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ABSTRACT
Large quantities of data flow on the internet. When a user decides to
help the spread of a piece of information (by retweeting, liking, post-
ing content), most research works assumes she does so according
to information’s content, publication date, the user’s position in the
network, the platform used, etc. However, there is another aspect
that has received little attention in the literature: the information
interaction. The idea is that a user’s choice is partly conditioned
by the previous pieces of information she has been exposed to. In
this document, we review the works done on interaction modeling
and underline several aspects of interactions that complicate their
study. Then, we present an approach seemingly fit to answer those
challenges and detail a dedicated interaction model based on it. We
show our approach fits the problem better than existing methods,
and present leads for future works. Throughout the text, we show
that taking interactions into account improves our comprehension
of information interaction processes in real-world datasets, and ar-
gue that this aspect of information spread is should not be neglected
when modeling spreading processes.
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1 MOTIVATION
As of today, every minute, approximately 400h of Youtube content,
350.000 tweets and 500.000 Facebook comments are uploaded to
the internet. Such amounts of data do not appear randomly. They
are generated by users given a context: publication platform, user
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Figure 1: State of the art results on information interaction —
(top) Interactions take place between very specific pairs of
clusters; interactions are sparse [15]. (bottom) Interactions
between specific pairs of entities tend to follow an exponen-
tial decay in time; interactions do not last [14]

interests, date of publication, position of the user in a communica-
tion network, etc. Many of these aspects have been widely explored
in the literature; it has been shown that users interests can be ef-
ficiently modeled [6, 11], dynamics of publication can be inferred
in efficient ways [5], and methods have been proposed to model
the underlying diffusion networks of information diffusion [7, 19].
However, an open problem has been independently raised on sev-
eral occasions, and received little interest over the last decade: how
to efficiently model interactions between the spreading entities?

Intuitively, we say there is an interaction anytime the combina-
tion of entities yields more than their independent sum. Imagine
answering a simple question, whose interacting entities are unique
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words: to the question "Capital France?", the answer is obvious.
However, to the bit "Capital?", answers can be very broad; same for
the bit "France?". The interaction between those words narrowed
the field of possible answers; they are interacting. This idea can
easily be generalized to retweets (does a user retweet A only be-
cause of A, or also because of tweet B she has seen before?), online
buying (does the user buy A because she likes it, or because she
also bought B before?), and in general to online publication of doc-
uments (what are the bits of information making a user publish this
post in particular on this particular platform?).

The understanding of interactions in information spread should
provide a more exhaustive description of the publication process on
the internet, as well as provide leads on how users react in a given
context. At a time where three quarters of the world population
has an online identity1, the understanding of these mechanisms
could find applications anytime an internet user has to make a
choice: click, buy, like, comment, etc. One could think of nudging
users towards healthier internet behaviours on forum or better
consumption habits on online retail websites for instance.

The goal of this document is to briefly review the challenges
that arise when it comes to modeling interactions in information
spread –interactions are sparse and short. We then present a can-
didate methodology to deal with them, based on both Bayesian
clustering and temporal point-processes. We show this method has
flaws and propose a way to correct them. Our method allows to
get better results on several datasets. Finally, we present leads to
extend the existing framework and discuss research perspectives
on interactions modeling.

2 PROBLEM
2.1 Interactions are sparse
In a first attempt to explicitly model interactions in a real-world
dataset, the authors in [12] proposed to apply a classical block
model to Twitter data. The goal is to predict the probability that
a link will be retweeted, given a history of links that appeared
before it. The method makes a central assumption: the interaction
between tweets is a small modulation of a base retweet probability,
which is precomputed as the total frequency of this tweet being
retweeted. On this basis, the authors show that interactionmodeling
indeed helps to improve the predictive performances of the model.
The analysis of the inferred interaction terms has led them to the
following conclusions: most interactions are small, and interactions
are slightly negative overall (meaning the lower the base probability
of a retweet). By running their model for different sizes of prior
exposures (or history), they also conclude that users rely mostly on
a short-term memory, which correlates previous findings on users
modeling [9, 13].

However, more recent works proved the core-hypothesis of this
modeling false [15]. By precomputing the base probability of a
retweet as the total number of times a tweet has been retweeted
divided by the number of times it appeared, the authors in [12]
already account for interactions. Imagine that interactions lead to a
shift of Δ𝑝 on the true base probability of a retweet 𝑝 , and that this
interaction happens in a fraction 𝑓 of all observations of a given

1https://en.wikipedia.org/wiki/Global_Internet_usage

tweet being retweeted. The base probability as defined in [12] then
equals 𝑝 (1− 𝑓 ) + (𝑝 + Δ𝑝) 𝑓 = 𝑝 + 𝑓 Δ𝑝 , which is likely not to equal
the actual probability of a retweet in the absence of interaction 𝑝 .
Therefore, defining interaction according to 𝑝 is wrong. The base
probability for a retweet needs to be inferred by the model at the
same time as the contribution of interactions to be properly defined.

The authors in [15] then propose a mixed membership stochastic
block model (MMSBM) in order to jointly infer the base probability
of an entity spreading, as well as the interaction terms that modulate
it. The idea is to group entities into clusters according to the way
those clusters interact together. The authors in [15] study the im-
portance of interactions in 4 different datasets. The conclusions are
as follow:modeling interactions improve predictive results,
most interactions are small, and significant interactions are
sparse, meaning that they take place only between rare specific
pairs of clusters. This result for the Twitter dataset is reported on
Fig. 1-top.

2.2 Interactions are short
An important aspect of interactions that [15] does not consider
is time. The position of entities in the considered history is not
considered. In [12], the order of appearance is taken into account,
but each temporal slice is modeled as independent from the others.

In [14], the authors propose to study the evolution of the in-
teraction term in continuous time, using a convex model based
on survival theory. This framework allows to infer both a time-
independent probability of a retweet and a linear combination of
time-dependent kernel functions that account for temporal evolu-
tion of the interaction terms. The data considered is similar as in
[12, 15] as it consists of pairs of entities (typically tweets) associ-
ated to a given action (typically retweet), separated by a time Δ𝑡
in a user’s history. Note that this model does not have any cluster-
ing component; the interaction is studied only between the most
interacting pairs of entities for every of the 3 considered datasets.

The results of [14] are as follow: interactions magnitudes
follow an exponential decay in time, and therefore do not
last in time. Besides, the model recovers previous findings on
interactions: interactions are sparse, and their maximummagnitude
is small. This result is reported Fig. 1-bottom.

3 STATE OF THE ART
3.1 Historical approach to dynamic clustering
We reviewed the main challenges associated with interactions mod-
eling. First, interactions take place between specific pairs of clusters,
and even more specific pairs of entities; to be able to spot them
using non-convex models requires a clustering aspect. Second,
interactions quickly fade in time, meaning that the information
clusters must also take into account a temporal aspect.

The use of temporal dimension in documents clustering has
been studied several occasions; a notable spike of interest hap-
pened in 2006. Many authors tackled the problem of inferring time-
dependent clusters using models based on LDA [4, 23]. The idea is
to sample the data provided to each model with a temporal function;
the data can be selected using a temporal sliding window, or a tem-
poral data sampling function. Time is not explicitly modeled. Most
of these models are parametric, meaning the number of clusters

https://en.wikipedia.org/wiki/Global_Internet_usage
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is fixed at the beginning of the algorithm. In 2008, A. Ahmed &
al proposed the Recurrent Chinese Restaurant Process (RCRP) as
an answer to this problem [1]. Instead of considering a fixed-size
dataset, this model can handle a stream of documents arriving in
chronological order, and the number of clusters is automatically up-
dated. In this model, time is still not modeled explicitly (data is split
into episodes to capture the temporal aspect of cluster formation).
A later version of the model from 2010, the Distance-Dependent
Chinese Restaurant Process (DD-CRP), tries to alleviate this approx-
imation by replacing fixed-time episodes with a continuous-time
sampling function [3]. However, the model is still not designed to
explicitly model temporal information in a continuous-time setting.
The slicing of the considered data introduces a consequent bias in
the modeling.

3.2 Dirichlet-Hawkes process (DHP)
In 2015, N. Du & al [5] answered this problem by developing the
Dirichlet-Hawkes Bayesian prior, that can be used to model the
appearance of events in a continuous-time setting. The key idea is
to replace the counts in a Dirichlet process prior by the intensity
function of a Hawkes process.

Explicitly, given a standard Bayesian textual clustering model:

𝑃 (cluster|text, time)︸                    ︷︷                    ︸
Posterior probability

∝ 𝑃 (text|cluster)︸            ︷︷            ︸
Textual likelihood

× 𝑃 (cluster|time)︸             ︷︷             ︸
Temporal prior

(1)

the authors propose the following form for the temporal prior:

𝑃 (𝐶𝑖 = 𝑐 |𝑡𝑖 , 𝜆0,H<𝑡𝑖 ,𝑐 ) =
{

𝜆𝑐 (𝑡𝑖 )
𝜆0+

∑
𝑐′ 𝜆𝑐′ (𝑡𝑖 )

if c≤C
𝜆0

𝜆0+
∑

𝑐′ 𝜆𝑐′ (𝑡𝑖 )
if c=C+1

(2)

where 𝐶𝑖 is the cluster allocation among 𝐶 clusters of the 𝑖𝑡ℎ docu-
ment appearing at time 𝑡𝑖 , 𝑐 a random variable,H<𝑡𝑖 ,𝑐 the date of all
documents within cluster 𝑐 published before 𝑡𝑖 , 𝜆𝑐 (𝑡) the intensity
of cluster 𝑐 at time 𝑡 , and 𝜆0 a parameter.

The functions 𝜆𝑐 (𝑡) need to be inferred as the intensities of a
Hawkes process [18], and represent the instantaneous probability
that a document appears at time 𝑡 . Note that in Eq.2, the prior proba-
bility that a new document belongs to a given cluster depends on the
intensity of this cluster at a time 𝑡 : clusters are self-stimulated.
In the problematic of information interaction, it means that pieces
of information can only interact with other pieces of information
from the same cluster. An example of a situation where a new ob-
servation gets allocated to any of the existing clusters is illustrated
Fig. 2.

The resulting Dirichlet-Hawkes process (DHP) is then used as
a prior for clustering documents appearing in a continuous-time
stream. The inference is realized with a Sequential Monte-Carlo
(SCM) algorithm. Following DHP, two articles have been published
extending the idea: the Hierarchical Dirichlet Hawkes process
(HDHP) [11] in 2016 and Indian Buffet Hawkes process in 2018
[20]. Recently, [10] underlined that this formulation suffers from a
vanishing prior problem (𝜆𝑐 (𝑡) can go to 0), and proposes a small
procedure in order to avoid it, without modifying the core idea of
the prior.

Figure 2: Illustration of the Dirichlet-Hawkes prior — Each
cluster is associated to a temporal intensity function. The
prior probability (Eq.2) of a new observation belonging to a
cluster is linearly proportional to this cluster’s intensity.

4 PROPOSED APPROACH
4.1 Improvements over DHP
A common feature of all the models we mentioned built on DHP is
that they use a non-parametric Dirichlet process (DP) prior or vari-
ations built on it, such as DHP and HDHP. Yet, on several occasions,
it has been pointed out that there are no specific reasons to use this
process in particular and that alternative forms might work better
depending on the dataset [21, 24]. In [24], the author relaxes several
properties associated with DP and shows that alternative priors are
an equally valid choice in Bayesian modeling. In [21], the authors
derive the Uniform process (UP) and show that it performs better
on a document clustering task. In [16], the authors generalize UP
and DP within a more general framework, the Powered Dirichlet
process (PDP), and show it performs better than DP on several
datasets.

Moreover, it has recently been highlighted that DHP does not
work well when the textual information within documents conveys
little information, that is when the text is short [25] or when vocab-
ularies overlap significantly. To answer this problem, the authors
develop an approach based on Dirichlet process mixtures, which is
not designed for continuous-time document streams – the temporal
aspect comes from a sampling function as in [1, 3]. There are other
limiting cases for DHP, for instance when temporal information is
conveys little information (few observations, entangled dynamics)
or when documents within textual clusters do not follow a unique
temporal dynamic. To overcome those limitations, we develop the
Powered Dirichlet-Hawkes process in the next section.

4.2 The model
Taking back Eq.2, we note that the linear dependence of the prior
on 𝜆𝑐 (𝑡) is justified only by analogy with the standard Dirichlet
process. At this stage, we believe that a small modification of Eq.2
can lead to great variations in the comprehension of a dataset. In
particular, making the prior more or less dependent on the temporal
dimension (in the same way that [17, 21] makes the DP more or
less dependent on the “rich-get-richer” hypothesis) could lead to
clusters that are more text or time orientated. By replacing the
standard Dirichlet process in [5] by the Powered Dirichlet process
from [16], we derive the Powered Dirichlet-Hawkes process[17]:

𝑃 (𝐶𝑖 = 𝑐 |𝑟, 𝑡𝑖 , 𝜆0,H<𝑡𝑖 ,𝑐 ) =


𝜆𝑟𝑐 (𝑡𝑖 )
𝜆0+

∑
𝑐′ 𝜆

𝑟
𝑐′ (𝑡𝑖 )

if c≤C
𝜆0

𝜆0+
∑

𝑐′ 𝜆
𝑟
𝑐′ (𝑡𝑖 )

if c=C+1
(3)
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Figure 3: Effect of the parameter 𝑟 in PDHP on the posterior
probability (Eq.1 using the prior in Eq.3) for a new observa-
tion to belong to each cluster.

We show in Fig. 3 what this change implies for a standard
Bayesian textual clustering model. The value of 𝑟 tunes how much
we rely on either the textual or the temporal information every
time the algorithm chooses a cluster for a new document.

The algorithm used for inference is a sequential Monte-Carlo; it
is the same as described in [5, 11, 17]. It is especially fit for modeling
data streams, as it considers data sequentially. The underlying idea
is that for each new observation, a number of particles 𝑁𝑝𝑎𝑟𝑡 will
make a cluster allocation hypothesis according to Eq.1, update the
cluster’s intensity function 𝜆𝑐 (𝑡), and pass on to the next document.
When the likelihood of a particle 𝐿𝑝 goes under a given threshold
𝜔 , the particle is discarded and replaced by a more likely one. In
our case, we consider 8 particles and a threshold of 𝜔 =

∑
𝑝 𝐿𝑝

2𝑁𝑝𝑎𝑟𝑡

5 METHODOLOGY AND RESULTS
5.1 Data generation
We simulate cases where only two clusters are considered. Each
cluster has its own vocabulary distribution over 1 000 words and
its associated intensity function 𝜆𝑐 (𝑡). We first simulate one inde-
pendent Hawkes process per cluster using the Tick Python library
[2]. The processes are stopped at time 𝑡 = 1500, which makes a
rough average of 7 000 events per run. Then we associate each
simulated observation with a sample of 20 words drawn from the
corresponding cluster’s word distribution.

We evaluate our results according to the Normalized Mutual
Information score (NMI), which is a standard metric to compare
the results of different clustering algorithms when the number of
clusters can vary.

5.2 Intra-cluster interactions...
5.2.1 ...with unreliable information. A first lead to explore how
information interact in time is to consider the case where clusters
are self-stimulated. However, [25] showed that the approach in [5]
is not fit for cases where textual information is weak or unreliable
(e.g. Twitter) or when temporal dynamics are highly entangled or
when textual information is sufficient (e.g. long documents or real-
world process at large scales). In order to confirm that our modeling

Figure 4: Results of PDHP when textual and temporal infor-
mation are not fully reliable (a,b) and when textual content
is decorrelated from temporal dynamics (c,d).

in [17] answers those limitations, we run experiments for various
values of informativeness of either textual or temporal content.

To do so, we will make the clusters’ vocabulary distributions
and temporal intensity functions overlap. Given two distributions

A(𝑥) and B(𝑥), the overlap is defined as
∫
𝑥
𝑚𝑖𝑛 (A(𝑥),B(𝑥))𝑑𝑥∫
𝑥
A(𝑥)+B(𝑥)𝑑𝑥 .

In the case of vocabulary overlap, we shift the words distribu-
tion so that they have a certain fraction of shared words. In the
case of temporal overlap, we first simulate each cluster’s Hawkes
process, and compute the intensity function of the whole resulting
dataset. Then, we shift each process realization on the temporal
axis so that the overlap reaches the desired value. We evaluate the
models according to the documents clusters allocations compared
to the true clusters from the data generation process. We report
the average improvement for every of the 20 datasets considered
in each overlaps configuration, for various values of 𝑟 .

Our results are shown in Figs. 4a-b. PDHP allows better per-
formances comparing to DHP (r=1) and UP (r=0) when textual
information is unreliable (high textual overlap), up to a gain of +0.3
NMI w.r.t. DHP (Fig. 4a). In more realistic situations (average textual
and temporal overlaps), PDHP allows better results (up to +0.2 NMI,
Fig. 4b). Our method is therefore able to accurately uncover which
cluster triggered a new document, that is to which interaction chain
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this document belongs, in the case of weak temporal and textual
information.

5.2.2 ... with decorrelated content and dynamics. Another limiting
situation of [5] is when textual documents about a same topic do
not follow similar dynamics. Picture a famous and an infamous
newspapers publishing the exact same article; these articles would
not follow the same dynamics despite an identical textual content.

In order to explore the case where identical textual contents
do not follow identical temporal dynamics, we first generate the
whole dataset with null temporal and textual overlaps. Then, we
randomly select a given fraction of the generated observations,
and resample their associated vocabulary according to a randomly
selected cluster. We have two different possible clustering: textual
(how well the model recovers the vocabulary a document’s content
has been drawn) and temporal (which intensity function made this
document appear where it is). In this case, we report the difference
between the textual clustering NMI and the temporal clustering
NMI: Δ𝑁𝑀𝐼 = 𝑁𝑀𝐼𝑡𝑒𝑥𝑡 − 𝑁𝑀𝐼𝑡𝑖𝑚𝑒 .

Our results are shown Figs. 4c-d. When textual content is decor-
related from publication dynamics (which is more in line with what
happens in real-world processes), tuning 𝑟 allows to consistently
recover one clustering or the other. That means we can success-
fully recover clusters based on either textual similarity or on the
temporal interaction between documents, or a mixture of both.

5.3 Ongoing: Inter-cluster interactions
As for now, we presented introductory results about self-interacting
clusters. However, in order to get the full picture, we cannot only
consider the case where only one given cluster interacts with in-
coming documents. Instead, we need to consider the interaction
between all existing clusters. This embeds naturally in the proposed
approach [5, 17] by considering a multivariate Hawkes process in-
stead of a uni-variate one [18]. In implies redefining the numerator
in Eq.3 from 𝜆𝑐 (𝑡) to

∑
𝑐′ 𝜆𝑐′→𝑐 (𝑡), where 𝜆𝑐′→𝑐 (𝑡) is the tempo-

ral influence of cluster 𝑐 ′ on cluster 𝑐 at a time 𝑡 . The challenge
here is to preserve the efficiency of the proposed algorithm while
the model’s complexity increases in a polynomial fashion with the
number of inferred clusters.

5.4 Future: User-level inter-cluster interactions
As for future works, we believe it is possible to go further by com-
bining temporal point processes to Dirichlet processes. While [5]
opened the door to this union, it only explored a small part or pos-
sible applications. In particular, we think of the works of Gomez-
Rodriguez on underlying network inference [7, 19] and extensions
[6, 22]. In [8], he showed that all these models can be formulated in
terms of a counting temporal point process, which naturally allows
to substitute any such modeling to the Hawkes process in Eq.2
and Eq.3. In this case, we would be able to study the interaction
between pieces of information at the user-level, providing a deeper
understanding of information interaction in real-world processes.

6 CONCLUSIONS
In this document, we first motivated the need to model the in-
teraction between pieces of information in order to get a better

understanding of real-world spreading processes. We then high-
lighted the main challenges that arise in this perspective using
recent published works. We proposed to address the problem by
considering a recent approach that seems to fit to answer the chal-
lenges of interaction modeling, despite having its own flaws. We
proposed a simple method to overcome these, and conducted sys-
tematic experiments to demonstrate how our methodology works
at doing so. Finally, we proposed leads for further improving our
understanding of real-world information interaction modeling.
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