ {−1, 1}E is a gauge field, the discrete Laplacian twisted by σ is

(∆G,σf)(x) =
∑
y∼x

C(x, y)(σ(x, y)f(y)− f(x)), x ∈ V.

The twisted operator −∆G,σ is still non-negative in the sense that for every f ∈ RV ,

Eσ(f, f) :=
∑
x∈V

(−∆G,σf)(x)f(x) =
∑

{x,y}∈E

C(x, y)(σ(x, y)f(y)− f(x))2 ≥ 0.

Moreover, if f is a function such that Eσ(f, f) = 0 and f is 0 on V∂ , then f is uniformly 0 on
V . Indeed, one can see this by induction on the graph distance of a vertex x ∈ V from V∂ .
Therefore, one can consider the inverse of the restriction of the operator −∆G,σ to the functions
that are 0 on V∂ . This is the gauge-twisted Green’s function (Gσ(x, y))x,y∈V with 0 boundary
conditions on V∂ . It is defined by

∀x ∈ V,∀y ∈ V∂ , Gσ(x, y) = 0,

and

∀x0 ∈ Vint, ∀x ∈ Vint,
∑
y∼x

C(x, y)(σ(x, y)G(x0, y)−G(x0, x)) = −1x=x0 .

4



Figure 3. Top: two non-trivial and gauge-equivalent gauge fields. The edges
with sign −1 are in violet. The holonomy of a loop is −1 to the power the number
of turns it performs around the inner hole. Bottom: a gauge transformation
relating the above gauge fields. In red are the +1 vertices and in blue the −1
vetices. The black dots represent the boundary V∂ .

Figure 4. Top: two non-trivial and gauge-equivalent gauge fields. The edges
with sign −1 are in violet. In the holonomy of a loop one multiplies by −1
each time one surrounds one of the two holes but not both. Bottom: a gauge
transformation relating the above gauge fields. In red are the +1 vertices and in
blue the −1 vetices. The black dots represent the boundary V∂ .

The function Gσ is symmetric: Gσ(x, y) = Gσ(y, x). However, unlike for the usual Green’s
function G(x, y), some of the values Gσ(x, y) may be negative. Still, the operator induced by
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Gσ is non-negative: for every f ∈ RV ,∑
x,y∈V

f(x)Gσ(x, y)f(y) ≥ 0.

Further, if σ, σ′ ∈ {−1, 1}E are two gauge-equivalent gauge fields, with a gauge transformation
between σ and σ′ induced by a σ̂ ∈ {−1, 1}V , then for every x, y ∈ V ,

Gσ′(x, y) = σ̂(x)Gσ(x, y)σ̂(y).

The discrete scalar Gaussian free field (GFF ) on G with boundary conditions 0 on V∂ is
is the random Gaussian field (ϕ(x))x∈V , with ϕ(x) = 0 for x ∈ V∂ , and with the probability
distribution

(2.1)
1

Z
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

The expectation of ϕ is 0. The covariance function of ϕ is the Green’s function (G(x, y))x,y∈V .

Further, given σ ∈ {−1, 1}E a gauge field, the GFF twisted by σ is the random Gaussian
field (ϕσ(x))x∈V , with ϕσ(x) = 0 for x ∈ V∂ , and with the probability distribution

(2.2)
1

Zσ
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(σ(x, y)φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

The expectation of ϕσ is 0. Actually, ϕσ
(law)
= −ϕσ. The covariance function of ϕσ is the gauge-

twisted Green’s function (Gσ(x, y))x,y∈V . If σ, σ′ ∈ {−1, 1}E are two gauge-equivalent gauge

fields, with a gauge transformation between σ and σ′ induced by a σ̂ ∈ {−1, 1}V , then

(ϕσ′(x))x∈V
(law)
= (σ̂(x)ϕσ(x))x∈V .

In particular, if the gauge field σ is trivial, then the field ϕσ can be obtained via a deterministic
transformation from the usual GFF ϕ.

2.3. Measures on paths. Let (Xt)t≥0 be the nearest-neighbor Markov jump process on G
with the jump rates given by the conductances C(x, y). Let TV∂

denote the first hitting time of
V∂ . We will denote by p(t, x, y) the transition probabilities of the killed process (Xt)0≤t≤TV∂

, so

that ∑
y∈Vint

p(t, x, y) = Px(TV∂
> t).

Since the process is symmetric, p(t, x, y) = p(t, y, x). Moreover,∫ +∞

0
p(t, x, y)dt = G(x, y).

Given x, y ∈ Vint and t > 0, let Px,y
t denote the bridge probability measure from x to y of

duration t, where one conditions on TV∂
> t. The excursion measure from x to y is

µx,y(d℘) =

∫ +∞

0
Px,y
t (d℘)p(t, x, y)dt.

So µx,y is a measure on nearest-neighbor paths from x to y, parametrized by continuous time,
of finite duration. The total mass of µx,y is G(x, y). The measure µy,x is the image of µx,y by
time-reversal. The induced measure on discrete skeletons is

µx,y(x→ x1 → x2 → · · · → xn−1 → y) =
C(x, x1)C(x1, x2) . . . C(xn−2, xn−1)C(xn−1, y)

W (x)W (x1)W (x2) . . .W (xn−1)W (y)
,

where
W (z) =

∑
w∼z

C(z, w).

Consider now σ ∈ {−1, 1}E a gauge field. Kassel and Lévy showed in [KL21, Theorem 5.1]
the following.
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Theorem 2.2 (Kassel-Lévy, [KL21]). For every x, y ∈ Vint,

Gσ(x, y) =

∫
holσ(℘)µx,y(d℘).

In other words,
Gσ(x, y)

G(x, y)
= E[holσ(℘x,y)],

where ℘x,y is a random excursion from x to y distributed according to the probability measure
µx,y/G(x, y). In particular, for every x ∈ Vint,∫

holσ(℘)µx,x(d℘) = Gσ(x, x) > 0.

The measure on continuous time random walk loops introduced by Le Jan [LJ10, LJ11] is

(2.3) µloop(d℘) =
∑

x∈Vint

∫ +∞

0
Px,x
t (d℘)p(t, x, x)

dt

t
=

1

T (℘)

∑
x∈Vint

µx,x(d℘),

where T (℘) denotes the duration of a path ℘. There are two types of loops, those that visit at
least two different vertices, and those that stay in one vertex and do not perform jumps. For
n ≥ 2 jumps, the measure induced on discrete skeletons is

µloop(x1 → x2 → · · · → xn−1 → xn → x1) =
1

n

C(x1, x2) . . . C(xn−1, xn)C(xn, x1)

W (x1)W (x2) . . .W (xn−1)W (xn)
.

So this is the same measure on discrete-time loops as the one that appeared in [LTF07] and
[LL10, Chapter 9]. The total mass of the loops that visit at least two vertices is

(2.4) µloop({Loops that visit at least 2 vertices}) = log
(
det((G(x, y))x,y∈Vint)

∏
x∈Vint

W (x)
)
;

see [LJ11, Equation (2.5)]. Besides the loops that visit at least two vertices, µloop also puts
weight on loops that stay in one vertex and do not jump. For every x ∈ Vint, the induced
measure on the duration of loops that only stay in x is

e−t/G(x,x)dt

t
.

Given σ ∈ {−1, 1}E a gauge field, the (signed) measure on loops twisted by σ is

µloopσ (d℘) = holσ(℘)µloop(d℘).

The measure µloopσ is signed and its total variation measure is µloop. The measure µloopσ is the

same for the whole gauge-equivalence class of σ. The signed measure µloopσ can be decomposed
as

µloopσ = µloopσ,+ − µ
loop
σ,− ,

where µloopσ,+ is the restriction of µloopσ to loops ℘ with holσ(℘) = 1, and µloopσ,− is the restriction

of µloopσ to loops ℘ with holσ(℘) = −1. According to [KL21, Corollary 3.7], a formula similar to
(2.4) also holds in the presence of a gauge field:

(2.5) µloopσ ({Loops that visit at least 2 vertices}) = log
(
det((Gσ(x, y))x,y∈Vint)

∏
x∈Vint

W (x)
)
.

So in particular, one gets the following.

Corollary 2.3. The following identity holds:

det((Gσ(x, y))x,y∈Vint)

det((G(x, y))x,y∈Vint)
= exp

(
− 2µloop({Loops ℘ with holσ(℘) = −1})

)
.
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Proof. By combining the formulas (2.4) and (2.5), one obtains

log
(det((Gσ(x, y))x,y∈Vint)

det((G(x, y))x,y∈Vint)

)
= (µloopσ − µloop)({Loops that visit at least 2 vertices})

= −2µloopσ,− ({Loops that visit at least 2 vertices}).

Further, a loop ℘ with holσ(℘) = −1 has to visit at least two vertices. Thus,

µloopσ,− ({Loops that visit at least 2 vertices}) = µloop({Loops ℘ with holσ(℘) = −1}). □

Given a path ℘ on G parametrized by continuous time, ℓx(℘) will denote its total time spent
at vertex x, x ∈ V . Given α > 0, Lα will denote the Poisson point process of loops with
intensity measure αµloop. This is the continuous time random walk loop soup [LJ10, LJ11]. For
x ∈ V , ℓx(Lα) will denote its occupation field in x:

ℓx(Lα) =
∑
℘∈Lα

ℓx(℘).

For the particular value α = 1/2, this occupation field is Gaussian. More precisely on has the
Le Jan’s isomorphism.

Theorem 2.4 (Le Jan,[LJ10, LJ11]). For α = 1/2, the following identity in law holds:

(ℓx(L1/2))x∈V
(law)
=

(1
2
ϕ(x)2

)
x∈V

,

where ϕ is the GFF (2.1).

Now take σ ∈ {−1, 1}E a gauge field. In [KL21, Theorem 6.6], Kassel and Lévy proved the
following extension of Le Jan’s isomorphism.

Theorem 2.5 (Kassel-Lévy, [KL21]). Denote by L1/2σ,+, resp. L
1/2
σ,−, a Poisson point process with

intensity measure 1
2µ

loop
σ,+ , resp. 1

2µ
loop
σ,− . Recall that ϕσ denotes the gauge-twisted GFF (2.2).

Take ϕσ and L1/2σ,− to be independent. Then the following identity in law holds

(2.6) (ℓx(L1/2σ,+))x∈V
(law)
=

(1
2
ϕσ(x)

2 + ℓx(L1/2σ,−)
)
x∈V

.

In particular, the field ϕ2σ is stochastically dominated bu the field ϕ2.

The identity (2.6) tells that in some sense the field 1
2ϕ

2
σ is distributed as the occupation field

of a Poisson point process with intensity measure 1
2µ

loop
σ . However, the measure 1

2µ
loop
σ is signed,

unless the gauge field σ is trivial, and thus cannot be an intensity for a Poisson. Actually, the
loops ℘ with holσ(℘) = −1 have to be counted negatively.

2.4. GFF on metric graphs. Here we will briefly recall the notion of the GFF on metric
graphs. For details we refer to [Lup16].

Themetric graph associated to the electrical network G, which we will denote by G̃, is obtained
by replacing each edge e = {x, y} ∈ E by a continuous line segment Ie = I{x,y}, with endpoint

x and y. Moreover, G̃ is endowed with a metric, by setting the length of Ie to be C(x, y)−1 (i.e.
the resistance, the inverse of the conductance), and with the corresponding length measure,

which we will denote by m̃. So G̃ is a continuous and connected metric space.
The discrete GFF ϕ on G (2.1) can be interpolated to a continuous Gaussian field ϕ̃. The

restriction of ϕ̃ to the vertices V is the discrete GFF ϕ. Conditionally on ϕ, the values of ϕ̃ along
an edge-line I{x,y} are distributed as a standard one-dimensional Brownian bridge between ϕ(x)

and ϕ(y) of length C(x, y)−1, with values on different edge-lines being independent. The field

ϕ̃ is the metric graph GFF. It satisfies a strong Markov property when cutting not only along
the vertices, but also inside edge-lines; see [Lup16, Section 3]. The covariance of ϕ̃ is given by

the extension of the Green’s function to G̃ × G̃, which we will still denote G(x, y).
8



The Markov jump process (Xt)t≥0 on G can be extended to a continuous Markov diffu-

sion process on G, which we will denote by (X̃t)t≥0. Inside an edge-line Ie, X̃t behaves as a
one-dimensional Brownian motion, and once the process reaches a vertex x ∈ V , it preforms
Brownian excursions inside each adjacent edge-line. See [Lup16, Section 2] for details. In order

to fit with the isomorphism identities, we normalize X̃t so that inside every edge-line Ie it be-
haves like a Brownian motion with quadratic variation 2dt. Just as a one-dimensional Brownian

motion, the process (X̃t)t≥0 admits a family of local times (ℓxt (X̃))
x∈G̃,t≥0

, continuous in (x, t),

characterized by ∫ t

0
f(X̃s) ds =

∫
G̃
f(x)ℓxt (X̃) m̃(dx).

Consider the continuous additive functional A(t) and its inverse A−1(t):

(2.7) A(t) =
∑
x∈V

ℓxt (X̃), A−1(t) = inf{s ≥ 0|A(s) > t}.

Then (X̃A−1(t))t≥0 is distributed as the Markov jump process (Xt)t≥0.

Let T̃V∂
denote the first time X̃t hits V∂ . By construction, A(T̃V∂

) = TV∂
. Considered the

process (X̃t)0≤t≤T̃V∂
killed upon hitting V∂ . Let p̃(t, x, y) be the transition densities of the killed

process, so that ∫
G̃
p̃(t, x, y) m̃(dy) = Px(T̃V∂

> t).

For x, y ∈ G̃ \ V∂ and t > 0, let P̃x,y
t denote the bridge probability measure from x to y in time

t, where one conditions on T̃V∂
> t. The measure on loops on the metric graph is

(2.8) µ̃loop(d℘) =

∫
G̃

∫ +∞

0
P̃x,x
t (d℘)p̃(t, x, x)

dt

t
m̃(dx).

For α > 0, L̃α will denote the Poisson point process of loops on G̃ of intensity αµ̃loop. This is

the metric graph loop soup. The loops in L̃α are can be divide into two: those that visit vertices
in V and those that only stay in the interior of an edge-line. If one takes the trace on V of the

loops in L̃α that intersect V , by applying the time change A−1 (2.7), one gets the continuous
time random walk loop soup Lα, actually up to a rerooting of the loops. See [Lup16, Section

2] for details. Given ℘ ∈ L̃α and x ∈ G̃, ℓx(℘) will denote the cumulative local time of ℘ in x.

The occupation field of L̃α is

ℓx(L̃α) =
∑
℘∈L̃α

ℓx(℘).

For x ∈ V , we have that ℓx(L̃α) = ℓx(Lα).
Next we will consider the clusters of loops in L̃α. Two loops ℘, ℘′ ∈ L̃α belong to the same

cluster if they are connected by a finite chain of loops in L̃α. We will also see a cluster C of L̃α
as a subset of G̃ by taking the union of the ranges of loops forming the cluster. The clusters

of L̃α are exactly the connected components of {x ∈ G̃|ℓx(L̃α) > 0}. In [Lup16, Theorem 1] is

shown that for α = 1/2, there is a one to one correspondence between the clusters of L̃1/2 and

the sign components of ϕ̃.

Theorem 2.6 (Lupu, [Lup16]). Take L̃1/2 a metric graph loop soup on G̃ of parameter α = 1/2.
For each cluster C additionally sample a conditionally independent sign σ(C) with

P(σ(C) = 1|L̃1/2) = P(σ(C) = −1|L̃1/2) = 1/2.

For x ∈ G̃ such that ℓx(L̃1/2) > 0, let C(x) denote the cluster of L̃1/2 containing x. Then the
field (

σ(C(x))
√
2ℓx(L̃1/2)

)
x∈G̃
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is distributed as a metric graph GFF ϕ̃.

The result above comes from an application of the Le Jan’s isomorphism (Theorem 2.4) on

the metric graph level and the use of the intermediate value property of the continuous field ϕ̃.

Beside the exact correspondence between the sign components of ϕ̃ and the clusters of L̃1/2, the
metric graph GFF ϕ̃ satisfies many other exact solvability properties that one does not get for
the discrete GFF ϕ. Next we give a brief list of these exact indentities, and further in Section
3 we will prove a new one, related to a special kind of topological conditioning; see Theorem 1.

• As observed in [Lup16, Proposition 5.2], given x, y ∈ G̃, the probability that x and y

belong to the same sign component of ϕ̃, or alternatively to the same cluster of L̃1/2,
equals

E
[
sign(ϕ̃(x)) sign(ϕ̃(y))

]
=

2

π
arcsin

( G(x, y)√
G(x, x)G(y, y)

)
.

• If V∂ is divided into 3 parts V∂,0, V∂,1 and V∂,2, with V∂,0 allowed to be empty, and if

the boundary condition of a metric graph GFF ϕ̃ is strictly positive on V∂,1 and V∂,2,
and zero on V∂,0 (rather than zero on the whole V∂), then there is an explicit formula
for the existence of a positive crossing from V∂,1 to V∂,2:

P
(
V∂,1

ϕ̃>0←→ V∂,2

)
= 1− exp

(
− 2

∑
x∈V∂,1

∑
y∈V∂,2

ϕ̃(x)H(x, y)ϕ̃(y)
)
,

where H(x, y) is the boundary Poisson kernel on V∂×V∂ . This is [LW18, Formula (18)].
If the boundary condition mixes values of different sign, no analogous explicit formula
is known.
• In the articles [DPR22, DPR21] the authors provide the exact law for the effective con-
ductance (called capacity there) between the boundary V∂ and the connected component
containing x0 of the level set

{x ∈ G̃|ϕ̃(x) ≥ h}

(x0 ∈ G̃ and h ≥ 0 fixed).
• The Lévy transformation for the one-dimensional Brownian motion can be extended to
the general metric graph GFFs, as explained in [LW18].

3. Gauge-twisted GFF on metric graph, double cover and equivalence to
topological conditioning

3.1. Gauge-twisted GFF and subdivision of edges. Consider the electrical network G =
(V,E) as in Section 2.1. For N ∈ N \ {0}, we will denote by G(N) = (V (N), E(N)) the electrical

network obtained from G = (V,E) by subdividing each edge e ∈ E into N . In this way, G(1) = G.
In general,

|E(N)| = N |E|, |V (N)| = |V |+ (N − 1)|E|.
Moreover, if N divides N ′, then V (N) is naturally a subset of V (N ′). In particular, we always
have V ⊂ V (N). Given e ∈ E, we will denote E(N)(e) the subset of E(N) made of edges

obtained by subdivision of e. We also denote by V (N)(e) the endpoints of edges in E(N)(e). So

|E(N)(e)| = N , |V (N)(e)| = N+1 and |V (N)(e)\V | = N−1. We endow G(N) with the following

conductances: for every e ∈ E and e′ ∈ E(N)(e), C(N)(e′) = NC(e). Let be the energy

E(N)(f, f) =
∑

{x,y}∈E(N)

C(N)(x, y)(f(y)− f(x))2.

We also see the electrical network G(N), more precisely V (N) as a subset of the metric graph

G̃. In this way, V (N)(e) is a set of N + 1 points on Ie with equal spacing (NC(e))−1, which
includes the two endpoints of e.

10



If (ϕ(N)(x))x∈V (N) is a GFF on G(N), then it’s restriction to V = V (1) is a GFF on G. Indeed,

E(N)(f, f) = E(1)(f|V , f|V ) +N(N − 1)
∑
e∈E

C(e)

N∑
i=1

(f(xi)− f(xi−1)− (f(xN )− f(x0))/N)2,

where x0, x1, . . . , xN is the ordered set of points in V (N)(e). Moreover, if (ϕ̃(x))
x∈G̃ is a metric

graph GFF, then its restriction ϕ̃|V (N) is distributed as a GFF ϕ(N) on G(N). So, in a sense, ϕ̃

is the limit of ϕ(N) as N → +∞.
Now, given a gauge field σ ∈ {−1, 1}E , we similarly want a natural extension of a σ-twisted

GFF ϕσ to the subdivided graphs G(N), and ultimately to te metric graph G̃. So, given σ ∈
{−1, 1}E , we will denote by σ(N) the following element of {−1, 1}E(N)

. If e ∈ E and σ(e) = 1,

then for every e′ ∈ E(N)(e), σ(N)(e′) = 1. However, if e ∈ E and σ(e) = −1, then among the

edges in E(N)(e) there is exactly one with sign −1 under σ(N), all the N − 1 other having sign

+1 (so there are actually choices to make for σ(N), N choices for each e ∈ E with σ(e) = −1).

Proposition 3.1. Let N ∈ N \ {0}, σ ∈ {−1, 1}E and σ(N) ∈ {−1, 1}E(N)
as above. Let

(ϕ
(N)

σ(N)(x))x∈V (N) be the σ(N)-twisted GFF on G(N) with 0 boundary conditions on V∂ ⊂ V ⊂
V (N). Then its restriction to V is distributed as (ϕσ(x))x∈V , the σ-twisted GFF on G with 0
boundary conditions.

Proof. Consider the energy

E(N)
σ (f, f) =

∑
{x,y}∈E(N)

C(N)(x, y)(σ(N)(x, y)f(y)− f(x))2.

Let e ∈ E and let x0, x1, . . . , xN be the ordered set of points in V (N)(e). For i ∈ {1, . . . , N}, let
be

σ̃i = σ(N)(x0, x1) . . . σ
(N)(xi−1, xi).

Then

(3.1)
N∑
i=1

C(N)(xi−1, xi)(σ
(N)(xi−1, xi)f(xi)− f(xi−1))

2 = C(x0, xN )(σ(x0, xN )f(xN )− f(x0))2

+N(N − 1)C(x0, xN )

N∑
i=1

(σ̃if(xi)− σ̃i−1f(xi−1)− (σ(x0, xN )f(xN )− f(x0))/N)2.

This induces a decomposition of the energy E(N)
σ . This implies that ϕ

(N)

σ(N) restricted to V is
distributed as ϕσ. Moreover, the fields

(σ̃if(xi) + i(σ(x0, xN )f(xN )− f(x0))/N)1≤i≤N−1,e∈E ,

are independent from ϕ
(N)

σ(N) restricted to V , with also independence across e ∈ E. □

In the sequel, σ ∈ {−1, 1}E and, for the sake of simplicity, N will be odd and σ(N) is chosen

such that for e ∈ E with σ(e) = −1, the middle edge in E(N)(e) has the sign −1 under σ(N).

We will define a random Gaussian field ϕ̃σ on the metric graph G̃ as follows. We consider the
following independent objects.

• The twisted discrete GFF (ϕσ(x))x∈V .
• For every edge e ∈ E, and independent Brownian bridge (We(u))0≤u≤C(e)−1 of length

C(e)−1, from 0 to 0.

We will also chose for each edge e ∈ E and arbitrary orientation and denote its endpoints e−
and e+. For u ∈ [0, C(e)−1], xe,u will denote the point of Ie at distance u from e+. We define

(ϕ̃σ(x))x∈G̃ as follows.
11



• For x ∈ V , ϕ̃σ(x) = ϕσ(x).
• If e ∈ E and σ(e) = 1, then for every u ∈ (0, C(e)−1),

(3.2) ϕ̃σ(xe,u) =We(u) + C(e)(uϕσ(e−) + (C(e)−1 − u)ϕσ(e+)).

• If e ∈ E and σ(e) = −1, then for u ∈ (0, C(e)−1/2),

(3.3) ϕ̃σ(xe,u) =We(u) + C(e)(−uϕσ(e−) + (C(e)−1 − u)ϕσ(e+)),

and for u ∈ (C(e)−1/2, C(e)−1),

(3.4) ϕ̃σ(xe,u) = −We(u) + C(e)(uϕσ(e−)− (C(e)−1 − u)ϕσ(e+)).

The value for u = C(e)−1/2 is not specified and can be chosen arbitrary.

Defined in this way, the field ϕ̃σ is discontinuous in the middle of each Ie for e ∈ {e ∈ E|σ(e) =
−1}, with

lim
u→(C(e)−1/2)−

ϕ̃σ(xe,u) = − lim
u→(C(e)−1/2)+

ϕ̃σ(xe,u).

However, the absolute value |ϕ̃σ| extends to a continuous field on G̃. Note that the law of ϕ̃σ

does not depend on the arbitrary choice of orientations for the edges, since ϕσ
(law)
= −ϕσ and

We
(law)
= −We.

Proposition 3.2. For every N odd, the restriction of ϕ̃σ to V (N) is distributed as ϕ
(N)

σ(N).

Proof. This is an immediate consequence of the decomposition (3.1). □

So the metric graph field ϕ̃σ appears as the limit of ϕ
(N)

σ(N) as N → +∞. However, it is not

continuous. To recover continuous fields we will work on a double cover of G̃; see Section 3.3.

3.2. Double covers induced by gauge fields. Let σ ∈ {−1, 1}E . We will introduce a double
cover Gdbσ = (V db, Edb

σ ) of the graph G, which is as follows. V db consist of two copies of V ,
V db = V1 ∪ V2, and the projection πσ : V db → V induces a bijection between V1 and V and
between V2 and V . The set of edges Edb

σ is as follows. Let {x, y} ∈ E and let x1, y1 ∈ V1 and
x2, y2 ∈ V2 such that πσ(x1) = πσ(x2) = x and πσ(y1) = πσ(y2) = y.

• If e ∈ E and σ(e) = 1, then {x1, y1}, {x2, y2} ∈ Edb
σ .

• If e ∈ E and σ(e) = −1, then {x1, y2}, {x2, y1} ∈ Edb
σ .

See Figure 5 for an example. We also have a projection πσ : Edb
σ → E such that

πσ({x̂, ŷ}) = {πσ(x̂), πσ(ŷ)}.

In this way πσ is a graph covering map from Gdbσ to G. Given x1 ∈ V1 and x2 ∈ V2 such that
πσ(x1) = πσ(x2), we will define ψ(x1) = x2 and ψ(x2) = x1. In this way, ψ is a bijection
from V db to V db. It is also a graph automorphism of Gdbσ , that is to say if {x̂, ŷ} ∈ Edb

σ then
{ψ(x̂), ψ(ŷ)} ∈ Edb

σ . The map ψ is also a covering automorphism, because πσ ◦ ψ = πσ.

Lemma 3.3. Let ℘ = (x1, x2, . . . , xn−1, xn, x1) be a nearest neighbor loop on G and let ℘̂ =
(x̂1, x̂2, . . . , x̂n−1, x̂n, x̂n+1) be a lift of ℘ on Gdbσ with respect to the covering map πσ: πσ(x̂i) = xi
for i ∈ {1, 2, . . . , n}, πσ(x̂n+1) = x1, and {x̂i, x̂i+1} ∈ Edb

σ for i ∈ {1, 2, . . . , n}. Then holσ(℘) =
1 if and only if x̂n+1 = x̂1. Otherwise holσ(℘) = −1 and x̂n+1 = ψ(x̂1).

Proof. By construction, whenever σ(xi, xi+1) = 1, then x̂i and x̂i+1 belong to the same copy
V1 or V2. Whenever σ(xi, xi+1) = −1 then either x̂i ∈ V1 and x̂i+1 ∈ V2, or vice-versa. So
x̂n+1 = x̂1 if and only even there is an even number of transitions from V1 to V2 or from V2 to
V1, that is to say that the number of i ∈ {1, 2, . . . , n} such that σ(xi, xi+1) = −1 is even, which
exactly means that holσ(℘) = 1. □

Lemma 3.4. Let σ, σ′ ∈ {−1, 1}E.
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Figure 5. Left: a graph with 4 vertices and 5 edges. Right: its double cover.
The edges in violet correspond to σ(e) = −1.

(1) Assume that σ and σ′ are gauge equivalent, and let σ̂ ∈ {−1, 1}V such that σ′ = σ̂ · σ.
Define ψσ̂ : V db → V db as follows. Let x̂ ∈ V db. If σ̂(πσ(x̂)) = 1, then ψσ̂(x̂) = x̂. If
σ̂(πσ(x̂)) = −1, then ψσ̂(x̂) = ψ(x̂). Then ψσ̂ induces a graph isomorphism between Gdbσ
et Gdbσ′ , which is moreover a covering isomorphism, i.e. πσ′ = πσ ◦ ψσ̂.

(2) Conversely, if there exists a covering isomorphism between Gdbσ et Gdbσ′ , then σ and σ′

are gauge equivalent.

Proof. (1) The map ψσ̂ is clearly a bijection from V db to itself, and it is clear that πσ′ = πσ ◦ψσ̂.
One needs only to check that whenever {x̂, ŷ} ∈ Edb

σ , then also {ψσ̂(x̂), ψσ̂(ŷ)} ∈ Edb
σ′ . But this

is clear from the definition of ψσ̂ and the fact that

σ′(πσ′(ψσ̂(x̂)), πσ′(ψσ̂(ŷ))) = σ′(πσ(x̂), πσ(ŷ)) = σ̂(πσ(x̂))σ(πσ(x̂), πσ(ŷ))σ̂(πσ(ŷ)).

(2) Let ψ̂ be a covering a covering isomorphism between Gdbσ et Gdbσ′ . Since πσ′ = πσ ◦ ψ̂, for
every x̂ ∈ V db,

• either (ψ̂(x̂), ψ̂(ψ(x̂))) = (ψ̂(x̂), ψ̂(ψ(x̂))),

• or (ψ̂(x̂), ψ̂(ψ(x̂))) = (ψ̂(ψ(x̂)), ψ̂(x̂)).

Note that here x̂ and ψ(x̂) symmetric roles. In the first case we set σ̂(πσ(x̂)) = 1. In the second
case we set σ̂(πσ(x̂)) = −1. Then it is easy to check that σ′ = σ̂ · σ. □

Lemma 3.5. Let σ ∈ {−1, 1}E be a gauge field and let Gdbσ be the corresponding double cover.
Then the graph Gdbσ is connected if and only if σ is non-trivial. Otherwise Gdbσ consists of two
disconnected copies of G.

Proof. If σ(e) = 1 for every e ∈ E, then by construction, V1 and V2 are not connected in Gdbσ
and one has just two copies G with vertex sets V1 and V2 respectively. In the more general case
of σ trivial, one can apply Lemma 3.4 to get that Gdbσ is isomorphic as a covering to the previous
case.

Assume now that σ is non-trivial. Let x ∈ V , and let x1 ∈ V1, x2 ∈ V2 such that πσ(x1) =
πσ(x2) = x. According to Lemma 2.1, there is a loop ℘ rooted in x such that holσ(℘) = −1.
Let ℘̂ be a lift in Gdbσ of the loop ℘. By Lemma 3.3, ℘̂ is a path joining x1 and x2. Thus x1
and x2 belong to the same connected component. Further, by construction, if {x, y} ∈ E, then
π−1
σ ({x}) and π−1

σ ({y}) are connected. Since G is connected, then so is Gdbσ . □

Further, we will endow the double covers Gdbσ with conductances as follows. Given {x̂, ŷ} ∈
Edb

σ ,

(3.5) C(x̂, ŷ) = C(πσ(x̂), πσ(ŷ)).
13



Let be V db
∂ = π−1

σ (V∂) and V db
int = π−1

σ (Vint). We consider the nearest-neighbor Markov jump

process on Gdbσ with the transition rates given by the conductances, ans killed upon hitting V db
∂ .

Let pσ(t, x̂, ŷ) be the transition probabilities of this killed process. The following is immediate.

Lemma 3.6. (1) For every x̂, ŷ ∈ V db
int ,

pσ(t, x̂, ŷ) + pσ(t, x̂, ψ(ŷ)) = p(t, πσ(x̂), πσ(ŷ)).

(2) For every x̂, ŷ ∈ V db
int , such that x̂ and ŷ are both in V1 or both in V2,

Pπσ(x̂),πσ(ŷ)
t (holσ(℘) = −1) = pσ(t, x̂, ψ(ŷ))

p(t, πσ(x̂), πσ(ŷ))
,

where Pπσ(x̂),πσ(ŷ)
t is the bridge probability measure for the Markov jump process on G

conditioned on staying in Vint.

A fundamental domain of πσ is a subset D ⊂ V db such that πσ induces a bijection from D to
V . By construction, V1 and V2 are both fundamental domains. The following is an immediate
consequence of (2.3) and Lemma 3.6.

Corollary 3.7. Let be a gauge field σ ∈ {−1, 1}E. Then

µloop({Loops ℘ with holσ(℘) = −1} =
∑

x̂∈D∩V db
int

∫ +∞

0
pσ(t, x̂, ψ(x̂))

dt

t
,

where D is any fundamental domain.

Let be the space Sdb0 :

Sdb0 = {f ∈ RV db |∀x̂ ∈ V db
∂ , f(x̂) = 0}.

We endow Sdb0 with the positive definite inner product

Edbσ (f, g) =
∑

{x̂,ŷ}∈Edb
σ

C(x̂, ŷ)(f(ŷ)− f(x̂))(g(ŷ)− g(x̂)).

Let Sdb0,+ and Sdb0,− be the following subspaces of Sdb0 :

Sdb0,+ = {f ∈ Sdb0 |f ◦ ψ = f}, Sdb0,− = {f ∈ Sdb0 |f ◦ ψ = −f}.

Note that dimSdb0,+ = dimSdb0,− = |Vint|, and dimSdb0 = 2|Vint|.

Lemma 3.8. The space Sdb0 is a direct orthogonal (for Edbσ ) sum of the subspaces Sdb0,+ and

Sdb0,−.

Proof. It is clear that Sdb0,+ ∩ Sdb0,− = {0}, and every f ∈ Sdb0 can be decomposed as

f =
1

2
(f + f ◦ ψ) + 1

2
(f − f ◦ ψ).

So Sdb0 is a direct sum of Sdb0,+ and Sdb0,−. To check that the decomposition is orthogonal, consider

f ∈ Sdb0,+ and g ∈ Sdb0,−. Given {x̂, ŷ} ∈ Edb
σ , then {ψ(x̂), ψ(ŷ)} ∈ Edb

σ and

(f(ŷ)− f(x̂))(g(ŷ)− g(x̂)) = −(f(ψ(ŷ))− f(ψ(x̂)))(g(ψ(ŷ))− g(ψ(x̂)).

So Edbσ (f, g) = 0. □

Let ∆db
σ denote the discrete Laplacian on Gdbσ :

(∆db
σ f)(x̂) =

∑
ŷ∈V db

{x̂,ŷ}∈Edb
σ

C(x̂, ŷ)(f(ŷ)− f(x̂)), x̂ ∈ V db.
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One can see ∆db
σ as an operator on Sdb0 by taking ((∆db

σ f)(x̂))x̂∈V db
int

and extending to V db
∂ by

0. Then, clearly, the subspaces Sdb0,+ and Sdb0,− are stable by ∆db
σ . Therefore,

detSdb
0
(−∆db

σ ) = detSdb
0,+

(−∆db
σ ) detSdb

0,−
(−∆db

σ ),

where the subscripts indicate the space considered.
Let f : V db → R, and let f1 denote the following function from V to R. Given x ∈ V and

x1 ∈ V1 such that πσ(x1) = x,

f1(x) = f(x1).

If f ∈ Sdb0,+, then
(∆db

σ f)(x1) = (∆Gf1)(x),

and if f ∈ Sdb0,−, then
(∆db

σ f)(x1) = (∆G,σf1)(x).

The following is an immediate consequence of the above.

Corollary 3.9. We have that

detSdb
0,+

(−∆db
σ ) = det((G(x, y))x,y∈Vint)

−1, detSdb
0,−

(−∆db
σ ) = det((Gσ(x, y))x,y∈Vint)

−1.

In particular,

detSdb
0,+

(−∆db
σ )

detSdb
0,−

(−∆db
σ )

= exp
(
− 2µloop({Loops ℘ with holσ(℘) = −1})

)
.

Let (Gdb
σ (x̂, ŷ))x̂,ŷ∈V db denote the Green’s function on Gdbσ with 0 boundary conditions on

V db
∂ . Note that Gdb

σ (ψ(x̂), ψ(ŷ)) = Gdb
σ (x̂, ŷ)

Lemma 3.10. Let x, y ∈ V and let x1, y1 ∈ V1 and y2 ∈ V2 such that πσ(x1) = x and
πσ(y1) = πσ(y2) = y. Then

G(x, y) = Gdb
σ (x1, y1) +Gdb

σ (x1, y2), Gσ(x, y) = Gdb
σ (x1, y1)−Gdb

σ (x1, y2),

or equivalently

Gdb
σ (x1, y1) =

1

2
(G(x, y) +Gσ(x, y)), Gdb

σ (x1, y2) =
1

2
(G(x, y)−Gσ(x, y)).

Proof. We have that

Gdb
σ (x1, yi) =

∫ +∞

0
pσ(t, x1, yi) dt, G(x, y) =

∫ +∞

0
p(t, x, y) dt,

and according to Theorem 2.2,

Gσ(x, y) =

∫ +∞

0
p(t, x, y)Px,y

t (holσ(℘) = −1) dt.

We conclude by Lemma 3.6. □

Let (ϕdbσ (x̂))x̂∈V db be the discrete GFF on the double cover Gdbσ . We have that

E[ϕdbσ (x̂)] = 0, E[ϕdbσ (x̂)ϕdbσ (ŷ)] = Gdb
σ (x̂, ŷ).

Let ϕdbσ,+ and ϕdbσ,− be the fields

ϕdbσ,+ =
1√
2
(ϕdbσ + ϕdbσ ◦ ψ), ϕdbσ,− =

1√
2
(ϕdbσ − ϕdbσ ◦ ψ).

The field ϕdbσ,+, respectively ϕ
db
σ,−, is a random element of Sdb0,+, respectively Sdb0,−. Since Sdb0,+ and

Sdb0,− are orthogonal for Edbσ , the fields ϕdbσ,+ and ϕdbσ,− are independent. Lemma 3.10 immediately
implies the following.
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Corollary 3.11. Let (ϕ(x))x∈V and (ϕσ(x))x∈V be the following fields:

ϕ(x) = ϕdbσ,+(x1), ϕσ(x) = ϕdbσ,−(x1),

where x1 ∈ V1 and πσ(x1) = x. Then ϕ is distributed as the GFF on G with 0 boundary
conditions (2.1), and ϕσ is distributed as the σ-twisted GFF on G with 0 boundary conditions
(2.2).

3.3. Double covers of metric graphs and related GFFs. Consider a gauge field σ ∈
{−1, 1}E . Let be the associated double cover Gdbσ , endowed with the conductances (3.5). We

will consider the metric graph associated to Gdbσ , denoted by G̃dbσ . The projection πσ can be

extended into a covering map πσ : G̃dbσ → G̃ which is locally an isometry. In this way, G̃dbσ is a

double cover of the metric graph G̃. Similarly, the map ψ : V db → V db extends into a covering

automorphism ψσ : G̃dbσ → G̃dbσ (πσ ◦ψσ = πσ) which interchanges the two sheets of the covering.

Lemma 3.5 extends to the metric graph setting: the metric space G̃dbσ is connected if and only

if the gauge field σ is non-trivial. Otherwise it consists of two disjoint copies of G̃.
Let ϕ̃dbσ be the metric graph GFF on G̃dbσ with 0 boundary conditions on V db

∂ . The field ϕ̃dbσ
is continuous. It’s restriction to V db is the field ϕdbσ introduced previously. Let ϕ̃dbσ,+ and ϕ̃dbσ,−
be the fields

ϕ̃dbσ,+ =
1√
2
(ϕ̃dbσ + ϕ̃dbσ ◦ ψσ), ϕ̃dbσ,− =

1√
2
(ϕ̃dbσ − ϕ̃dbσ ◦ ψσ).

The fields ϕ̃dbσ,+ and ϕ̃dbσ,− are again continuous and their restrictions to V db are ϕdbσ,+ and ϕdbσ,−
respectively.

Lemma 3.12. The fields ϕ̃dbσ,+ and ϕ̃dbσ,− are independent.

Proof. We already know that the fields ϕdbσ,+ and ϕdbσ,− are independent. To conclude, we need
to look at what happens inside the edge-lines. Given (W1(u))0≤u≤C(e)−1 and (W2(u))0≤u≤C(e)−1

two independent Brownian bridges from 0 to 0 of the same length, then indeed (W1 +W2)/
√
2

and (W1 −W2)/
√
2 are indeed independent and again distributed as Brownian bridges from 0

to 0. □

Since ϕ̃dbσ,+ ◦ ψσ = ϕ̃dbσ,+, there is a continuous field ϕ̃ on G̃ (i.e. on the base of the covering)
such that

ϕ̃dbσ,+ = ϕ̃ ◦ πσ.

Lemma 3.13. The field ϕ̃ is distributed as the metric graph GFF on G̃ with 0 boundary condi-
tions on V∂ (see Section 2.4), hence the same notation, and in particular its distribution is the
same whatever the gauge field σ.

Proof. By Corollary 3.11 we already know that the restriction of the field ϕ̃ to V is distributed
as the discrete GFF with 0 boundary conditions on V∂ . We need to check that the identity
in law also extends inside the edge-lines. Given (W1(u))0≤u≤C(e)−1 and (W2(u))0≤u≤C(e)−1 two

independent Brownian bridges from 0 to 0 of the same length, then indeed (W1 +W2)/
√
2 is

distributed as a Brownian bridge from 0 to 0. □

Next we will introduce a section sσ : G̃ → G̃dbσ , such that πσ ◦ sσ = IdG̃ . In general, sσ will
not be continuous and will actually have finitely many discontinuity points. The section sσ will
be defined by the following conditions:

(1) πσ ◦ sσ = IdG̃ .

(2) For every x ∈ V , sσ(x) ∈ V1.
(3) For every edge e ∈ E, the map u 7→ sσ(xe,u) (see Section 3.1 for the notations) is

continuous on the intervals [0, C(e)−1/2) and (C(e)−1/2, C(e)−1], i.e. a discontinuity is
possible only in the middle of the edge-line at u = C(e)−1/2.
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The above entirely specifies sσ outside the middle points of edge-lines in G̃. Further, if {x, y} ∈ E
and σ(x, y) = 1, then {sσ(x), sσ(y)} ∈ Edb

σ , and thus sσ extends continuously to the whole edge-
line I{x,y}. However, if σ(x, y) = −1, then {sσ(x), sσ(y)} ̸∈ Edb

σ , and thus sσ has a discontinuity
in the middle of the edge-line I{x,y}. We will not specify which is the value assumed by sσ
at such a discontinuity point, i.e. which of the left or right limit, as this will not be of any
importance.

Now, consider on G̃ the field

(3.6) ϕ̃σ = ϕ̃dbσ,− ◦ sσ.

Lemma 3.14. The field ϕ̃σ has the same distribution as the Gaussian field on G̃ introduced in
Section 3.1, hence the same notation.

Proof. By Corollary 3.11 we already know that the restriction of the field ϕ̃σ to V is distributed
as the discrete σ-twisted GFF ϕσ with 0 boundary conditions on V∂ . We need only to check what
happens inside the edge lines. Given (W1(u))0≤u≤C(e)−1 and (W2(u))0≤u≤C(e)−1 two independent

Brownian bridges from 0 to 0 of the same length, thenWe = (W1−W2)/
√
2 is again distributed

as a Brownian bridge from 0 to 0. If σ(e) = 1, then sσ is continuous on the edge-line Ie and the

restriction of ϕ̃σ to Ie is obtained by interpolating between ϕ̃σ(e−) and ϕ̃σ(e+) with We (plus
the deterministic linear part). If σ(e) = −1, then sσ has a discontinuity in the middle of Ie, and

the restriction of ϕ̃σ to Ie is obtained by interpolating between −ϕ̃σ(e−) and ϕ̃σ(e+) with We

(plus the deterministic linear part), then by reflecting the bridge on half of Ie. So this is indeed
the same construction as the one given by the formulas (3.2), (3.3) and (3.4). □

The main point of the Sections 3.2 and 3.3 was actually to introduce the field ϕ̃dbσ,−. The

advantage of ϕ̃dbσ,− over ϕ̃σ is that the former is always continuous, and in particular satisfies the
intermediate value property. This will be exploited in the forthcoming Section 3.4. See Lemma
3.15.

3.4. Topological events for the metric graph GFF. Here we consider a gauge field σ ∈
{−1, 1}E . Given U an open non-empty connected subset of the metric graph G̃, the inverse

image π−1
σ (U) ⊂ G̃dbσ is either connected or consists of two isometric connected components. It

is easy to verify (see e.g. Lemmas 3.3 and 3.5) that π−1
σ (U) is connected if and only there is

a continuous loop ℘ contained in U such that holσ(℘) = −1. The holonomy of a continuous
loop on the metric graph is given by the parity of the number of crossings of edge-lines Ie with
σ(e) = −1.

In the example of Figure 3, π−1
σ (U) is connected if and only if U surrounds the inner hole

of the domain. In the example of Figure 4, π−1
σ (U) is connected if and only if U separates one

hole from the other. By separate we mean separate as a subset of the continuum plane, since
the planar metric graph on the figure can be embedded into the plane. However, if U surrounds
both holes without separating one form the other, then π−1

σ (U) is not connected.
So whether π−1

σ (U) is connected or not is a topological, or rather homotopical property of

U . It can be reformulated in a more abstract way as follows. Let π1(G̃) be the fundamental

group of the metric graph G̃ (the notation π1 should not be confused with the notation πσ for
the covering map; π1 is just the standard notation for the fundamental group). Let π1(U) be

the fundamental group of U . Since U is a subset of G̃, there is a natural group homomorphism

θU : π1(U) → π1(G̃), obtained by considering the loops in U as loops in G̃. The gauge field

σ induces a group homomorphism hσ : π1(G̃) → {−1, 1} obtained by taking the holonomy of
loops. The homomorphism hσ depends only on the gauge equivalence class of σ. The gauge

field σ is trivial if and only if kerhσ = π1(G̃). Further, π−1
σ (U) is not connected if and only if

kerhσ ◦ θU = π1(U). This depends on σ only through its gauge equivalence class, and if σ is
trivial, π−1

σ (U) cannot be connected.
17



Let C(G̃) denote the space of continuous functions G̃ → R. Given a function f ∈ C(G̃),
{f ̸= 0} will be a short notation for the non-zero set of f :

{f ̸= 0} = {x ∈ G̃|f(x) ̸= 0}.

Let Tσ be the following subset of C(G̃):

Tσ = {f ∈ C(G̃)| ∀ U connected component of {f ̸= 0}, π−1
σ (U) is not connected}.

It is easy to see that Tσ is a closed subset of C(G̃) for the uniform norm. In the example of Figure
3, f ∈ Tσ if and only if no connected component of {f ̸= 0} surrounds the inner hole of the
domain; see Figure 1. In the example of Figure 4, f ∈ Tσ if and only if no connected component
of {f ̸= 0} separates one hole from the other. Again, Tσ depends only on the gauge-equivalence

class of σ, and if σ is trivial, then Tσ = C(G̃).
We recall that, although the field ϕ̃σ is usually not continuous, its absolute value |ϕ̃σ| can

always be continuously extended to G̃. Thus, we see |ϕ̃σ| as a random element of C(G̃).

Lemma 3.15. Almost surely, |ϕ̃σ| ∈ Tσ.

Proof. We will show that a.s., for every U connected component of {|ϕ̃σ| ̸= 0}, and for every
x̂ ∈ π−1

σ (U), the points x̂ and ψσ(x̂) are not connected inside π−1
σ (U). If this were not the

case, there would be a point x̂ ∈ G̃dbσ and a continuous path (γ̂(t))0≤t≤1 joining x̂ and ψσ(x̂)

such that for every t ∈ [0, 1], |ϕ̃σ|(πσ(γ̂(t))) > 0. Consider on G̃dbσ the field ϕ̃dbσ,−, related to ϕ̃σ

through (3.6). Then, for ever t ∈ [0, 1], ϕ̃dbσ,−(γ̂(t)) ̸= 0. But the field ϕ̃dbσ,− is continuous, and

ϕ̃dbσ,−(γ̂(0)) = −ϕ̃dbσ,−(γ̂(1)). So this is a contradiction. □

Now consider the usual metric graph GFF ϕ̃, without the gauge field σ.

Lemma 3.16. We have that P(ϕ̃ ∈ Tσ) > 0. Moreover, if σ is non-trivial, P(ϕ̃ ∈ Tσ) < 1.

Proof. Let us first prove that P(ϕ̃ ∈ Tσ) > 0. Let A be the event that the field ϕ̃ has zeroes
inside every edge-line Ie for e ∈ E. With the construction with Brownian bridges, it is clear
that P(A) > 0. Let us argue that on the event A, we have that ϕ̃ ∈ Tσ, whatever the gauge

field σ. Indeed, on the event A, no connected component of {ϕ̃ ̸= 0} contains a full edge-line,
and thus cannot contain a loop with holonomy −1.

Assume now that the gauge field σ is non-trivial. Then there is (γ(t))0≤t≤1 a continuous

(deterministic) loop in G̃ such that holσ(℘) = −1. With positive probability, ϕ̃ has no zeroes
on the range of ℘. On this event, the range of ℘ belongs to the same connected component of
{ϕ̃ ̸= 0}, and because holσ(℘) = −1 we have that ϕ̃ ̸∈ Tσ. □

We are ready to state the main result of this paper.

Theorem 1. Let be a gauge field σ ∈ {−1, 1}E. Then

(3.7) P(ϕ̃ ∈ Tσ) = exp
(
− µloop({Loops ℘ with holσ(℘) = −1})

)
.

So in particular (see Corollaries 2.3, 3.7 and 3.9),

P(ϕ̃ ∈ Tσ) =
det((Gσ(x, y))x,y∈Vint)

1/2

det((G(x, y))x,y∈Vint)
1/2

=
detSdb

0,+
(−∆db

σ )1/2

detSdb
0,−

(−∆db
σ )1/2

= exp
(
−

∑
x̂∈D∩V db

int

∫ +∞

0
pσ(t, x̂, ψ(x̂))

dt

t

)
,

where D is a fundamental domain of the covering map πσ. Moreover, conditionally on the event
{ϕ̃ ∈ Tσ}, the field |ϕ̃| has the same distribution as |ϕ̃σ|.

18



Remark 3.17. Theorem 1 implies in particular that for every x ∈ G̃,
E[ϕ̃(x)2|ϕ̃ ∈ Tσ] = Gσ(x, x).

Further, for any k ∈ N \ {0} and x1, x2, . . . , xk ∈ G̃, for the conditional moments (products of
squares)

E[ϕ̃(x1)2ϕ̃(x2)2 . . . ϕ̃(xk)2|ϕ̃ ∈ Tσ]
the Wick’s formula with kernel Gσ holds.

Remark 3.18. Theorem 1 immediately extends to interacting bosonic fields on the metric graph
where the interaction potential depends only on the absolute value of the field. For instance,

one can consider the φ4 fields on G̃. Let g > 0 be a coupling constant and consider the relative
partition functions

Zφ4

g = E
[
exp

(
− g

∫
G̃
ϕ̃(x)4 m̃(dx)

)]
, Zφ4

g,σ = E
[
exp

(
− g

∫
G̃
ϕ̃σ(x)

4 m̃(dx)
)]
.

Let ρ̃ be the field on G̃ with density

1

Zφ4

g

exp
(
− g

∫
G̃
φ̃(x)4 m̃(dx)

)
with respect to the GFF ϕ̃. This is the φ4 field on the metric graph. Similarly, let ρ̃σ be the

field on G̃ with density
1

Zφ4

g,σ

exp
(
− g

∫
G̃
φ̃(x)4 m̃(dx)

)
with respect to the GFF ϕ̃σ. This is the σ-twisted φ

4 field. Then Theorem 1 implies that

(3.8) P(ρ̃ ∈ Tσ) =
det((Gσ(x, y))x,y∈Vint)

1/2Zφ4

g,σ

det((G(x, y))x,y∈Vint)
1/2Zφ4

g

,

and that conditionally on ρ̃ ∈ Tσ, the field |ρ̃| is distributed as |ρ̃σ|. In (3.8) one again gets a
ratio of partition functions, this time for the φ4 field and its σ-twisted version. One can replace
the interaction potential φ4 by any other potential V(|φ|) bounded from below and depending
only on the absolute value of the field.

The rest of this section is dedicated to the proof of Theorem 1.
Let be

r = min
e∈E

C(e)−1.

Given e ∈ E, xme will denote the middle point of the edge-line Ie:

xme = xe,C(e)−1/2.

For ε ≤ C(e)−1/2, we will denote by x−e,ε and x+e,ε the two points of Ie at distance ε from xme :

x−e,ε = xe,C(e)−1/2+ε, x+e,ε = xe,C(e)−1/2−ε.

The points x−e,ε and x+e,ε will play symmetric roles, the distinction is just for the notations. Let

Je,ε denote the open subinterval of Ie delimited by x−e,ε and x+e,ε:

Je,ε = {xe,u|C(e)−1/2− ε < u < C(e)−1/2 + ε}.
See Figure 6.

Given a gauge field σ ∈ {−1, 1}E , we will denote

Eσ,− = {e ∈ E|σ(e) = −1}.

For ε ∈ (0, r/2), let G̃σ,ε denote

G̃σ,ε = G̃ \
⋃

e∈Eσ,−

Je,ε.
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Figure 6. Inside an edge-line.

In this way, G̃σ,ε is a closed subset of the metric graph G̃, and is itself a metric graph, but not
necessarily connected. Consider the discrete graph Gσ,ε = (Vσ,ε, Eσ,ε) constructed as follows.
The set of vertices is given by

Vσ,ε = V ∪ {x−e,ε|e ∈ Eσ,−} ∪ {x+e,ε|e ∈ Eσ,−},
and the set of edges given by

Eσ,ε = (E \ Eσ,−) ∪ {{x−e,ε, e−}|e ∈ Eσ,−} ∪ {{x+e,ε, e+}|e ∈ Eσ,−}.
The graph Gσ,ε is endowed with the following conductances: for e ∈ E \Eσ,−, we keep the same
conductance C(e). Further, e ∈ Eσ,−, we set

C(x−e,ε, e−) = C(x+e,ε, e+) = (C(e)−1/2− ε)−1.

Then G̃σ,ε is actually the metric graph associated to the electrical network Gσ,ε. We will denote

by ϕ̃σ,ε the metric graph GFF on G̃σ,ε with 0 boundary conditions on V∂ . The field ϕ̃σ,ε is a
usual metric graph GFF, i.e. not gauge-twisted. We will also consider the restrictions of the

metric graph GFF ϕ̃ and ϕ̃σ to G̃σ,ε.
For x, y ∈ G̃, we will denote

G(x, y) = E[ϕ̃(x), ϕ̃(y)], Gσ(x, y) = E[ϕ̃σ(x), ϕ̃σ(y)].
In this way we have a natural extension of Green’s functions G and Gσ beyond V ×V . note that

G defined in this way is continuous on G̃ × G̃, but Gσ has discontinuities at the middle points

xme for e ∈ Eσ,−. We will also denote by Gσ,ε(x, y) the covariance kernel of ϕ̃σ,ε on G̃σ,ε × G̃σ,ε.

Lemma 3.19. The restrictions ϕ̃|G̃σ,ε
and ϕ̃

σ|G̃σ,ε
are both absolutely continuous with respect to

ϕ̃σ,ε. The Radon-Nikodym derivatives are given by

(3.9)
dPϕ̃|G̃σ,ε

dPϕ̃σ,ε

(φ̃) =
(det(Gσ,ε(x, y))x,y∈Vσ,ε\V )

1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

exp
(
− 1

4ε

∑
e∈Eσ,−

(φ̃(x+e,ε)− φ̃(x−e,ε))2
)
,

(3.10)
dPϕ̃

σ|G̃σ,ε

dPϕ̃σ,ε

(φ̃) =
(det(Gσ,ε(x, y))x,y∈Vσ,ε\V )

1/2

(det(Gσ(x, y))x,y∈Vσ,ε\V )
1/2

exp
(
− 1

4ε

∑
e∈Eσ,−

(φ̃(x+e,ε) + φ̃(x−e,ε))
2
)
.

Proof. Let us introduce the auxiliary electrical network G∗σ,ε as follows. Its set of vertices is Vσ,ε,
the same as for Gσ,ε. Its set of edges is

E∗
σ,ε = Eσ,ε ∪ {{x−e,ε, x+e,ε}|e ∈ Eσ,−}.

The conductances on E∗
σ,ε are as follows. If e ∈ Eσ,ε, then we keep the same conductance C(e).

Moreover, we set

C(x−e,ε, x
+
e,ε) =

1

2ε
,

for e ∈ Eσ,−. Then the metric graph associated to the elctrical network G∗σ,ε is again G̃, the
same as for G. This is because for every e ∈ Eσ,−,

C(e−, x
−
e,ε)

−1 + C(x−e,ε, x
+
e,ε)

−1 + C(x+e,ε, e+)
−1

= (C(e)−1/2− ε) + 2ε+ (C(e)−1/2− ε) = C(e)−1,
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as for resistors in series. Therefore, the restriction of ϕ̃ to Vσ,ε is the discrete GFF on the
electrical network G∗σ,ε, with 0 boundary conditions on V∂ . The right-hand side of (3.9) is then

the density of (ϕ̃(x))x∈Vσ,ε with respect to (ϕ̃σ,ε(x))x∈Vσ,ε , both being discrete GFFs, on G∗σ,ε
and Gσ,ε respectively. Indeed, compared to Gσ,ε, G∗σ,ε contains only the extra edges {x−e,ε, x+e,ε}
for e ∈ Eσ,−, with conductance 1/(2ε) each, so the corresponding factors appear in the density.
The ration of determinants of Green’s functions to the power 1/2 is the normalization factor.

Finally, the expression of the density is the same when we consider the whole metric graph G̃σ,ε,
because both for ϕ̃ and ϕ̃σ,ε we interpolate with the same independent Brownian bridges.

Now let us deal with ϕ̃σ. We consider on G∗σ,ε the gauge-field σ∗ ∈ {−1, 1}E∗
σ,ε defined as

follows. For e ∈ E \ Eσ,−, σ
∗(e) = σ(e) = 1. Further,

σ∗(e−, x
−
e,ε) = σ∗(e+, x

+
e,ε) = 1,

and

σ∗(x−e,ε, x
+
e,ε) = −1.

In this way, for every ℘ nearest-neighbor path in G∗σ,ε joining two points, x, y ∈ V ,

holσ
∗
(℘) = holσ(℘G),

where ℘G is the nearest-neighbor path in G from x to y obtained by taking the trace of ℘ on V .
The restriction of ϕ̃σ to Vσ,ε is the σ∗-twisted GFF on G∗σ,ε with 0 boundary conditions on V∂ .

This is similar to Proposition 3.2. Then (3.10) is just the density of (ϕ̃σ(x))x∈Vσ,ε with respect

to (ϕ̃σ,ε(x))x∈Vσ,ε . Because of σ∗, there is a + instead of a − in (3.10) compared to (3.9). □

Note that Lemma 3.19 implies in particular that ϕ̃
σ|G̃σ,ε

is absolutely continuous with respect

to ϕ̃|G̃σ,ε
. However, if one considers the whole metric graph G̃, then ϕ̃σ is singular with respect to

ϕ̃, unless Eσ,− = ∅. For instance, ϕ̃σ is a.s. discontinuous at the middle points xme for e ∈ Eσ,−.
So that is the reason why we restrict to ε-far away from these middle points.

Let C(G̃σ,ε) denote the space of continuous real-valued functions on G̃σ,ε. For f ∈ C(G̃σ,ε),
{f ̸= 0} will denote the non-zero set of f , with {f ̸= 0} ⊂ G̃σ,ε. Let Tσ,ε be the following subset

of C(G̃σ,ε):

Tσ,ε =
{
f ∈ C(G̃σ,ε)

∣∣∣ ∀ U connected component of
(
{f ̸= 0}

⋃
e∈Eσ,−

Je,ε

)
, π−1

σ (U) is not connected
}
.

In the above definition, we enlarge {f ̸= 0} with the intervals Je,ε for e ∈ Eσ,−, and then
consider the connected components.

Given f ∈ C(G̃σ,ε), we will define an equivalence relation ∼f on the set

(3.11) {x−e,ε|e ∈ Eσ,−} ∪ {x+e,ε|e ∈ Eσ,−} = Vσ,ε \ V.

Two points x, x′ in the above set are in the same class if they are in the same connected
component of {f ̸= 0}. If f(x) = 0, then x is alone in its class. We will denote by Vf the set
(3.11) quotiented by the equivalence relation ∼f , and by [x]f the equivalence class of a point x.
Next we will introduce an undirected multigraph Γf induced by the function f . Note that in
general Γf is not connected and may have self-loops and multiple edges. The set of vertices of
Γf is the quotient set Vf . Further, for each e ∈ Eσ,−, add to the multigraph Γf and edge with
the ends [x−e,ε]f and [x+e,ε]f . So the number of edges of Γf is |Eσ,−|.

Lemma 3.20. Let f ∈ C(G̃σ,ε). Then the multigraph Γf is bipartite, i.e. does not contain cycles
with odd number of edges, if and only if f ∈ Tσ,ε.

Proof. Given a continuous loop ℘ in the subset

(3.12)
(
{f ̸= 0}

⋃
e∈Eσ,−

Je,ε

)
,
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It induces a nearest-neighbor loop in the multigraph Γf , which will denote by [℘]f by a slight
abuse of notation. If ℘ does not visit any point in Vσ,ε \ V (3.11), then [℘]f is just the empty
loop. Conversely, every nearest-neighbor loop in Γf can be lifted to a continuous loop in (3.12).
This follows from the way Γf has been constructed. The edges visited by [℘]f correspond to the
intervals Je,ε (with e ∈ Eσ,−) crossed by ℘ from one end to the opposite. The holonomy holσ(℘)
is given by the parity of the number of edge-lines Ie, for e ∈ Eσ,−, crossed by ℘. This parity is
the same as for the crossings of Je,ε, for e ∈ Eσ,−, although the number of crossings itself might
be different. This is because each time ℘ crosses an edge-line Ie, it will cross the corresponding
subinterval Je,ε an odd number of times. Thus, holσ(℘) is also given by the parity of the number
of edges of multigraph loop [℘]f . Thus, Γf is bipartite if and only if the subset (3.12) does not
contain loops ℘ with holσ(℘) = −1, which is the same as f ∈ Tσ,ε. □

Note that although C(G̃σ,ε) is infinite, the number of different partitions of Vσ,ε \ V (3.11)
induced by the functions f can be only finite. Given f ∈ Tσ,ε, one can choose a “coloring”
ωf : Vσ,ε \ V → {−1, 1} satisfying the following two properties.

(1) The value of ωf is the same across every equivalence class for ∼f .
(2) For every e ∈ Eσ,−, ωf (x

−
e,ε) = −ωf (x

+
e,ε).

The existence of such ωf is ensured by the fact that Γf is bipartite. Moreover, one can choose
ωf to depend only on the partition Vf induced by ∼f .

Next we define a transformation Tσ,ε acting on Tσ,ε. Given f ∈ Tσ,ε, the function Tσ,εf is
defined as follows.

(1) For every x ∈ G̃σ,ε such that f(x) = 0, we also have (Tσ,εf)(x) = 0.
(2) On every connected component U of {f ̸= 0} such that U does not intersect the set

Vσ,ε \ V , we have (Tσ,εf)|U = f|U .
(3) On every connected component U of {f ̸= 0} intersecting Vσ,ε \ V , we have (Tσ,εf)|U =

ωf (U)f|U , where ωf (U) is the common value of ωf on U .

So, in essence, Tσ,εf is obtained by flipping the signs on some connected components of {f ̸= 0}.
In this way, Tσ,εf is continuous too, and |Tσ,εf | ≡ f . Therefore, Tσ,εf ∈ Tσ,ε too. Moreover, the
equivalence relation ∼Tσ,εf is the same as ∼f . Thus, T

2
σ,εf = Tσ,ε(Tσ,εf) = f .

Further, we will extend Tσ,ε to the whole C(G̃σ,ε). For f ∈ C(G̃σ,ε) \ Tσ,ε, we set Tσ,εf = f .

Let us denote by ξ̃ε and η̃ε the fields

ξ̃ε = Tσ,ε(ϕ̃|G̃σ,ε
), η̃ε = Tσ,ε(ϕ̃σ,ε).

Lemma 3.21. The field ξ̃ε is absolutely continuous with respect to η̃ε, and the corresponding
density is

dPξ̃ε

dPη̃ε

(φ̃) =
(det(Gσ,ε(x, y))x,y∈Vσ,ε\V )

1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

exp
(
− 1

4ε

∑
e∈Eσ,−

(φ̃(x+e,ε)− (−1)1φ̃∈Tσ,εφ̃(x−e,ε))2
)
.

Proof. Since ϕ̃|G̃σ,ε
is absolutely continuous with respect to ϕ̃σ,ε (Lemma 3.19) and Tσ,ε is a de-

terministic and measurable transformation, we get that ξ̃ε is absolutely continuous with respect
to η̃ε, with

dPξ̃ε

dPη̃ε

(φ̃) =
dPϕ̃|G̃σ,ε

dPϕ̃σ,ε

(Tσ,εφ̃).

Further we use the expression (3.9). Take e ∈ Eσ,−. For φ̃ ̸∈ Tσ,ε,

((Tσ,εφ̃)(x
+
e,ε)− (Tσ,εφ̃)(x

−
e,ε))

2 = (φ̃(x+e,ε)− φ̃(x−e,ε))2.

For φ̃ ∈ Tσ,ε,
((Tσ,εφ̃)(x

+
e,ε)− (Tσ,εφ̃)(x

−
e,ε))

2 = (φ̃(x+e,ε) + φ̃(x−e,ε))
2.

This because ωf (x
−
e,ε)ωf (x

+
e,ε) = −1. □
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Lemma 3.22. The field η̃ε = Tσ,ε(ϕ̃σ,ε) has the same distribution as ϕ̃σ,ε.

Proof. First, by construction, |Tσ,ε(ϕ̃σ,ε)| ≡ |ϕ̃σ,ε|. Further, the signs ωϕ̃σ,ε
(that is to say ωf

with f = ϕ̃σ,ε) are by construction measurable with respect to |ϕ̃σ,ε|. Then, we use the fact

that the signs of ϕ̃σ,ε (do not confuse them with ωϕ̃σ,ε
) are distributed, conventionally on |ϕ̃σ,ε|

as independent uniform {−1, 1}-valued r.v.s, one for each connected component of {ϕ̃σ,ε ̸= 0};
see [Lup16, Lemma 3.2]. This implies that the product of signs ωϕ̃σ,ε

sign(ϕ̃σ,ε) has the same

conditional distribution given |ϕ̃σ,ε| as sign(ϕ̃σ,ε). Therefore, Tσ,ε(ϕ̃σ,ε) has the same distribution

as ϕ̃σ,ε. □

Lemma 3.23. The function

ε 7→
(det(Gσ(x, y))x,y∈Vσ,ε\V )

1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

is constant on (0, r/2). More precisely, for every ε ∈ (0, r/2),

(det(Gσ(x, y))x,y∈Vσ,ε\V )
1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

=
(det(Gσ(x, y))x,y∈Vint)

1/2

(det(G(x, y))x,y∈Vint)
1/2

= exp
(
− µloop({Loops ℘ with holσ(℘) = −1})

)
.

Proof. Consider the measure µ̃loop (2.8) on Brownian loops on the metric graph G̃. Similarly to
Corollary (2.3), we have that

(det(Gσ(x, y))x,y∈Vσ,ε\V )
1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

= exp
(
−µ̃loop({Loops ℘ visiting Vσ,ε\V and with holσ(℘) = −1})

)
.

Moreover,

det((Gσ(x, y))x,y∈Vint)
1/2

det((G(x, y))x,y∈Vint)
1/2

= exp
(
− µloop({Loops ℘ with holσ(℘) = −1})

)
= exp

(
− µ̃loop({Loops ℘ visiting V and with holσ(℘) = −1})

)
,

where the second equality is due to the fact that the measure on discrete loops µloop can be
obtained by taking the trace on V of metric graph loops under µ̃loop. We conclude by using the

fact that any continuous loop ℘ on G̃ with holσ(℘) = −1 has to visit both V and Vσ,ε \V . That
is to say a loop not visiting either of two subsets has holonomy 1, because then it cannot cross
any of the edge-lines Ie for e ∈ Eσ,−. Therefore,

µ̃loop({Loops ℘ visiting Vσ,ε\V and with holσ(℘) = −1}) = µ̃loop({Loops ℘ with holσ(℘) = −1})

= µ̃loop({Loops ℘ visiting V and with holσ(℘) = −1}) = µloop({Loops ℘ with holσ(℘) = −1}). □

Proof of Theorem 1. By Lemma 3.19, the field ϕ̃
σ|G̃σ,ε

is absolutely continuous with respect to

the field ϕ̃σ,ε. By Lemma 3.22, the field η̃ε has the same distribution as ϕ̃σ,ε. By Lemma 3.21,

the fields η̃ε and ξ̃ε are mutually absolutelly continuous, the corresponding Radon–Nikodym

derivative being positive on C(G̃σ,ε). Therefore, the field ϕ̃
σ|G̃σ,ε

is absolutely continuous with

respect to the field ξ̃ε and the Radon–Nikodym derivative is given by

(3.13)
dPϕ̃

σ|G̃σ,ε

dPξ̃ε

(φ̃) =

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

(det(Gσ(x, y))x,y∈Vσ,ε\V )
1/2

(
1φ̃∈Tσ,ε + 1φ̸̃∈Tσ,ε exp

(
− 1

ε

∑
e∈Eσ,−

φ̃(x+e,ε)φ̃(x
−
e,ε)

))
.
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Note that ξ̃ε ∈ Tσ,ε if and only if ϕ̃|G̃σ,ε
∈ Tσ,ε. So in particular,

P(ϕ̃|G̃σ,ε
∈ Tσ,ε) + E

[
1ϕ̃|G̃σ,ε ̸∈Tσ,ε

exp
(
− 1

ε

∑
e∈Eσ,−

ϕ̃(x+e,ε)ϕ̃(x
−
e,ε)

)]

=
(det(Gσ(x, y))x,y∈Vσ,ε\V )

1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

= exp
(
− µloop({Loops ℘ with holσ(℘) = −1})

)
,

where the second equality is due to Lemma 3.23. Further,

lim
ε→0

P(ϕ̃|G̃σ,ε
∈ Tσ,ε) = P(ϕ̃ ∈ Tσ)

and

E
[
1ϕ̃|G̃σ,ε ̸∈Tσ,ε

exp
(
− 1

ε

∑
e∈Eσ,−

ϕ̃(x+e,ε)ϕ̃(x
−
e,ε)

)]
=

(det(Gσ(x, y))x,y∈Vσ,ε\V )
1/2

(det(G(x, y))x,y∈Vσ,ε\V )
1/2

P(|ϕ̃
σ|G̃σ,ε

| ̸∈ Tσ,ε),

with

lim
ε→0

P(|ϕ̃
σ|G̃σ,ε

| ̸∈ Tσ,ε) = P(|ϕ̃σ| ̸∈ Tσ) = 0;

see Lemma 3.15. So we get (3.7).

Since |ξ̃ε| = |ϕ̃|G̃σ,ε
|, the field |ϕ̃

σ|G̃σ,ε
| is absolutely continuous with respect to |ϕ̃|G̃σ,ε

|, and

lim
ε→0

dP|ϕ̃
σ|G̃σ,ε |

dP|ϕ̃|G̃σ,ε |
(φ̃) =

1

P(φ̃ ∈ Tσ)
1φ̃∈Tσ ,

with convergence in L1. So P(φ̃ ∈ Tσ)−11φ̃∈Tσ is the density of |ϕ̃σ| with respect to |ϕ̃|. □

Next we explain how to get the field ϕ̃σ given the field ϕ̃ conditionned on ϕ̃ ∈ Tσ, that is to
say how to get the signs, not just the absolute value. In essence, one has to flip the signs on
some of the connected components of {ϕ̃ ̸= 0} \ {xme |e ∈ Eσ,−}.

To avoid trivialities, we assume that the gauge field σ is not uniformly 1. Let us denote

Mσ = {xme |e ∈ Eσ,−}.

We endow the subset G̃ \Mσ with the correspondent length metric d′, which is not the same

as the distance inherited from G̃ since now we are not allowed to cross the points in Mσ. The

metric space (G̃ \Mσ, d
′) is not complete, but we can consider its completion for d′, which is

not G̃. This completion is

(G̃ \Mσ) ∪M±
σ ,

with

M±
σ = {xm,+

e |e ∈ Eσ,−} ∪ {xm,−
e |e ∈ Eσ,−},

where xm,−
e and xm,+

e are to be understood as left and right infinitesimal neighborhoods of xme :

xm,−
e = lim

ε→0
x−e,ε, xm,+

e = lim
ε→0

x+e,ε.

The fields ϕ̃ and ϕ̃σ can be both seen as continuous fields on (G̃ \Mσ) ∪M±
σ , with

ϕ̃(xm,−
e ) = ϕ̃(xm,+

e ), ϕ̃σ(x
m,−
e ) = −ϕ̃σ(xm,+

e ), e ∈ Eσ,−.

A sample of ϕ̃ induces a partition Vϕ̃ of M±
σ , where two points x, x′ ∈ M±

σ are in the same

class if they are in the same connected component of {ϕ̃ ̸= 0} seen as a subset of G̃ \Mσ)∪M±
σ

and not as a subset of G̃. We will denote by [x]ϕ̃ the equivalence class of x for x ∈ M±
σ . The

condition ϕ̃ ∈ Tσ is equivalent to Vϕ̃ being bicolorable in the following sense: there is a map

ω : Vϕ̃ → {−1, 1}, such that for every e ∈ Eσ,−, ω([x
m,−
e ]ϕ̃) = −ω([xm,+

e ]ϕ̃). This is similar

to Lemma 3.20. The number of different bicolorings is 2k where k is the number of connected
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Figure 7. Left: the field ϕ̃ on the event ϕ̃ ∈ Tσ, which is this example means
that there are no sign clusters surrounding the inner hole of the domain. Right:
the associated ξ̃ field. The black dots represent the boundary V∂ . The violet
dots represent Mσ. The positive, resp. negative values of the fields are in red,
resp. blue.

components of {ϕ̃ ̸= 0} in G̃ (not in (G̃ \Mσ)∪M±
σ !) that intersect Mσ. Indeed, there are two

different colorings per such connected component, one being the opposite of the other.
Let Bic(Mσ) denote the set of bicolorable partitions of Mσ. To each such partition p ∈

Bic(Mσ) we will associate (in a deterministic way) a bicoloring ωp. We define the random field

ξ̃ on G̃ as follows. On the event ϕ̃ ̸∈ Tσ, we set ξ̃ = ϕ̃. On the event ϕ̃ ̸∈ Tσ, ξ̃ is defined by the
following.

(1) For every x ∈ G̃, |ξ̃(x)| = |ϕ̃(x)|.
(2) On every connected component U of {ϕ̃ ̸= 0}, such that U ∩Mσ = ∅, we have ξ̃|U = ϕ̃|U .

(3) On every connected component U of {ϕ̃ ̸= 0} \Mσ such that U ∩Mσ ̸= ∅, ξ̃|U =

ωVϕ̃(U)ϕ̃|U , where ωVϕ̃ is ωp with p being the random partition Vϕ̃, and ωVϕ̃(U) is the

common value of ωVϕ̃([x]ϕ̃) for x ∈ U ∩Mσ.

So ξ̃ is obtain from ϕ̃ through a deterministic transformation. It corresponds to flipping the
signs of some of the connected components of {ϕ̃ ̸= 0} \Mσ, on the event ϕ̃ ∈ Tσ, so as to
achieve a bicoloring. See Figure 7.

Corollary 3.24. The conditional distribution of ξ̃ on the event ϕ̃ ∈ Tσ, is that of ϕ̃σ.

Proof. The couple (ϕ̃, ξ̃) can be obtained as limit in law as ε→ 0 of (ϕ̃|G̃σ,ε
, ξ̃ε). Then the result

is obtained by passing the density (3.13) to the limit. □

3.5. A remark on the isomorphism for ϕ̃σ. Recall the measure on metric graph loops µ̃loop

(2.8). Let σ ∈ {−1, 1}E . Let the signed measure on metric graph loops be

µ̃loopσ (d℘) = holσ(℘)µ̃loop(d℘),

which can be decomposed according to the sign into

µ̃loopσ = µ̃loopσ,+ − µ̃
loop
σ,− .

Let L̃1/2σ,+, respectively L̃
1/2
σ,−, be the Poisson point processes of metric graph loops on G̃ with

intensity measure 1
2 µ̃

loop
σ,+ , respectively 1

2 µ̃
loop
σ,− . The version on Le Jan’s isomorphism due to
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Kassel and Lévy (2.6) extends in a straightforward way to the metric graphs:

(ℓx(L̃1/2σ,+))x∈G̃
(law)
=

(1
2
ϕ̃σ(x)

2 + ℓx(L̃1/2σ,−)
)
x∈G̃

,

where ϕ̃σ and L̃1/2σ,− are taken independent, and ℓx above denotes the Brownian local times. One
can use for instance an approximation from discrete through a subdivision of edges as in Section
3.1.

Now consider C a connected component on{
x ∈ G̃

∣∣∣1
2
ϕ̃σ(x)

2 + ℓx(L̃1/2σ,−) ̸= 0
}
.

Then π−1
σ (C) is either connected or not. If π−1

σ (C) is not connected, than C cannot contain any

loop with holonomy −1, and in particular, C cannot contain any loop in L̃1/2σ,−. So in this case,

C is actually a connected component of {|ϕ̃σ| ≠ 0}. We summarize this remark in the corollary
below.

Corollary 3.25. One can couple on the same probability space the metric graph loop soups

L̃1/2σ,+ and L̃1/2σ,−, and the field ϕ̃σ, such that all of the following conditions hold.

(1) The field ϕ̃σ and the loop soup L̃1/2σ,− are independent.

(2) For every x ∈ G̃,
ℓx(L̃1/2σ,+) =

1

2
ϕ̃σ(x)

2 + ℓx(L̃1/2σ,−).

(3) For every cluster C of L̃1/2σ,+ such that π−1
σ (C) is not connected, C is also a connected

component of {|ϕ̃σ| ≠ 0} and ℓx(L̃1/2σ,+) coincides with 1
2 ϕ̃σ(x)

2 on C.

In particular, one can couple on the same probability space the metric graph loop soups L̃1/2σ,+

and the field ϕ̃σ, such that the following conditions hold.

(1) For every x ∈ G̃,
1

2
ϕ̃σ(x)

2 ≤ ℓx(L̃1/2σ,+).

(2) For every cluster C of L̃1/2σ,+ such that π−1
σ (C) is not connected, C is also a connected

component of {|ϕ̃σ| ̸= 0} and ℓx(L̃1/2σ,+) coincides with 1
2 ϕ̃σ(x)

2 on C. In other words,

ℓx(L̃1/2σ,+) and
1
2 ϕ̃σ(x)

2 can differ only on clusters C of L̃1/2σ,+ such that π−1
σ (C) is connected.

In the example of Figure 3, L̃1/2σ,+ consists of loops that turn around the inner hole an even

number of times, including those that do not surround it, and L̃1/2σ,− consists of loops that turn

around the inner hole an odd number of times. Further, ℓx(L̃1/2σ,+) and 1
2 ϕ̃σ(x)

2 coincide on

clusters of L̃1/2σ,+ that do not surround the inner hole. At the risk of being redundant, let us

emphasize that the dichotomy for loops in L̃1/2 and the dichotomy for clusters of L̃1/2σ,+ are

different. For loops in L̃1/2 on distinguishes between the loops that turn an even number of
times around the hole, and the loops turn an odd number of time around the hole. In this
way, the loops that turn twice around the hole are in the same class as the loops that do not
surround the hole at all. For the clusters of loops however, the dichotomy is just surrounding
or not surrounding the inner hole.

In view of the above corollary, perhaps it is worth pointing out the difference between the

clusters of L̃1/2σ,+ on the metric graph G̃ and the clusters of L1/2σ,+ on the discrete graph G.

Proposition 3.26. The discrete loop soup L1/2σ,+ is obtained, up to a rerooting of the loops, from

the metric graph loop soup L̃1/2σ,+ by taking the trace of loops on V with the time change A−1

(2.7). By doing this, one only takes into account the loops in L̃1/2σ,+ that visits at least one vertex.
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In particular, for every x ∈ V , ℓx(L̃1/2σ,+) = ℓx(L1/2σ,+). Further, the crossings of edges-lines Ie by

L̃1/2σ,+ correspond to the jumps through discrete edges e by L1/2σ,+.

If an edge e ∈ E is visited by L1/2σ,+, then ∀x ∈ Ie, ℓ
x(L̃1/2σ,+) > 0 a.s. Moreover, for every

e ∈ E,

(3.14) P
(
∀x ∈ Ie, ℓx(L̃1/2σ,+) > 0

∣∣∣L1/2σ,+, e not visited by L1/2σ,+

)
= 1− exp

(
− 2C(e)(ℓe−(L̃1/2σ,+)ℓ

e+(L̃1/2σ,+))
1/2

)
,

with conditional independence (given L1/2σ,+) across the edges e ∈ E.

Proof. These are the properties already satisfied by the loop soups L̃1/2 and L1/2, proven in

[Lup16]. The fact that L1/2 is the trace of L̃1/2 on the vertices V immediately implies that L1/2σ,+

is the trace of L̃1/2σ,+ on V , as well as that L1/2σ,− is the trace of L̃1/2σ,− on V .

As for the formula (3.14), given e ∈ E not visited by L1/2σ,+, the connection between the two
endpoints of e can be created by a superposition of three objects: the Brownian excursions
from e+ to e+ inside Ie, the Brownian excursions from e− to e− inside Ie, and the Brownian

loops of L̃1/2σ,+ that stay inside Ie. The formula (3.14) is then the same as for L̃1/2 and L1/2
appearing in [Lup16] as the same three types of Brownian paths appear in both settings. This

is in particular due to the fact that all the Brownian loops in L̃1/2 that stay inside Ie have a

holonomy 1, and thus also appear in L̃1/2σ,+. Note that for L̃1/2σ,− and L1/2σ,−, a similar formula is
no longer true, precisely because the Brownian loops staying inside Ie no longer participate to
connecting the two ends of e, as they all have a wrong holonomy. □
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