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Abstract—Last years have seen a regain of interest for the use
of stochastic block modeling (SBM) in recommender systems.
These models are seen as a flexible alternative to tensor decom-
position techniques that are able to handle labeled data. Recent
works proposed to tackle discrete recommendation problems via
SBMs by considering larger contexts as input data and by adding
second order interactions between contexts’ related elements.
In this work, we show that these models are all special cases
of a single global framework: the Serialized Interacting Mixed
membership Stochastic Block Model (SIMSBM). It allows to
model an arbitrarily large context as well as an arbitrarily high
order of interactions. We demonstrate that SIMSBM generalizes
several recent SBM-based baselines. Besides, we demonstrate that
our formulation allows for an increased predictive power on six
real-world datasets.

Index Terms—SBM, MMSBM, Clustering, Interaction, Rec-
ommender systems

I. INTRODUCTION

Clustering is a core concept of machine learning. Among
other applications, it has proven to be especially fit to
tackle real-world recommendation problems. A recommenda-
tion consists in guessing an output entity based on a given
context. This context can often be represented as a high di-
mensional set of input entities. On retail websites for instance,
the context could be the ID of a user, the last product she
bought, the last visited page, the current month, and so on.
Clustering algorithms look for regularities in these datasets
to reduce the dimensionality of the input context to its most
defining characteristics. Continuing the online retail example,
a well design algorithm would spot that a mouse, a keyboard
and a computer screen are somehow related buys, and that the
next buy is likely to be another computer device. Besides,
when given a set of users, subsets of users are likely to
have similar interest in a given product if their buying history
is similar. We can define such groups of people that share
similar behaviors using clustering algorithms; this is called
collaborative filtering. One of the most widely used approaches
to perform this task relies on tensor decomposition.

Tensor decomposition approaches provide a variety of effi-
cient mathematical tools for breaking a tensor into a com-
bination of smaller components. One of the most popular
tensor decomposition method is Non-negative Matrix Factor-
ization (NMF). Its application to recommender systems has
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Fig. 1. Illustration of the SIMSBM — For input entities of type f and g,
where entities of type f interact with each other as pairs and entities of type
g do not interact with each other. The membership of an entity fi of type f

to a cluster Kn is encoded into the membership matrix entry θ
(f)
fi,Kn

. The
interaction between clusters is embedded in a multipartite network, whose
adjacency matrix is p. A weighted edge between several clusters and one
output represents the probability of this output given the context clusters –
only two such edges are represented here. In red, we represent the probability
of o1 given f1 belonging to K1, f2 belonging to K1 and g1 belonging to
L1, which is equal to θ

(f)
f1,K1

θ
(f)
f2,K1

θ
(g)
g1,L1

P (o1|K1,K1, L1).

been proposed in 2006 on Simon Funk’s blog for an open
competition on movie recommendation [1]. The underlying
idea is to approximate a target 2-dimensional real-valued
observations tensor D ∈ RI×J (a matrix in this case) as the
product of two lower dimensional matrices W ∈ RI×K and
H ∈ RK×J such that D = WH . This approach has seen
numerous developments, such as an algorithm allowing its
online optimization [2], [3]. Thanks to its low computational
cost, this method is still today at the core of many real-world
large scale recommender systems. However, a major drawback
of NMF is that it can only consider two-dimensional data. Sev-
eral extensions have been proposed to consider n-dimensional
data. A straightforward generalization of NMF is the Tensor
Factorization, that generalizes NMF in order to infer an n-



dimensional matrix D ∈ RI×J×... as the product of a core
tensor C ∈ RK×L×... with n smaller matrices M1 ∈ RI×K ,
M2 ∈ RJ×L, and so on, such that D = M1M2...MnC [4].
This approach allows to consider a larger context as input data.
Several variants have been proposed based on similar ideas [5],
[6]. Another class of tensor decomposition is called Tensor
rank or Canonical Polyadic (CP) decomposition. It is at the
base of several popular decomposition methods that consider a
sum of rank-one matrices instead of a product decomposition.
In this case, an n-dimensional tensor is approximated as the
sum of rank-one tensors [7], [8]. Several extensions based on
CP have been proposed [9], [10].

However, decomposition methods are based on linear de-
composition of a real-valued tensor D, which is unfit to
tackle discrete problems. These methods can efficiently infer
continuous outputs (the rating of a movie as in [1] for instance,
or the number of buys of a product) but must be tweaked
in order to consider discrete outputs (the next buy on an
online retail website for instance). In this case, a possible
approach consists in mapping all possible discrete outputs as
a continuous variable. This is straightforward as in the case
of movie ratings, because the set of possible ratings (1, 2,
3, ...) can be ordered on a continuous scale. However, if
one wants to recommend one of several products (mouse,
keyboard, computer, ...), the mapping of possible outputs to
a continuous value is not trivial. A way to consider discrete
data in decomposition methods to add another dimension to
the input tensor, whose size equals the number of possible
outputs. Then, the algorithm optimizes the model based on
the frequency of each of those items. This trick induces a
strong bias and increase the complexity of the algorithm. To
answer this problem, recent years have seen a growing interest
in the literature of Stochastic Block Modeling (SBM). We will
detail this literature after introducing the SIMSBM framework,
in order to show how it generalizes most of the state-of-the-art
models.

A. Contributions

In this paper, we propose the Serialized Interacting Mixed
membership SBM (abbreviated SIMSBM). The SIMSBM is
a global framework that generalizes several state-of-the-art
models which tackle the problem of discrete recommendation
by a Bayesian network approach. In particular, it generalizes
recent works on multipartite graphs inference [11], [12] as
well as interaction modeling [13], [14]. We first introduce the
proposed framework in detail and develop an EM optimization
procedure. Then, we review previous works on Stochastic
Block Models that are used in collaborative filtering, and
detail for each one how to recover it as a special case of
our framework. Experiments are then conducted on 6 real-
world datasets and compared to standard baselines of the
literature. We show our formulation allows to obtain better
recommendations than existing methods either by adding
layers to the modeled multipartite graph or by adding higher-
order interactions terms in the modeling.

II. THE SIMSBM FRAMEWORK

The goal of the SIMSBM is to recommend an output entity,
that is one of O possible output entities, given a context.
To do so, it considers data in the form of a multipartite
network. The network’s nodes are the context elements (called
input entities fn, each of which is one of Fn possible input
entities). One hyper-edge between the N input entities (or
nodes) of a context represents the probability of a given
output entity o, that is P (o ∈ O|f1 ∈ F1, ..., fN ∈ FN ). The
SIMSBM clusters input entities (or nodes) together and infers
edges between these clusters to form a smaller multipartite
network. This projection is illustrated Fig. 1. The notations
used throughout this section are recalled Table. I.

Formally, input data of the SIMSBM is noted R◦, and is a
collection of tuples (f1, ..., fN , o). The vector f⃗ = (f1, ..., fN )
represents a context, whose entries fn are the input entities
that can be one of Fn possible input entities; outputs are
designated by o. Each input entity is represented as a node
in a layer of the multipartite network (circles in Fig. 1). The
number of layers of the multipartite graph is then N = |f⃗ |;
each layer n comprises Fn nodes. For each node in each
layer, the SIMSBM infers a vector θ⃗i ∈ RK that represents
its probability to belong to each of K possible clusters (i.e.
associate each circle to a distribution over the squares in
Fig. 1).

Input entities are of a given type; entities of the same type
carry the same semantic meaning, and are drawn from the
same set of possible values. We note a(f) the function that
associates an input entity f to its given type, and Ka(fn) the
number of available clusters for this type. Entities of same
type can interact with each other but are forced to share the
same cluster membership matrix. For instance, consider a user
rating a movie according to the pair of actors starring in it: the
context vector takes the shape (user, actor1, actor2). In this
example, one entity is of type “user”, and the two other are of
type “actor”, and each of the three entities is embedded in its
own layer of a multipartite graph. When creating clusters, the
SIMSBM enforces that the two layers of type “actor” share
the same membership matrix, while the layer accounting for
the type “user” has its own membership matrix. This structure
is exactly the same as the one depicted in Fig. 1. This is
needed in order to get results that are permutation independent,
meaning in our example that P (o|(user, actor1, actor2)) =
P (o|(user, actor2, actor1)). Our formulation as a multipartite
network allows to consider higher order interactions, with
contrast to [13] which only considers pair interactions.

The membership of an entity must sum to 1 over all the
Ka(fn) available clusters, hence the following constraint:

Ka(fn)∑
k

θ
(a(fn))
fn,k

= 1 ∀fn (1)

Once the nodes membership is known, the SIMSBM infers
the clusters multipartite network, whose weighted hyper-edges
stand for the probability of an output o given a combination
of clusters. The hyper-edge corresponding to the clustered



TABLE I
NOTATIONS

fn An input entity, can take any value in Fn

Fn Set of possible input entities for layer n
f⃗ Context vector (f1, ..., fN )
o Output entity, can take any value in O

N Number of input layers |f⃗ |
R◦ Data, a list of (N+1)-plets (f1, ..., fN , o)
a(fn) type of entity fn
Ka(fn) Number of available clusters for type a(fn)

θ(a(fn)) Membership matrix for entities of type a(fn)
p(o) Clusters’ multipartite network for output o
K⃗ Every possible clusters permutation {(k1, ..., kN )}k1;...;kN

k⃗ One permutation of clusters indices (k1, ..., kN ) ∈ K⃗
cv(x) Count of element x in vector v⃗
Cfn Total count of fn in R◦

context k⃗ = (k1, ..., kN ) associated to the output o is written
pk⃗(o) ∈ RKa(f1)×...×Ka(fN )×O. Note that the clustered con-
text k⃗ can take any value among all the possible permuta-
tions K⃗ = {K1, ...,KN}K1=1,...,Ka(f1);...;KN=1,...,Ka(fN )

. As
we want SIMSBM to infer a distribution over possible outputs
in a given context, the edges of the multipartite graph are
related by the following constraint:∑

o

pk⃗(o) = 1 ∀k⃗ ∈ K⃗ (2)

Finally, the probability of an output o given a context of input
entities f⃗ can be written as:

P (o|f⃗) =
∑
k⃗∈K⃗

pk⃗(o)
∏
n∈N

θ
(a(fn))
fn,kn

(3)

From Eq.3, we can define the log-likelihood of the model as:

ℓ =
∑

(f⃗ ,o)∈R◦

log

∑
k⃗∈K⃗

pk⃗(o)
∏
n∈N

θ
(a(fn))
fn,kn

 (4)

A. Inference

In this section, we derive an Expectation-Maximization
algorithm for inferring the model’s parameters p, θ. Such al-
gorithm guarantees the convergence towards a local maximum
of the likelihood function [15].

1) E-step (short derivation): Using Jensen’s inequality, we
can rewrite Eq.4 as:

ℓ =
∑

(f⃗ ,o)∈R◦

log

∑
k⃗∈K⃗

pk⃗(o)
∏
n∈N

θ
(a(fn))
fn,kn

 (5)

≥
∑

(f⃗ ,o)∈R◦

∑
k⃗∈K⃗

ωf⃗ ,o(k⃗) · log

(
pk⃗(o)

∏
n∈N θ

(a(fn))
fn,kn

ωf⃗ ,o(k⃗)

)

The inequality holds as an equality when:

ωf⃗ ,o(k⃗) =
pk⃗(o)

∏
n∈N θ

(a(fn))
fn,kn∑

k⃗′∈K⃗ pk⃗′(o)
∏

n∈N θ
(a(f))
fn,k′

n

(6)

Eq.6 constitutes the expectation step of the EM algorithm. This
derivation is intended as a fast way of deriving the correct

result. An alternative method that is more explicit about the
underlying concepts used in the derivation is described in the
follow-up subsection; the final expression for ωf⃗ ,o(k⃗) however
is identical.

2) E-step (detailed derivation): The derivation presented
in this section follows a well-known general derivation of the
EM algorithm, which can be found in C.M. Bishop’s Pattern
Recognition and Machine Learning-p.450 for instance.

We recall that the total log-likelihood (Eq. 4) is simply the
sum of each obervation’s log-likelihood: logP (R◦|θ, p) =∑

(f⃗ ,o)∈R◦ logP (f⃗ , o|θ, p). Without loss of generality, we
focus here on a single observation for clarity. The expression
of the SIMSBM log-likelihood for one entry entry of the
dataset reads:

logP (f⃗ , o|θ, p) = log
∑
k⃗∈K⃗

P (f⃗ , o, k⃗|θ, p) (7)

= log

∑
k⃗∈K⃗

pk⃗(o)
∏
n∈N

θ
(a(fn))
fn,kn


We assume a distribution Q(k⃗) on the latent variables (ac-

counting for cluster allocation) associated to one observation
in the dataset R◦; this distribution is yet to be defined. Because
k⃗ takes values in K⃗, we have

∑
k⃗∈K⃗ Q(k⃗) = 1. Given

this normalization condition, we can decompose Eq.7 for any
distribution Q(k⃗) as:

logP (f⃗ , o|θ, p) = logP (f⃗ , o, k⃗|θ, p)− logP (k⃗|f⃗ , o, θ, p)︸ ︷︷ ︸
Does not depend on k⃗

=
∑
k⃗∈K⃗

Q(k⃗)
(
logP (f⃗ , o, k⃗|θ, p)− logP (k⃗|f⃗ , o, θ, p)

)
=

∑
k⃗∈K⃗

Q(k⃗) logP (f⃗ , o, k⃗|θ, p)

−
∑
k⃗∈K⃗

Q(k⃗) logP (k⃗|f⃗ , o, θ, p)

=
∑
k⃗∈K⃗

Q(k⃗) log
P (f⃗ , o, k⃗|θ, p)

Q(k⃗)

−
∑
k⃗∈K⃗

Q(k⃗) log
P (k⃗|f⃗ , o, θ, p)

Q(k⃗)
(8)

We note that the term in the last line of Eq.8,
−
∑

k⃗∈K⃗ Q(k⃗) log P (k⃗|f⃗ ,o,θ,p)
Q(k⃗)

, is the Kullback-Leibler (KL)
divergence between P and Q, noted KL(P ||Q). The KL
divergence obeys KL(P ||Q) ≥ 0, and is null iif P equals
Q. Therefore, the term in the before-last line of Eq.8,∑

k⃗∈K⃗ Q(k⃗) log P (f⃗ ,o,⃗k|θ,p)
Q(k⃗)

, is interpreted as a lower bound

on the log-likelihood logP (f⃗ , o|θ, p).
The aim of the E-step is to find the expression of Q(k⃗)

that maximizes the lower bound of the log-likelihood with
respect to the latent variables k⃗. Given that the log-likelihood



does not depend on Q(k⃗) and KL(P ||Q) ≥ 0, the lower-
bound is maximized when KL(P ||Q) = 0, which occurs
when Q(k⃗) = P (k⃗|f⃗ , o, θ, p). In this case, the lower-bound on
the log-likelihood equals the likelihood itself and thus reaches
a maximum with respect to the latent variables k⃗ for fixed
parameters θ and p.

Given the definition of the SIMSBM, the derivation of
P (k⃗|f⃗ , o, θ, p) is straightforward (see Eq.3). The probability of
one combination of clusters k⃗ among K⃗ possible combinations
given an input features vector and an output o is proportional
to pk⃗(o)

∏
n∈N θ

(a(fn))
fn,kn

. Therefore:

P (k⃗|f⃗ , o, θ, p) := ωf⃗ ,o(k⃗) =
pk⃗(o)

∏
n∈N θ

(a(fn))
fn,kn∑

k⃗′∈K⃗ pk⃗′(o)
∏

n∈N θ
(a(fn))
fn,k′

n

(9)

which we denote as ωf⃗ ,o(k⃗) for simplicity of notation.
The EM is a 2-step iterative algorithm. The expression

of P (k⃗|f⃗ , o, θ, p) is computed first during the E-step using
the parameters θ and p from the previous iteration, that we
note θ(old) and p(old). Once this expression is found, the log-
likelihood maximized with respect to the latent variables k⃗ can
be expressed as:

logP (f⃗ , o|θ, p) (10)

=
∑
k⃗∈K⃗

P (k⃗|f⃗ , o, θ(old), p(old)) log P (f⃗ , o, k⃗|θ, p)
P (k⃗|f⃗ , o, θ(old), p(old))

The maximization step follows by maximizing Eq.4 (which
is the sum of Eq. 10 over all observations) with re-
spect to the parameters θ and p, which do not appear
in P (k⃗|f⃗ , o, θ(old), p(old)). This derivation is detailed in the
follow-up section.

3) M-step: We take back Eq.4 and add Lagrangian multi-
pliers ϕ to account for the constraints on θ. We maximize of
the resulting constrained likelihood ℓc according to each latent
variable:

∂ℓc

∂θ
(a(m))
mn

=
∂

∂θ
(a(m))
mn

[
ℓ−

∑
i

ϕ
(a(i))
i

(∑
k

θ
(n)
ik − 1

)]

⇔ ϕ(a(m))
m =

∑
(f⃗ ,o)∈∂m

∑
k⃗∈K⃗

ck(n)ωf⃗ ,o(k⃗)

θ
(a(m))
mn

⇔ θ(a(m))
mn ϕ(a(m))

m =
∑

(f⃗ ,o)∈∂m

∑
k⃗∈K⃗

ck(n)ωf⃗ ,o(k⃗) (11)

The term ck(n) arises because of the non-linearity induced
by the interaction between input entities of the same type.
Let im be the indices where entity m appears in the input
vector f⃗ . The corresponding entries of the permutation vector
k⃗ are noted k⃗im . Then, ck(n) = |{1|⃗ki = n}i∈im | is the count
of n in k⃗im . When n appears ck(n) times in a permutation
comprising k⃗im , so will a term log θ

ck(n)
nm , whose derivative is

ck(n)
θnm

, hence this term arising. Note that ck(n) = 0 nullifies
the contribution of permutations k⃗ where n does not appear

in k⃗im . Therefore we can restrict the sum over k⃗ in Eq.11
to the set ∂n = {k⃗|⃗k ∈ K⃗, n ∈ k⃗im}. We also defined the set
∂m = {(f⃗ , o)|(f⃗ , o) ∈ R◦,m ∈ f⃗im}.

Using Eq.1 and Eq.11, we compute ϕ(a(m))
m :

Ka(m)∑
n

ϕ(a(m))
m θ(a(m))

mn =
∑

(f⃗ ,o)∈∂m

Ka(m)∑
n

∑
k⃗∈K⃗

ck(n)ωf⃗ ,o(k⃗)

= ϕ(a(m))
m =

∑
(f⃗ ,o)∈∂m

∑
k⃗∈K⃗

ωf⃗ ,o(k⃗)︸ ︷︷ ︸
=1 (Eq. 6)

Ka(n)∑
n

ck(n)︸ ︷︷ ︸
=cf (m)

=
∑

(f⃗ ,o)∈∂m

cf (m) = Cm (12)

When summing over n, ck(n) successively counts the number
of times each n appears in k⃗im , which equals the length of
k⃗im . Therefore

∑
i ni = |k⃗im | = cf (m) is the number of

times input entity m appears in the entry (f⃗ , o) considered,
which does not depend on k⃗. Cm is the total count of m in
the dataset. Note that this differs from the derivation proposed
in [12], where nonlinear terms are not accounted for.

The derivation of the maximization equation for p is very
similar. Let ∂s = {(f⃗ , o)|(f⃗ , o) ∈ R◦, o = s}. We solve:

∂ℓc
∂pr⃗(s)

=
∂

∂pr⃗(s)

ℓ−∑
k⃗

ψk⃗

(∑
o

pk⃗,o − 1

) = 0

⇔ ψr⃗ =
∑

(f⃗ ,o)∈∂s

ωf⃗ ,o(r⃗)

pr⃗(s)

⇔
∑
n

ψr⃗pr⃗(s) = ψr⃗ =
∑

(f⃗ ,o)∈R◦

ωf⃗ ,o(r⃗) (13)

Finally, combining Eq.11 with Eq.12, and the two last lines
of Eq.13, the maximization equations are:θ

(a(m))
mn =

∑
(f⃗,o)∈∂m

∑
k⃗∈∂n

ck(n)ωf⃗,o
(k⃗)

Cm

pr⃗(s) =
∑

(f⃗,o)∈∂s
ω

f⃗,o
(r⃗)∑

(f⃗,o)∈R◦ ω
f⃗,o

(r⃗)

(14)

From Eq.14 we can show that for a given number of clusters
for each type (Ka(f1), ...,Ka(fN )), one iteration of the EM
algorithm runs in O(|R◦|).

We must define a nomenclature to refer to each special case
of the SIMSBM –what input entity types are considered, and
how many interactions for each type. We use the notation
SIMSBM(number interactions type 1, number interactions
type 2, ...). For instance, SIMSBM(2,3) represents a case
where the SIMSBM considers two types of input entities,
with the first one interacting as pairs with other entities of
same type, and the second one interacting as triples with
entities of the same type. The corresponding data has a shape
(f1, f2, g1, g2, g3, o) where f and g are the two considered
types.



III. BACKGROUND ON STOCHASTIC BLOCK MODELS

A. Existing works
As stated in the introduction, recent years saw a growing

interest for Stochastic Block Models (SBM) to tackle collab-
orative filtering problems in recommender systems [11]–[13].
These models first cluster input entities together, and then
analyze how these clusters relate to each other. Each input
entity can be associated either to one cluster only (single-
membership SBM) [16]–[18] or to a distribution over available
clusters (Mixed Membership SBM, or MMSBM) [19]. While
the single-membership SBM has been successfully applied
to a range of problems [17], [18], [20], [21], inference is
done using greedy algorithms, typically simulated annealing,
making it unfit for large scale real-world applications [11].

The Mixed-Membership SBM (MMSBM) is a major exten-
sion of Single-Membership SBM that has been proposed in
the seminal work [19]. In the frame of collaborative filtering
for recommender systems, [11] proposed a bipartite network
extension. This model has later been extended to consider
triples of input entities instead of pairs [12]. It assumes that
all the entities in a given triplet are linked together by a
given relation. This boils down to assuming data can be
represented in the form of a tripartite network instead of
a bipartite network. Another extension of [19] proposes to
consider the case of input entities of the same type, modeled
as a bipartite graph [13]. This is relevant when trying to
guess an output given a pair of input entities of same type –
that is when entities carry the same semantic meaning. When
considering input entities of the same type, one must consider
symmetric clustering; the probability of an output based on
the entities pair (A,B) should not differ from the probability
of an output based on (B,A). The authors solve the problem
by clustering both entities using a same membership matrix,
whose components then interact with each other. This differs
from other recent works on interaction modeling that do not
consider clustering [22], [23] or the non-linearity induced by
symmetric interactions [12], [24].

B. SIMSBM generalizes several state-of-the-art models
The formulation of SIMSBM allows to recover several

state-of-the-art works. Each of these previous models was
introduced as different and novel in their respective publica-
tions, whereas they could be presented as simple iterations of
SIMSBM instead. Building on this generalization, SIMSBM
provides a degree of modeling flexibility that goes beyond the
existing literature –modeling arbitrarily large context sizes and
interaction order.

Now, we briefly show how our formulation allows to recover
several state-of-the-art models. Throughout this section, we
denote input entities of different types by different letters (e.g.
f1 is not of the same type as g1), and the model’s output as o.
The set of corresponding membership matrices for each type is
noted as Θ = {θ(f), θ(g), ...} and one edge of the multipartite
clusters-interaction tensor is noted (pk(f1),k(f2),...(o)) where
k(fi) is one of the possible cluster indices for an input entity
of type f .

1) MMSBM [19]: The historical MMSBM has been pro-
posed in [19], and is at the base of most models discussed in
this section. MMSBM takes pairs (f1, o) as input data. We can
recover this model with our framework by setting Θ = {θ(f)}.
The multipartite network then becomes “unipartite”, that is a
simple one-layer clustering of entities. The probability of an
output is defined by entities’ cluster membership only. The
tensor p then takes the shape pf1(o). Using the SIMSBM
notation, this correspond to SIMSBM(1).

2) Bi-MMSBM [11]: The Bi-MMSBM has first been pro-
posed in [11], and has since been applied on several occasions
[12], [25]. In this modeling, data is made of triplets (f1, g1, o).
Each entity is associated a node on a side of a bipartite
graph (fi’s on one side, gi’s on the other) and edges represent
the probability of an output o. We recover the Bi-MMSBM
with our model by setting Θ = {θ(f), θ(g)} and the bipartite
clusters network tensor (pk(f1),k(g1)(o)). This correspond to
SIMSBM(1,1).

3) T-MBM [12]: The T-MBM is a model proposed in [12]
that goes a step further than [11] by adding a layer to the
bipartite network used to model quadruplet data (f1, f2, g1, o).
This model aims at modeling interactions between entities
of same type as in [13] by clustering f1 and f2 using a
same membership matrix, but does not account for nonlinear
terms. We recover the T-MBM modeling by setting Θ =
{θ(f), θ(g)} and (pk(f1),k(f2),k(g1)(o)). Our formulation allows
to go further by adding an arbitrary number of layers to the
multipartite networks proposed in [11], [12]. This correspond
to SIMSBM(2,1).

4) IMMSBM [13]: The IMMSBM proposed in [13] models
interactions between entities of the same type to predict an
output. The data takes the form (f1, f2, o). Each input entity is
still associated to one node on either side of a bipartite graph,
except that here the membership matrix is shared between the
two layers. The links between each pair of clusters represent
the probability of an output o. We recover the IMMSBM with
our model by setting Θ = {θ(f)} and the bipartite clusters
network tensor (pk(f1),k(f2)(o)). Importantly, our formulation
allows to consider interactions between n input entities instead
of simply pair interactions. This correspond to SIMSBM(2).

5) Indirect generalizations: We did not detail the gen-
eralization of other families of block models because our
algorithm does not readily fits these cases. However, it is
worth mentioning that MMSBM has been developed as an
alternative to Single Membership SBM [26] that allows more
flexibility [19]. Our model reduces to most existing SBM by
modifying the definition of the entries of θ(n). In the Single
Membership SBM, Eq.1 reads θ(n)fn,k

= δk,x where x is one
of the Kn possible values for k and δ is the Kronecker’s
delta. This means the membership vector of each input entity
equals 1 for one cluster only, and 0 anywhere else. Therefore,
the optimization process is not the same as we described. In
practice optimization is done with greedy algorithms such as
the simulated annealing [21], [25].

It has also has been shown in [11]-Eq.7 that the Bi-MMSBM
model generalizes matrix factorization. Therefore, it follows



TABLE II
DATASETS CONSIDERED. THE NUMBER OF DISCRETE VALUES EACH INPUT OR OUTPUT ENTITY TYPE CAN CAN TAKE IS GIVEN BETWEEN PARENTHESIS.

Type of the input entities # interactions Type outputs |R◦| # clusters
MrBanks 1 {Player (280), Situation (7), Gender (2), Age (6)} Situations: 3 User guess (2) 16k {5,5,3,3}
MrBanks 2 {Player (280), Situation (7)} Situations: 3 User guess (2) 16k {5,5}

Spotify {Artists (143)} Songs: 3 Artist (740) 50k {20}
PubMed {Symptoms (13)} Symptoms: 3 Disease (280) 2M {20}
Imdb 1 {User (2502), Casting (809)} Casting: 2 Rating (10) 1M {10,8}
Imdb 2 {User (2502), Director (255), Casting (809)} None Rating (10) 700k {10,10,10}

that SIMSBM also generalizes it. The underlying idea is to
remove the multipartite network tensor p and define clusters
that are shared by both sides of the bipartite network. This
way, clusters do not interact with each other because they are
not embedded into a multipartite network; input entities on
one side of the bipartite network belonging to one cluster are
solely linked to entities on the other side belonging to this
same cluster.

IV. EXPERIMENTS

A. Range of application

As shown in the previous section, our formulation general-
izes several existing models from the state-of-the-art. There-
fore, it is readily applicable to any of the datasets consid-
ered in these works. This includes recommendation datasets
(movies [11], songs [13]), medical datasets (symptoms-disease
networks [13], drug interaction networks [12], [20]) and social
behavior datasets (social dilemmas [21], [25], e-mail networks
[12], [27]). In general, it applies to datasets where there is a
given number of input entities leading to a set of possible
outputs. In this section, we propose to illustrate an application
of our model on 6 different datasets.

B. Datasets and evaluation protocol

1) Datasets: The datasets we consider here are presented
in Table II. Each of them is made available along with the
implementation of our model and our experiments on GitHub1.

The MrBanks datasets has been gathered from a social
experiment detailed in [28]. The experiment takes the form
of a game where a player must guess whether a stock market
curve will go up or down at the next time step. In order to do
so, she can access various pieces of information, from which
we selected the most relevant subset based on the descrip-
tion in [25], [28]: direction of the market on the previous
day (up/down), whether she guessed right (yes/no), and an
expert’s advice who is correct 60% of the time (up/down/not
consulted). Those are the 7 interacting pieces of information
that define a situation. If the model considers pair interactions
for instance, a situation can be defined as “market went down
and user guessed wrong”, or “market went up and expert
advised up”. A triplet interaction allows to get the full picture
according to the selected pieces of information. In addition,
we have access to the players age and gender. The goal is

1Datasets and implementation available on https://github.com/
GaelPouxMedard/SIMSBM

to predict whether the user will guess up or down given the
available information.

For the Spotify dataset we collected user-made playlists on
Spotify using the Spotipy python API. Our goal is to predict
which next artist the user will add to the playlist, given the
previous artists he already added. We consider the last 4 artists
added by the user and their interaction to guess the next one.
Note that it often happens for an artist to be added several
times in a row.

The PubMed dataset is made of medical reports we
gathered using the PubMed API. We use provided keywords to
isolate symptoms and diseases in the text, as in [29]. Our goal
is to guess which diseases are discussed in the article given
the symptoms that are listed in the document. Our guess is
that a combination of symptoms helps narrowing the set of
possible diagnoses.

Finally, the Imdb datasets are provided and discussed
in [30]. The original dataset comes with information about
movies such as the lead actors starring in it and the movie’s
director. It also provides a list of users’ ratings on movies.
We aim to predict which rating a movie will get according to
several combinations of parameters and their interactions: who
directed the movie, who played in it, who gave the rating, etc.

90% of each dataset’s documents are used as a training set,
and the other 10% are used as an evaluation set. Each iteration
of the SIMSBM is run 100 times on every dataset. The EM
algorithm stops once the relative variation of the likelihood
falls below 10−4 for 30 iterations in a row. We present the
average results over all the runs. The number of clusters has
been chosen based on the existing literature on similar datasets
(Imdb [11], MrBanks [25], Spotify and PubMed [13]) for
demonstration purposes; dedicated work would be needed to
infer their optimal number for every dataset.

Finally, when SIMSBM is evaluated on a dataset containing
more interactions than it is designed to consider, the model is
trained on the lower-order corresponding dataset. For instance,
imagine a dataset considering one type interacting three times.
This dataset is made of one observation only (1, 2, 3, o).
A SIMSBM iteration that considers pair interactions will
then be trained on triplets (1, 2, o), (1, 3, o) and (2, 3, o), and
evaluation will be performed accordingly.

2) Baselines and evaluation: Evaluation is done according
to the maximum F1 score, the precision at 1 (P@1), the area
under the ROC curve, the area under the Precision-Recall
curve (or Average Precision); since the problem is about multi-
label classification, we consider the weighted version of these



TABLE III
RESULTS FOR EVERY DATASET PRESENTED. THE LETTERS IN SUPERSCRIPT REPRESENT THE MODEL SIMSBM GENERALIZES IN THIS PARTICULAR

CONFIGURATION (MMSBM [19]=A ; BI-MMSBM [11]=B ; IMMSBM [13]=C ; T-MBM [12]=D ). THE STANDARD ERROR ON THE LAST DIGITS OVER ALL
100 RUNS IS INDICATED BETWEEN PARENTHESIS. OVERALL, WE SEE THAT OUR FORMULATION ALLOWS TO IMPROVE RESULTS ON EVERY DATASET.

F1 P@1 AUCROC AUCPR RankAvgPrec CovErrNorm

M
rB

an
ks

1

Pl
y,

Si
t

(3
),

G
en

,A
ge SIMSBM(1,1,1,1) 0.7124(2) 0.6549(3) 0.7071(2) 0.7141(3) 0.8274(1) 0.1726(1)

SIMSBM(1,2,1,1) 0.7107(2) 0.6696(5) 0.7120(4) 0.7158(5) 0.8348(3) 0.1652(3)
SIMSBM(1,3,1,1) 0.7348(2) 0.7172(5) 0.7610(4) 0.7646(4) 0.8586(3) 0.1414(3)
TF 0.6795 0.6037 0.4702 0.4967 0.8019 0.1981
NMF 0.7178 0.6976 0.7232 0.7182 0.8409 0.1591
KNN 0.7023 0.6648 0.6859 0.6623 0.8324 0.1676
NB 0.6867 0.6382 0.6323 0.6250 0.8191 0.1809
BL 0.6795 0.6037 0.5000 0.5215 0.8019 0.1981

M
rB

an
ks

2

Pl
y,

Si
t

(3
)

SIMSBM(1,1)b 0.7032(1) 0.6700(3) 0.7049(2) 0.7018(2) 0.8350(2) 0.1650(2)
SIMSBM(1,2)d 0.7032(2) 0.6679(5) 0.7028(4) 0.7010(4) 0.8340(3) 0.1660(3)
SIMSBM(1,3) 0.7290(3) 0.7067(6) 0.7547(5) 0.7530(6) 0.8533(3) 0.1467(3)
TF 0.6775 0.5953 0.5054 0.5259 0.7976 0.2024
NMF 0.7137 0.6908 0.7246 0.7128 0.8397 0.1603
KNN 0.7100 0.6699 0.7126 0.6856 0.8349 0.1651
NB 0.6802 0.6512 0.6329 0.6225 0.8256 0.1744
BL 0.6775 0.5953 0.5000 0.5181 0.7976 0.2024

Sp
ot

ify

A
rt

is
ts

(3
)

SIMSBM(1)a 0.1741(4) 0.2155(7) 0.7908(6) 0.1603(3) 0.3827(4) 0.0786(3)
SIMSBM(2)c 0.3156(5) 0.3348(4) 0.7661(5) 0.2545(3) 0.4528(3) 0.0938(6)
SIMSBM(3) 0.3243(4) 0.3209(3) 0.7384(6) 0.2613(3) 0.4366(3) 0.1079(7)
TF 0.0262 0.0042 0.4805 0.0159 0.0962 0.1550
NMF 0.0371 0.0658 0.5650 0.0403 0.1762 0.2557
KNN 0.3201 0.3009 0.7079 0.2400 0.3941 0.5212
NB 0.0463 0.0846 0.7005 0.0576 0.2264 0.0763
BL 0.0262 0.0532 0.5000 0.0135 0.1879 0.0969

Pu
bM

ed

Sy
m

pt
om

s
(3

)

SIMSBM(1)a 0.2915(2) 0.5576(4) 0.7475(1) 0.2658(1) 0.4641(1) 0.2033(1)
SIMSBM(2)c 0.3127(1) 0.5704(1) 0.7613(1) 0.2840(1) 0.4838(1) 0.1991(1)
SIMSBM(3) 0.3219(1) 0.5790(1) 0.7666(1) 0.2895(1) 0.4937(1) 0.1983(1)
TF 0.1607 0.1003 0.5605 0.1777 0.1370 0.5118
NMF 0.1606 0.0293 0.5368 0.2158 0.2321 0.2959
KNN 0.2414 0.3251 0.6154 0.2324 0.2891 0.7730
NB 0.2600 0.1618 0.7054 0.2389 0.2036 0.3058
BL 0.1607 0.1003 0.5000 0.1026 0.2464 0.2834

Im
db

1

U
sr

,C
as

t
(2

)

SIMSBM(1,1)b 0.3212(1) 0.2434(1) 0.6265(1) 0.2502(1) 0.4360(1) 0.3504(1)
SIMSBM(1,2)d 0.2546(1) 0.1006(38) 0.4998(3) 0.1509(1) 0.2928(42) 0.4527(51)
TF 0.2546 0.2300 0.4960 0.1485 0.4568 0.2702
NMF 0.1329 0.0593 0.5007 0.1531 0.1549 0.8087
KNN 0.2578 0.1899 0.5489 0.1679 0.3290 0.5328
NB 0.2555 0.2351 0.5308 0.1607 0.4619 0.2596
BL 0.2546 0.2300 0.5000 0.1508 0.4605 0.2586

Im
db

2

U
sr

,D
ir,

C
as

t SIMSBM(1,1,1) 0.3896(1) 0.3437(2) 0.7593(1) 0.3293(2) 0.5705(1) 0.1654(1)
TF 0.2547 0.2238 0.5039 0.1513 0.4549 0.2636
NMF 0.1127 0.0483 0.5005 0.1529 0.1406 0.8319
KNN 0.2596 0.1890 0.5501 0.1681 0.3268 0.5248
NB 0.2558 0.2373 0.5362 0.1617 0.4632 0.2571
BL 0.2547 0.2286 0.5000 0.1507 0.4598 0.2574



metrics –metrics are computed individually for each class,
and averaged with each classes’ weight being equal to the
number of true instances in the class. The presented results are
averaged over all 100 runs. We also consider the rank average
precision and the normalized covering error (only here lower
is better).2. These last two metrics account for label ranking
performance. We compare to several standard baselines:

• BL: the most naive baseline, where each output is pre-
dicted according to its frequency in the training set,
without any context.

• NB2: the Naive Bayes baseline assumes conditional in-
dependence between the input entities and updates the
posterior probability according to Bayes law.

• KNN2: K-nearest-neighbors. The output probabilities for
a given entities array are defined according to a majority
vote among the most similar entities arrays.

• NMF2 and TF: Tensor Factorization baselines. For TF,
we use the implementation provided by authors of [4]. As
discussed in the introduction, to make these methods fit to
our problem, we have to define a continuous quantity to
train the model. Instead of requiring an additional model
to map possible outputs into a continuous space, we train
the model on the frequency of outputs in a given context.
Since NMF can only consider one entity as an input,
we consider each different context as an independent
entity. Outputs are added as an additional dimension to
the data matrix instead of being a proper objective –their
frequency is now the objective. The TF baseline is run
for the same number of clusters as for the SIMSBM.

• MMSBM [19], Bipartite-MMSBM [11], IMMSBM [13],
T-MBM [12]: as discussed before, each of these models
are special cases of SIMSBM. For presentation purpose,
for each model, we keep the SIMSBM notation and
indicate in superscript which of these it reduces to in
this context. MMSBM=a; Bi-MMSBM=b; IMMSBM=c;
T-MBM=d.

C. Discussion

1) Main results: We present our main results in Table III. In
this table, we see that our formulation systematically outper-
forms the proposed baselines, as well as the ones it generalizes.
In most cases, the possibility to add a layer or to consider
higher-order interactions improves the performance over the
existing baselines (MMSBM, Bi-MMSBM, IMMSBM and T-
MBM). About the Spotify dataset, as stated before, artists are
often added to a playlist in a row, leading to the probability of
the next artist being the same as the one immediately before
her to be higher. In this context, adding interaction terms adds
noise in the modeling. This explains why the triple interactions
version of SIMSBM does not perform better than its pair-
interactions [11] or no-interaction [19] iterations.

Besides numerical results, Table III underlines how easy
the SIMSBM makes it to design tailored models for a variety
of different problems. Using a single framework, we could

2We used the sklearn Python library implementation.

consider input context sizes ranging from 1 to 4 entries, and
interaction orders going from 1 to 3. Model selection (or in
this case, SIMSBM iteration selection) becomes simpler as a
result, since different input settings can be readily tested. Up
to now, adding a new layer (e.g. T-MBM with respect to Bi-
MMSBM) or increasing the interaction order (e.g. IMMSBM
w.r.t. MMSBM) required a new publication to explain the
advance; SIMSBM unifies these approaches into one global
model, each iteration of which is readily usable in a number
applications, as demonstrated in Table III.

In a similar line of reasoning, we see that SIMSBM is
finds applications in the field of recommender systems. This is
expected, as it generalizes two works that have been developed
for explicit recommendation problems [11], [13]. We empha-
size this point running SIMSBM on recommendation datasets
such as Imdb and Spotify –and performing replication studies,
see next section. However, the field of application of SIMSBM
ranges beyond the sole recommender systems aspect, as shown
tackling an assisted diagnosis problem (PubMed dataset) and
choice mechanisms data-driven study (MrBanks dataset, [25],
[28]).

A final note on the running time of the algorithm is
necessary. We saw with Eq. 14 that one iteration of the
EM algorithm can be performed with complexity O(|R◦|).
However, the combinatorial aspect of considering larger input
sizes makes |R◦| grow exponentially with the context size
and interaction order. This aspect must be considered when
running large scale experiments. Typically, in the case of
the Spotify dataset, 200 input context entries (artists) were
considered. When considering one order of interactions, |R◦|
scales as a fraction x of 200. When considering two orders of
interaction, |R◦| scales as the same fraction x of 200×200;
when considering three orders of interaction, |R◦| scales as
the same fraction x of 200×200×200; etc. This effect is less
crucial when considering larger context sizes, because the
number of new n-plets in R◦ does not necessarily scale as
the product of input entities type’s size. For instance in Imdb
2, a movie director tends to record movies using a reduced
set of lead actors; the number of different entries R◦ does not
grow much in this case. The main point regarding complexity,
is that iterations of the EM algorithm scale with the size of
the dataset |R◦|; it is however left to the SIMSBM user to
consider that |R◦| can grow large depending on the task at
hand.

2) Replication studies: To further underline the applicabil-
ity domain of SIMSBM, we ran it on the datasets considered in
[11] and in [25]. We chose the parameters so that SIMSBM
runs using the same model’s specifications. Our results are
shown in Table IV. They are similar as those of [11], [25]. It
confirms that our model correctly generalizes existing models
tackling similar problems.

Interestingly in the case of [25], the authors propose to
describe a given situation in form of a unique key, where
each key is independent from the others (Table IV, MrBanks).
Our formulation with triple interactions (Table III, MrBanks
2) improves the results on the same dataset the authors



TABLE IV
REPLICATION RESULTS ON TWO DATASETS USED IN (GODOY-LORITE ET AL., 2016A) AND (POUX-MEDARD ET AL., 2021A), REFERENCED IN THE MAIN

TEXT. THE STANDARD ERROR ON THE LAST DIGITS OVER ALL 100 RUNS IS INDICATED BETWEEN PARENTHESIS. OVERALL, WE RETRIEVE THE SAME
RESULTS AS THOSE PRESENTED IN (GODOY-LORITE ET AL., 2016A) AND (POUX-MEDARD ET AL., 2021A).

F1 P@1 AUCROC AUCPR RankAvgPrec CovErrNorm

Im
db

[1
1]

U
se

r,
M

ov
ie SIMSBM(1,1) 0.3995(2) 0.3558(3) 0.7665(1) 0.3406(3) 0.5805(2) 0.1593(1)

TF 0.2570 0.2348 0.5031 0.1541 0.4627 0.2573
KNN 0.2668 0.2002 0.5558 0.1735 0.3308 0.4834
NB 0.2585 0.2382 0.5377 0.1660 0.4664 0.2536
BL 0.2570 0.2349 0.5000 0.1525 0.4647 0.2557

M
rB

an
ks

[2
8]

Pl
y,

Fu
ll

si
t SIMSBM(1,1) 0.7126(2) 0.6688(4) 0.7126(3) 0.7180(4) 0.8344(2) 0.1656(2)

TF 0.6795 0.6037 0.5176 0.5363 0.8019 0.1981
KNN 0.6940 0.6433 0.6668 0.6430 0.8217 0.1783
NB 0.6795 0.6037 0.5907 0.5822 0.8019 0.1981
BL 0.6795 0.6037 0.5000 0.5215 0.8019 0.1981

provided. This is because the constituents of a situation are
not independent anymore but instead behave as elementary
interacting pieces of context, which provides a more accurate
description of reality: a situation is not considered as a whole
anymore, but instead as the combination of several pieces of
information.

V. CONCLUSION

In this paper, we developed a global framework, SIMSBM,
that generalizes several existing models from the literature.
We derived an expectation-maximization algorithm that runs
in linear time with the number of observations. We then
demonstrated that SIMSBM recover several models from the
literature as special cases, such as MMSBM, Bi-MMSBM,
IMMSBM and T-MBM. This results in a highly flexible model
that can be applied to a broad range of classification prob-
lems, as shown through systematic evaluation of the proposed
formulation on several real-world datasets. In particular, we
cited throughout the text a number of experimental studies
conducted in medicine, social behaviour and recommendation
using special cases of our model; using alternative iterations
of the SIMSBM framework may help further improve the
description and understanding of the interacting processes at
stake between an arbitrary greater number of input entities.
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